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Abstract 

Background: Motivated by the need for precise epidemic control and epidemic-resilient urban design, this study 
aims to reveal the joint and interactive associations between urban socioeconomic, density, connectivity, and 
functionality characteristics and the COVID-19 spread within a high-density city. Many studies have been made on 
the associations between urban characteristics and the COVID-19 spread, but there is a scarcity of such studies in 
the intra-city scale and as regards complex joint and interactive associations by using advanced machine learning 
approaches.

Methods: Differential-evolution-based association rule mining was used to investigate the joint and interactive asso-
ciations between the urban characteristics and the spatiotemporal distribution of COVID-19 confirmed cases, at the 
neighborhood scale in Hong Kong. The associations were comparatively studied for the distribution of the cases in 
four waves of COVID-19 transmission: before Jun 2020 (wave 1 and 2), Jul–Oct 2020 (wave 3), and Nov 2020–Feb 2021 
(wave 4), and for local and imported confirmed cases.

Results: The first two waves of COVID-19 were found mainly characterized by higher-socioeconomic-status (SES) 
imported cases. The third-wave outbreak concentrated in densely populated and usually lower-SES neighborhoods, 
showing a high risk of within-neighborhood virus transmissions jointly contributed by high density and unfavora-
ble SES. Starting with a super-spread which considerably involved high-SES population, the fourth-wave outbreak 
showed a stronger link to cross-neighborhood transmissions driven by urban functionality. Then the outbreak dif-
fused to lower-SES neighborhoods and interactively aggravated the within-neighborhood pandemic transmissions. 
Association was also found between a higher SES and a slightly longer waiting period (i.e., the period from symptom 
onset to diagnosis of symptomatic cases), which further indicated the potential contribution of higher-SES population 
to the pandemic transmission.

Conclusions: The results of this study may provide references to developing precise anti-pandemic measures for 
specific neighborhoods and virus transmission routes. The study also highlights the essentiality of reliving co-locating 
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Background
Although the COVID-19 pandemic seems to become 
gradually under control with available vaccines and pub-
lic health measures, continuous control of COVID-19 
and prevention of recurrent outbreaks appears a must. 
Herd immunity through vaccination can take a long 
time or even be unachievable [1], current vaccines have 
reduced effectiveness against certain new SARS-CoV-2 
variants [2], including that against both symptomatic and 
asymptomatic infections [3]. Precise control measures, 
tailored to specific needs of different neighborhoods and 
population groups within a city, are pressingly needed if 
the great socioeconomic and medical costs concerning 
the long-term epidemic control are to be reduced. Also, 
urban design needs to be informed about how to make 
cities more resilient to the prospective future epidemics.

The precise epidemic control and epidemic-resilient 
urban design depend highly on the understanding of the 
complex associations between many urban characteris-
tics and the spread of COVID-19. To understand these 
associations is the key to identify high-risk neighbor-
hoods and population groups, to pinpoint COVID-19 
transmission routes causing the high risk, and finally to 
determine epidemic control measures and urban designs 
pointed to these risk factors and transmission routes. 
Here, intra-city COVID-19 transmission routes may 
be roughly divided into (a) within-neighborhood trans-
missions, including those between family members and 
between residents in the same neighborhood, often due 
to failing to keep social distance or defected built envi-
ronment (e.g., ventilation); and (b) cross-neighborhood 
transmissions, typically caused by cross-neighborhood 
activities and interactions between residents in different 
neighborhoods.

Studies on the associations between urban character-
istics and the COVID-19 spread have resulted in many 
valuable findings [4–13]. However, the following issues 
are pending to be settled:

(a) Limited by the granularity of data, most studies on 
these associations used cities/counties/towns as the 
spatial units. Only a couple of studies pioneered the 
intra-city associations [10, 11]. At a city or coarser 
scale, it is hard to observe the associations between 
intra-city COVID-19 spread and urban character-
istics. As a result, experts consider some socioeco-
nomic, density, and functionality characteristics as 

jointly and interactively contribute to COVID-19 
spread [14], but there is a lack of empirical evidence 
for this argument at an intra-city scale.

(b) There are insufficient comparative studies on differ-
ent waves of COVID-19 outbreaks in specific coun-
tries or regions. Also, the associations for the cases 
imported from other countries/regions and for 
locally infected cases are not sufficiently compared.

(c) By mainly using regressive models and cross-sec-
tional analysis, the studies normally evaluated the 
associations between individual urban character-
istics and the confirmed case distribution, or the 
combined association of all characteristics on the 
confirmed case distribution. There were few stud-
ies on more complex combined associations, for 
example, a characteristic A and the COVID-19 
spread can be positively associated when another 
characteristic B has low values, while negatively 
associated when B has high values. These combined 
associations and the comparative analysis in (b) are 
very important for inferring the joint and interac-
tive contributions of urban characteristics to each 
COVID-19 transmission route.

Motivated by these issues, this study investigates the 
joint and interactive intra-city associations between 
urban socioeconomic, density, connectivity, and func-
tionality characteristics and the COVID-19 spread, 
through both within-neighborhood and cross-neigh-
borhood transmission routes. The study took place in 
Hong Kong, China, a metropolis with the world’s most 
densely populated neighborhoods. A modified version of 
the association rule mining (ARM) algorithm DESigFAR 
[15] was used to investigate the associations between the 
urban characteristics and COVID-19 confirmed case 
rate as well as the waiting period (i.e., the time duration 
between symptom onset and diagnosis). Based on dif-
ferential evolution (DE), DESigFAR can optimize the 
resultant rules in terms of the strength of associations 
and capture combined associations between any subsets 
of variables. The associations for the first four waves of 
COVID-19 in Hong Kong and for local and imported 
cases were comparatively studied.

The results of this study can be used to anticipate the 
intra-city spread pattern from early increases of the 
cases, thereby taking pointed countermeasures to pre-
vent recurrent outbreaks. The results can also provide 

overcrowdedness and unfavorable SES for developing epidemic-resilient compact cities, and the higher obligation of 
higher-SES population to conform anti-pandemic policies.
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references to the development of precise intra-city anti-
pandemic measures and the improvement of urban 
design corresponding to specific pandemic transmission 
routes. These results would be particularly useful for 
high-density cities, which are usually prone to COVID-
19 spread and play key roles in the pandemic control, due 
to their high density, extensive traffic networks, and com-
plex uses of urban space. The ARM method described in 
this study can also serve to investigate the intra-city epi-
demic transmissions in other cities.

Methods
Data and variables
The study investigated two sets of response variables: 
the rate of the COVID-19 confirmed cases (in ‰ of the 
total population), and the median/average waiting period 
(in number of days) from symptom onset to diagnosis of 
the symptomatic COVID-19 local cases, at the Tertiary 
Planning Unit (TPU) level in Hong Kong as of Feb 18th, 
2021. The values of both response variables were com-
puted from the government’s open confirmed cases data 
[16]. In the data, each case had available reporting date; 
the location the case stayed prior to diagnosis, mostly the 
residence address; and the type of the case, inluding local 
case, epidemiologically linked with local case, imported 
case, or epidemiologically linked with imported case. 
Most cases were symptomatic and had available symp-
tom onset dates. In this study, the cases epidemiologically 
linked with local and imported cases were also classi-
fied as local and imported cases. The addresses of the 
reported locations of the cases were transferred to lati-
tudes and longitudes by using Google Maps Geocoding 
API.

The COVID-19 spread in Hong Kong was divided into 
four waves: wave 1 and 2 (before Jun 2020), wave 3 (Jul–
Oct 2020), and wave 4 (Nov 2020–Feb 2021). In wave 
1, there were more imported cases than local ones, and 
most imported cases had travel histories in developed 
countries badly hit by COVID-19, for example, the UK, 
the US, and France [17]. Wave 3 started from the Kwai 
Tsing Container Terminal Cluster with 77 confirmed 
cases related to overseas crews [18, 19]. Wave 4 started 
from the Dancing/Singing Cluster with 734 cases related 
to visitors to 28 local dancing/singing venues [20]. TPUs 
with high rates of cases in the Dancing/Singing Cluster 
had a moderate tendency to have higher income and edu-
cation level (Additional file 1: Table S1).

To link the confirmed cases to the socioeconomic sta-
tus (SES) of the residents in the neighborhoods, imported 
cases that were confirmed on border ports upon entering 
Hong Kong and cases reported in hotels were excluded 
in this study. After these exclusions, there were 391 local 
cases and 442 imported cases in wave 1 and 2, 3305 local 

cases and 68 imported cases in wave 3, and 4634 local 
cases and 29 imported cases in wave 4.

Then, the confirmed case rate and waiting period were 
computed for each of the 214 TPU-level areal units cov-
ering the entire city defined by Hong Kong 2016 By-
Census. The rates for local and imported cases were 
computed separately (Fig. 1; Table 1). The imported case 
rates in waves 3 and 4 were not computed, since the cases 
were too few to be analyzed based the 214 areal units of 
the study area.

A total of 38 explanatory variables, including urban 
socioeconomic, density, connectivity, and functionality 
characteristics, were also computed for the 214 TPU-
level areal units by using governmental open data sources 
[21–24] (Table  1). For computing the density and con-
nectivity characteristics, areas of TPUs were extracted 
from the Hong Kong official digital boundaries of TPUs 
and street blocks [25].

Since TPUs are usually of small areas and specialized 
functionalities, the daily activities of most people are 
across TPU boundaries. Thus, the POI explanatory vari-
ables (Table  1) for investigating the risk of COVID-19 
related to people’s daily activities could not be isolated in 
a TPU. Instead, following the distance decay law of the 
trips, the accessibility of POIs of type O from a TPU u, 
was computed by:

where i represents each POI of type O, 
β = 0.3·S−0.17 = 0.22688 is the empirically most probable 
value of β in a gravity model [26], S = 5.172  km2 is the 
average area of TPU-level areal units in Hong Kong. ED(i, 
u) is the Euclidean distance between i and the boundary 
of u, and 1.3ED(i, u) is the approximated road network 
distance between i and u [27]. The values of density and 
per-capita accessibility of POIs (Table 1d) were the value 
of accessibility(i, u) over the area and over the population 
of the TPU, respectively.

Investigating the associations between urban 
characteristics and COVID‑19 incidences
The associations between the explanatory and response 
variables were investigated by a modified version of 
the ARM algorithm DESigFAR [15]. ARM aims to dis-
cover implicit association rules in the form of “ante-
cedent → consequent” from data. In this study, ARM 
was used to discover association rules in the form of 
“interval(s) of explanatory variable(s) → interval of 

(1)accessbility(O,u) =
∑

i∈O

p(i,u),

(2)

p(i,u) =

{

1, i is within u

exp (−β · 1.3ED(i,u)), i is out of u
.
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Fig. 1 COVID-19 confirmed case rate in Hong Kong as of Feb 18th, 2021. a The local confirmed case rate in wave 1&2 of the COVID-19 spread 
in Hong Kong (by May 2020). b The imported confirmed case rate in wave 1&2. c The local confirmed case rate in wave 3 (Jul–Oct 2020). d The 
local confirmed case rate in wave 4 (Nov 2020–Feb 2021). e The entropy-based land use index value, together with boundaries of the main urban 
area and New Towns (i.e., satellite towns). The choropleth maps are colored according to quantile classification, and “p” in the legend means the 
percentile range of the variable values in each class among all TPUs
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Table 1 Explanatory and response variables of the study

Variable name Description Min Max Median Source

Explanatory variables

 (a) Demographic and socioeconomic characteristics

  prop_over65 Elderly rate, i.e., proportion of people aged 
over 65 years

0.02 0.32 0.16 Hong Kong 2016 Population By-census [21]

  gender_ratio No. of males per 100 females, excluding 
foreign domestic helpers (FDHs)

58.49 329.17 93.14

  prop_preprim_edu Proportion of population with no/pre-
primary education

0.01 0.27 0.10

  prop_higher_edu Higher-education rate, i.e., proportion of 
population with post-secondary education

0.06 0.65 0.20

  med_income Median monthly income from main employ-
ment, excluding FDHs (HK$)

7,730 68,000 16,250

  med_area_home Median floor area of accommodation per 
person  (m2)

4.50 56.84 16.90

  ave_household_size Average domestic household size (person) 1.4 4.7 2.9

  prop_household_3gen Proportion of three-generation households 
(with couple, at least one of their parents, 
and their unmarried children)

0.00 0.83 0.03

 (b) Density and connectivity characteristics

  den_population Population density (person/Km2) 25.81 168,667 18,402 Hong Kong 2016 Population By-census

  den_bldg Building density  (Km2/Km2) 0.00 0.84 0.17 Hong Kong 1:5000 Digital Topographic Map 
[22]

  floor_area_pp Average floor area per person  (m2) 20.58 5,595.59 63.01 Hong Kong 1:1000 Digital Topographic Map 
[22]

  den_road Road density (Km/Km2) 0.58 40.72 10.78 Hong Kong 1:1000 Geo-Reference Database 
[22]

  den_public_trans Density of public transport stations (station/
Km2)

0.00 271.81 16.43 Hong Kong Transport Department [23]

 (c) Land use characteristics: proportion of land use out of TPU area, except for the land use mix index

  prop_private_resid Private residential 0.00 0.53 0.05 Hong Kong Planning Department [24]

  prop_public resid Public residential 0.00 0.61 0.001

  prop_rural_set Rural settlement 0.00 0.37 0.004

  prop_business Commercial/business and office 0.00 0.40 0.004

  prop_industrial Industrial land 0.00 0.44 0.001

  prop_gov_insti_faci Government, institutional and community 
facilities

0.00 0.67 0.04

  prop_open_recreation Open space and recreation 0.00 0.40 0.03

  prop_transport Roads and transport facilities 0.00 0.52 0.12

  prop_utilities Utilities 0.00 0.21 0.01

  prop_vacant _construt Vacant land/construction in progress 0.00 0.60 0.01

  prop_agricultural Agricultural land 0.00 0.60 0.004

  prop_woodland Woodland 0.00 0.67 0.11

  prop_shrubland Shrubland 0.00 0.45 0.07

  prop_grassland Grassland 0.00 0.50 0.02

  LU_entropy Entropy-based land use mix index 0.27 0.80 0.56
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confirmed case rate/waiting period”. For example, a 
resultant rule “prop_higher_edu > 0.364 (p85) → rate_
imported12 > 0.124 (p71)” suggested that TPUs with 
very high higher-education rates (above the 85th per-
centile among all TPU-level areal units) tended to have 
high wave-1 and 2 imported case rates (above the 71st 
percentile).

The main advantage of the DESigFAR algorithm is 
that it can discover highly informative rules with strong 
associations and high interestingness, as a result of opti-
mization based on DE, one of the best-performing evo-
lutionary computing techniques for solving real-world 
problems [28]. In ARM with numerical data, data discre-
tization is the process to divide the range of each variable 
into intervals (e.g., the interval prop_higher_edu > 0.364 
in the above exemplary rule). Then the association rules 
will be generated from these intervals. A data discretiza-
tion scheme includes:

(a) The number of intervals for each variable, for exam-
ple, whether the range of higher-education rate 
should be divided into two or three intervals;

(b) The numerical data value for each interval, for 
example, whether the “boundary” of the higher-
education rate interval in the above exemplary rule 
should be at 0.364 or 0.2.

DESigFAR can optimize the data discretization 
schemes towards those containing strongest associations 
between the intervals of the variables. Thus, it can dis-
cover much stronger rules with summed rule interesting-
ness measure (RIM) values up to 10 times as high as the 
results of conventional, non-optimized ARM [15]. Also, 
the resultant rules of DE-based optimization are auto-
matically limited to only those with high RIM values, thus 
the workload to interpret the rules is greatly reduced, and 
no attributes need to be precluded to limit the number 
of rules. Consequently, DESigFAR can address the major 

Table 1 (continued)

Variable name Description Min Max Median Source

 (d) Density and per-capita accessibility of POIs

  POI_den_sports Density, recreation/sports (POIs/Km2) 1.11 12,222 160.27 Hong Kong 1:5000 Digital Topographic Map

  POI_den_edu Density, school/college (POIs/Km2) 0.40 5424 96.41

  POI_den_telecom_elec Density, telecommunication/electric supply 
(POIs/Km2)

0.00 14,343 113.46

  POI_den_transport Density, transport (POIs/Km2) 2.95 11,921 267.41

  POI_den_mall_mkt Density, commercial center/market (POIs/
Km2)

0.19 2,942 49.36

  POI_pp_sports Per-capita accessibility, recreation/sports 
(POIs/person)

0.62 431.71 16.41

  POI_pp_edu Per-capita accessibility, school/college (POIs/
person)

0.36 281.06 9.32

  POI_pp_telecom_elec Per-capita accessibility, telecommunication/ 
electric supply (POIs/person)

0.01 743.25 11.44

  POI_pp_transport Per-capita accessibility, transport (POIs/
person)

0.91 637.60 26.85

  POI_pp_mall_mkt Per-capita accessibility, commercial center/
market (POIs/person)

0.16 152.46 5.12

  (e) Response variables

  rate_local12 Local confirmed case rate, wave 1&2: by May 
 31st, 2020 (‰ out of total population)a

0.00 1.69 0.02 Hong Kong Information Services Department 
[16]

  rate_imported12 Imported confirmed case rate, wave 1&2: by 
May  31st, 2020 (‰)

0.00 1.39 0.04

  rate_local3 Local confirmed case rate, wave 3: Jun  1st –
Oct  31st, 2020 (‰)

0.00 4.72 0.29

  rate_local4 Local confirmed case rate, wave 4:  Nov1st, 
2020 –Feb  18th, 2021 (‰)

0.00 6.29 0.49

  ave_waiting_period Average waiting period of all local cases 
(days)

0.00 12.5 4.63

  med_waiting_period Median waiting period of all local cases 
(days)

0.00 12.6 4.00

a Local/imported cases included cases that were epidemiologically linked with local/imported cases. The rates did not count the cases confirmed in hotels/ports of 
entry
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challenges in the application of ARM in public health 
studies, including (a) the discovered rules can be too 
weak; (b) experts need to conduct tedious manual analy-
sis on the interestingness of the rules; and (c) many data 
attributes are precluded to limit the number of rules, 
reducing the chance for obtaining novel findings [29].

The procedure of the modified DESigFAR algorithm 
in this study are outlined as follows. More algorithmic 
details can be found from the publication proposing 
DESigFAR [15].
Step 1. Population initialization. To prepare for the 

DE, a population P with NP individuals are initialized. 
Each individual is a vector which encodes a rule tem-
plate and the corresponding data discretization scheme. 
The rule template took the form of “any interval(s) of 
explanatory variable(s) → any interval of the confirmed 
case rate/waiting period”. For example, the above exem-
plary rule belonged to the rule template “any interval of 
higher-education rate → any interval of the confirmed 
case rate”. DESigFAR adopts a Gaussian-curve-based 
fuzzy data discretization model (Fig.  2). Under this 
model, each numerical variable v is divided into a num-
ber of intervals (e.g., I1, I2, and I3. in Fig.  2). For each 
interval I, a fuzzy membership function μI(v) ∈ [0, 1] is 
defined to represent the degree to which each value in 
v belongs to I. In each interval of v where 0 < μI(v) < 1, μI 
is a Gaussian curve.
Step 2. DE. Three operators, namely mutation, cross-

over, and generation jumping, are applied to alter the 
individuals. Then the selection operator is used to select 
the individual that represents the better data discretiza-
tion scheme from the original and altered individuals. 
This step repeats for G generations, to let the individu-
als continuously evolve to containing better data dis-
cretization schemes.
Step 2.1. Mutation. Given a mutation scale F, NP 

mutant vectors V1, …, VP are created. Each mutant 

vector is generated by using three randomly selected 
individuals, Ma, Mb, and Mc. In the t-th generation,

Step 2.2. Crossover. Given a crossover rate Cr ∈ [0, 
1], each individual is recombined with a mutant vector 
obtained from the mutation operation into a trial vec-
tor U:

where mt
j,i,u

t
j,i and vtj,i are the sub-vectors that contain 

the encoding for the j-th variable in Mt
i ,U

t
i and V t

i  ; 
randi[0,1] is a random number selected from [0, 1]; and 
jrand is a random index to ensure that the trial vector 
includes at least one variable from the mutant vector.
Step 2.3. Selection. In each pair of individual and trial 

vector obtained from the crossover operation, the vector 
having a higher fitness value will survive to the (t + 1)-th 
generation:

In this study, the fitness value was defined as a combina-
tion of two RIMs, leverage [30], lev and improvement [31], 
imp:

That is, the fitness value is equal to summed leverages 
over 30 plus summed improvements of all rules belong-
ing to Mt

i  that have both a positive leverage and a positive 
improvement. The same applies to Ut

i  . The leverage and 
improvement are computed by:

(3)V t
i = Mt

a + F
(

Mt
b −Mt

c

)

, i = 1 . . .NP .

(4)utj,i =

{

vtj,i if randi[0, 1] ≤ Cr or j = jrand
mt

j,i otherwise,

(5)

Mt+1
i =

{

Ut
i if fitness_value

(

Ut
i

)

≥ fitness_value
(

Mt
i

)

Mt
i otherwise.

(6)
fitness_value

(

Mt
i

)

=

∑

r

[

lev(r)
/

30+ imp(r)
]

,

r belongs toMt
i , lev(r) > 0, imp(r) > 0.

0

1

I1:                                                I2:                                                    I3:  
"low higher-education rate"     "medium higher-education rate"     "high higher-education rate"

0.047

μI(v) 

v: higher-education rate0                                      0.1          0.15       0.2

0.466

Fig. 2 An example of the fuzzy data discretization in the modified DESigFAR algorithm. In each interval (a, c) of v where 0 < μI(v) < 1 (e.g., (0.1, 0.2) 
between I1 and I2), μI is a Gaussian curve with a standard deviation equal to (c-a)/2.473
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where

X and Y are the antecedent and consequent of the 
rule r; supp and conf denote support and confi-
dence, two basic RIMs in ARM. |D│is the number of 
records in the dataset D, │D│ = 214 in this study. Let 
X =

{

�v1 = I ′1, . . . ,
′ vm = I ′m

}

 , where v1,…,vm are a series 
of variables, and I1,…,Im are the intervals of v1,…,vm in X. 
Then

where vR1,…,vRm are numerical values for v1…vm in record 
R of dataset D. The same applies to supp (Y) and supp 
(X → Y).

A positive leverage means that there were more TPUs 
with the values of all variables contained by the rule fall-
ing in their value ranges specified in the rule, compared 
with if the antecedent and consequent of the rule is inde-
pendent. A positive improvement indicates that every 
explanatory variable increased the confidence of the 
rule. For example, if the rule “prop_higher_edu > 0.364 
(p85) → rate_imported12 > 0.124 (p71)” has lev = 15.8 
and imp = 0.49, then among the TPUs with higher-
education rate above 0.364, about 15.8 more TPUs had 
wave-1&2 imported case rates above 0.124‰, compared 
with if the higher-education rate and confirmed case rate 
were irrelevant. Also, the probability for TPUs with high 
higher-education rate to have high wave-1&2 imported 
case rates was 49% higher than average TPUs. Leverage is 
a portion of the data size and normally much larger than 
1, while improvement is normally only a small fraction of 
1. Therefore, leverage was divided by 30 in (6), to balance 
the weight of the two RIMs in the computation of the fit-
ness values.
Step 2.4. Opposition-based generation jumping. This 

step is to prevent the population from being trapped in 
local optima and, thus, failing to search for better data 
discretization schemes. Each generation has a probability 
Jr to conduct the generation jumping, instead of mutation 
and crossover. From each individual in current popula-
tion P, an opposite individual is generated, by replacing 
each number x in the original individual with ∪x:

(7)
lev(r : X → Y ) = supp(X → Y )− supp(X)supp(Y )

/

|D|,

(8)
imp(X → Y ) = conf (X → Y )−max

Z⊂X

(

conf (Z → Y )
)

> 0,

(9)
supp(X → Y ) = supp(X ∪ Y ) = |R ∈ D : X ∪ Y ⊆ R|,

(10)conf (X → Y ) = supp(X → Y )
/

supp(X).

(11)supp(X) =
∑

R∈D

µI1(vR1) . . . µIm(vRm),

where rank(x) is the rank of x among all data values of 
the variable (e.g., elderly rates of all different TPUs); and 
rank−1(r) is the data value with rank r among all data val-
ues of this variable. All the NP opposite individuals form 
an opposite population OP, and NP individuals with the 
highest fitness values in OP ∪ P are selected to survive to 
the next generation.

The following values of the DE parameters were used in 
this study: P = 300 and 100 for rules about the confirmed 
case rate and the waiting period, respectively; G = 3000; 
Cr = 0.5; F = 0.5; Jr = 0.04. The P and G values were such 
determined that the optimization result generally con-
verged, that is, the number of rules and fitness values 
almost stayed the same with more generations. The Cr, F, 
Jr values were such determined to speed up the conver-
gence of the optimization result. The maximum number 
of variables in antecedent of a rule, maxL, was set to 3 
to allow the combined association of up to three explana-
tory variables on the response variables to be analyzed. 
The minimum fraction of transition in the fuzzy sets, 
ftmin, was set to 0.5, following the study proposing DESig-
FAR [15]. The explanation of ftmin is detailed in [15]. Also, 
the relative RIM values among the rules were not sensi-
tive to the ftmin value.
Step 3. Statistical evaluation and result output. After 

the DE, rules with positive improvement and leverage 
values are extracted from the optimized individuals as the 
ARM result. In this study, chi-square test was conducted 
on the statistical significance of positive improvement of 
each rule X → Y, that is, imp(X → Y) > 0. Following [15], a 
simplified test was conducted with

For each fuzzy value interval of explanatory variable 
Im ∈ X,

where

and ¬ means to that the corresponding explanatory vari-
able value of the TPU was not in the interval defined in 
Im or Y. For each χ2

m , a P value was looked up from the 
chi-square table with one degree of freedom. The final P 

(12)∪
x = rank−1(1+ |D| − rank(x)),

(13)

Null hypothesis H0 : ∃xm ∈ X , Pr (Y |X) ≤ Pr (Y |X\{xm})

Alternative hypothesis H1 : ∀xm ∈ X , Pr (Y |X) > Pr (Y |X\{xm})

(14)χ2
m =

(ad − bc)(a+ b+ c + d)

(a+ b)(c + d)(a+ c)(b+ d)
,

(15)

a = supp(X ∪ {Y })

b = supp(X ∪ ¬{Y })

c = supp((X\{Im}) ∪ ¬{Im} ∪ {Y })

d = supp((X\{Im}) ∪ ¬{Im} ∪ ¬{Y }),
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value of the rule was equal to the largest P value resultant 
from all Im ∈ X.

To make the resultant rules more readable, each fuzzy 
interval I of variable v is represented by a crisp interval 
of v, where μI(v) is the largest among the membership 
degrees of different fuzzy intervals in v. For instance, the 
fuzzy interval for “low higher-education rate” in Fig. 2 is 
represented as “higher-education rate < 0.15” in resultant 
rules.

Two datasets were generated to contain each of the 
five confirmed case rate response variables, one with the 
POI density variables and the other with per-capita POI 
accessibility, together with all other explanatory vari-
ables. This was to avoid the possible confusion caused by 
the appearance of both the density and per-capita acces-
sibility of a POI type in the same rule. Also, two datasets 
were generated to contain the response variables of aver-
age and median waiting period, the per-capita POI acces-
sibility, and other explanatory variables. This resulted 
in a total of 12 datasets. Due to the randomness in DE, 
DESigFAR results in slightly different rules each time it 
is applied on the same dataset. Thus, on each of the 12 
datasets, DESigFAR was ran for 10 times and output 10 
sets of resultant rules. The set of rules containing the 
largest number of rules for “high confirmed case rate” or 
“long waiting period” was selected as the final result.

Results
The rules resulting from the modified DESigFAR algo-
rithm, together with their RIM and P values, are shown 
in Table 2. The strength of the rules was evaluated by two 
RIMs, leverage and improvement. As stated in Methods, 
all resultant rules had positive values for both the RIMs. 
In this case, two variables had an overall positive associa-
tion, if a high value of one variable was associated with 
a high value of the other and the same went for the low 
value. Two variables had an overall negative association, 
if a high value of one variable is associated with a low 
value of the other and vice versa.

Demographic and socioeconomic characteristics
Among all urban characteristics, high values of higher-
education rate, median monthly income, and average 
accommodation area had the strongest and most sig-
nificant associations with a high wave-1&2 imported 
confirmed case rate, in terms of the largest leverage 
and smallest P values (rule 1, 3, 5, Table 2b). Among all 
explanatory variables, higher-education rate and median 
monthly income also had the largest positive Spearman 
rank-order correlation coefficient values between the 
wave-1 imported case rate, which were 0.52 and 0.48, 
respectively. Corresponding to rule 5, Table  2b, all 21 
TPUs with median accommodation areas over 25.4  m2/

person and imported case rates over 0.169‰ had median 
incomes of at least 25,000 HKD/month  (78th percentile 
in all TPUs), showing that this association also came 
from high-income population, instead of large housings 
in low-density rural areas. The wave-1&2 local case rate 
had similarly positive but weaker associations with these 
three variables, in terms of smaller leverage and improve-
ment values (rule 1–3, Table 2a).

The wave-3 local case rate, on contrary, was nega-
tively associated with higher-education rate, income, 
and accommodation area (rule 1–6, Table  2c), showing 
that the cases tended to be occur in lower-SES popula-
tion. In wave 4, the accommodation area continued being 
negatively associated with the local case rate (rule 4–5, 
Table  2d), but the association between income and the 
local cases rate became much weaker and involved only 
the 7% TPUs with the lowest income (rule 1, Table 2d). 
Combined with indicators of urban area (e.g., low veg-
etation coverage, high building density), income and the 
local cases rate became negatively associated in more 
TPUs, as reflected by the larger supports of rule 2–3 than 
rule 1, Table  2d. Higher-education rate was negatively 
associated with the wave-4 local case rate only if exclud-
ing the cases from the Dancing/Singing Cluster and 
in urban area (rule 1–2, Table  2e). This shows that the 
wave-4 local cases were less concentrated in lower-SES 
population than the wave-3 cases but more concentrated 
in the urban area.

A high gender ratio of over 94.8, which seemed also 
related to a high income, was associated with a high 
wave-1&2 imported case rate of over 0.207‰ (rule 6, 
Table  2b). In the 26 TPUs fulfilling rule 6, Table  2b, 23 
TPUs had the income higher than Hong Kong median of 
HK$16,250/month (Table 1a). In wave 4, a very high gen-
der ratio was associated with a low local case rate (rule 6, 
Table  2d), reflecting very sparsely populated TPUs. The 
11 TPUs fulfilling rule 6, Table 2d had an average popula-
tion density of 2,124 persons/Km2, much lower than the 
Hong Kong median of 18,402 persons/km2 (Table 1b).

Elderly rate showed a negative association with the 
wave-1&2 imported case rate (rule 7–8, Table 2b) but a 
positive association with wave-3 local case rate (rule 7–8, 
Table 2c). Meanwhile, the elderly rate had a considerable 
negative correlation with the monthly income, with a 
Spearman’s r value of -0.49 between the two variables. In 
wave 4, a very high elderly rate was associated with a low 
local case rate (rule 7, Table 2d), mostly reflecting TPUs 
with low population densities below 5,000 person/Km2.

A small average household size below 2.6–2.7 was 
associated with high local case rates (rule 9, Table  2c; 
rule 8, Table 2d). Oppositely, a high wave-1&2 imported 
case rate was associated with a large average household 
size above 3.25 (rule 9, Table  2b) which also tended 
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Table 2 Selected resultant rules from the ARM algorithm DESigFAR

(a) Rules for wave‑1&2 local case rate; POI accessibility was used P

Antecedent Consequent Supp Conf Lev Imp

1 prop_higher_edu > 0.361 (p85) rate_local12 > 0.143 (p86) 10.73 0.33 5.98 0.18 3.34E−05

2 med_income > 18,518.024 (p62) rate_local12 > 0.136 (p85) 20.40 0.24 7.24 0.09 5.54E−05

3 med_area_home > 16.093 (p47) rate_local12 > 0.136 (p85) 26.44 0.23 8.43 0.07 6.08E−05

4 gender_ratio > 106.692 (p92) rate_local12 > 0.107 (p81) 9.88 0.57 6.33 0.36 1.48E−05

5 prop_over65 > 0.204 (p84) rate_local12 < 0.005 (p45) 25.42 0.76 10.35 0.31 6.96E−05

6 prop_private_resid > 0.101 (p66) rate_local12 > 0.046 (p63) 39.60 0.52 11.15 0.15 2.84E−06

7 prop_private_resid < 0.011 (p28) rate_local12 < 0.002 (p45) 43.51 0.74 16.71 0.28 1.14E−07

8 prop_industrial < 0.001 (p47) rate_local12 > 0.104 (p80) 33.96 0.34 12.94 0.13 3.96E−06

9 LU_entropy < 0.543 (p46) rate_local12 > 0.106 (p80) 29.65 0.30 9.50 0.10 6.50E−05

10 LU_entropy > 0.543 (p46) rate_local12 = 0.006–0.106 (p45-80) 54.87 0.47 15.52 0.13 1.60E−06

11 prop_rural_set < 0.008 (p56) rate_local12 > 0.038 (p60) 61.34 0.52 13.81 0.12 6.93E−05

(b) Rules for wave‑1&2 imported case rate; POI accessibility was used

Antecedent Consequent Supp Conf Lev Imp P

1 prop_higher_edu > 0.364 (p85) rate_imported12 > 0.124 (p71) 24.89 0.78 15.77 0.49 6.85E−11

2 prop_higher_edu < 0.170 (p37) rate_imported12 < 0.039 (p50) 57.65 0.73 17.91 0.23 3.65E−07

3 med_income > 19,583.009 (p65) rate_imported12 > 0.110 (p70) 44.69 0.62 22.24 0.31 1.22E-15

4 med_income < 19,583.009 (p65) rate_imported12 < 0.110 (p70) 120.22 0.85 22.51 0.16 1.22E-15

5 med_area_home > 25.388 (p86) rate_imported12 > 0.169 (p78) 19.27 0.66 12.70 0.44 1.69E-12

6 gender_ratio > 94.842 (p64) rate_imported12 > 0.207 (p81) 26.22 0.32 10.36 0.13 6.60E−05

7 prop_over65 < 0.140 (p35) rate_imported12 > 0.083 (p65) 38.57 0.53 11.66 0.16 5.07E−05

8 prop_over65 > 0.140 (p35) rate_imported12 < 0.083 (p65) 100.87 0.72 11.69 0.08 5.07E−05

9 ave_household_size > 3.250 (p87) rate_imported12 > 0.110 (p70) 20.27 0.76 11.98 0.45 6.18E−09

10 den_population = 673.564–26,483.860 (p13-60) rate_imported12 > 0.084 (p66) 46.61 0.48 11.11 0.11 2.65E−05

11 den_public_trans < 3.592 (p25) rate_imported12 < 0.004 (p36) 33.98 0.63 14.57 0.27 1.77E−06

12 den_population < 673.564 (p13) rate_imported12 < 0.004 (p36) 18.89 0.70 9.22 0.34 3.94E−06

13 build_area_pp > 75.116 (p54) &prop_private_resid > 0.239 
(p85)

rate_imported12 > 0.184 (p80) 8.11 0.85 6.08 0.49 6.97E−05

14 prop_private_resid < 0.002 (p19) rate_imported12 < 0.005 (p36) 30.69 0.75 16.01 0.39 4.10E−09

15 prop_publicResid < 0.034 (p69) rate_imported12 > 0.103 (p69) 62.20 0.43 15.37 0.11 1.72E−08

16 prop_industrial < 0.000 (p43) rate_imported12 > 0.097 (p68) 44.29 0.49 13.89 0.15 1.39E−06

17 LU_entropy < 0.561 (p51) rate_imported12 > 0.099 (p68) 48.70 0.45 12.73 0.12 5.05E−05

18 LU_entropy > 0.561 (p51) rate_imported12 = 0.001–0.099 (p36-68) 46.64 0.44 13.70 0.13 6.21E−05

19 build_area_pp = 51.859–202.851 (p43-89) rate_imported12 > 0.105 (p69) 47.53 0.48 15.73 0.16 3.57E−07

20 build_area_pp > 71.028 (p53) &prop_rural_set > 0.026 (p66) rate_imported12 < 0.004 (p36) 26.61 0.69 12.69 0.22 1.88E−05

21 prop_agricultural > 0.055 (p81) rate_imported12 < 0.003 (p36) 25.97 0.63 11.25 0.27 2.23E−05

22 prop_gov_insti_faci > 0.030 (p41) rate_imported12 = 0.003–0.124 (p36-71) 62.21 0.49 16.38 0.13 3.90E−08

23 prop_transport > 0.121 (p50) rate_imported12 = 0.004–0.080 (p36-64) 43.70 0.40 12.51 0.11 4.34E−05

24 POI_pp_sports > 30.523 (p67) rate_imported12 > 0.196 (p80) 28.89 0.41 14.60 0.21 5.62E−08

25 POI_pp_telecom_elec > 25.431 (p76) rate_imported12 > 0.213 (p81) 24.73 0.46 14.51 0.27 5.34E−10

26 POI_pp_transport > 39.200 (p61) rate_imported12 > 0.188 (p80) 32.28 0.37 14.25 0.17 1.27E−07

27 POI_pp_mall_mkt > 10.941 (p75) rate_imported12 > 0.202 (p80) 25.16 0.45 14.06 0.25 1.15E−08

28 POI_pp_edu > 22.306 (p79) rate_imported12 > 0.187 (p80) 22.41 0.48 12.67 0.27 2.78E−08

29 POI_pp_telecom_elec < 6.513 (p36) rate_imported12 = 0.004–0.091 (p36-67) 48.88 0.64 25.23 0.33 1.78E−15

30 POI_pp_sports < 6.556 (p22) rate_imported12 = 0.004–0.108 (p36-70) 37.48 0.77 21.29 0.44 1.32E−13

31 POI_pp_edu < 3.533 (p20) rate_imported12 = 0.003–0.078 (p36-64) 32.83 0.75 20.52 0.47 8.59E−14

32 POI_pp_mall_mkt < 1.922 (p22) rate_imported12 = 0.003–0.083 (p36-66) 33.73 0.73 20.19 0.44 8.37E−12

33 POI_pp_transport < 4.899 (p9) rate_imported12 = 0.003–0.084 (p36-66) 18.09 0.89 12.07 0.59 1.59E−08
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Table 2 (continued)

(b) Rules for wave‑1&2 imported case rate; POI accessibility was used

Antecedent Consequent Supp Conf Lev Imp P

34 POI_pp_transport = 4.899–8.368 (p9-19) rate_imported12 = 0.003–0.084 (p36-66) 14.37 0.74 8.63 0.44 1.21E−05

(c) Rules for wave‑3 local case rate; POI accessibility was used

Antecedent Consequent Supp Conf Lev Imp P

1 prop_higher_edu < 0.237 (p62) rate_local3 > 0.335 (p53) 75.42 0.57 14.15 0.11 7.00E−06

2 prop_higher_edu > 0.237 (p62) rate_local3 < 0.335 (p53) 58.31 0.71 13.93 0.17 7.00E−06

3 med_income < 15,406.084 (p39) rate_local3 > 0.335 (p53) 57.08 0.66 16.75 0.19 1.49E−06

4 med_income > 24,009.220 (p79) rate_local3 < 0.335 (p53) 38.57 0.84 13.99 0.31 3.40E−07

5 med_area_home < 13.826 (p27) rate_local3 > 0.340 (p54) 43.20 0.76 16.91 0.30 1.26E−08

6 med_area_home > 19.838 (p65) rate_local3 < 0.340 (p54) 56.62 0.75 15.50 0.20 5.08E−08

7 prop_over65 > 0.141 (p36) rate_local3 > 0.274 (p47) 85.51 0.61 10.65 0.08 8.15E−05

8 prop_over65 < 0.141 (p36) rate_local3 < 0.274 (p47) 44.95 0.61 10.53 0.14 8.15E−05

9 ave_household_size < 2.580 (p17) rate_local3 > 0.621 (p79) 18.74 0.43 9.54 0.22 2.66E−05

10 ave_household_size > 2.925 (p63) rate_local3 < 0.621 (p79) 78.93 0.91 9.95 0.11 8.13E−05

11 den_population > 21,684.808 (p53) rate_local3 > 0.267 (p47) 68.18 0.69 14.02 0.14 3.31E−05

12 den_road > 9.024 (p43) rate_local3 > 0.407 (p59) 59.85 0.49 11.28 0.09 5.28E−05

13 den_bldg > 0.136 (p43) rate_local3 > 0.411 (p59) 59.27 0.47 10.35 0.08 8.32E−05

14 den_population < 21,684.808 (p53) rate_local3 < 0.267 (p47) 66.24 0.58 14.34 0.13 3.31E−05

15 den_public_trans < 4.083 (p28) rate_local3 < 0.016 (p15) 23.50 0.40 14.24 0.24 9.33E-10

16 den_road < 9.024 (p43) rate_local3 < 0.407 (p59) 66.36 0.73 11.35 0.12 5.28E−05

17 den_bldg < 0.136 (p43) rate_local3 < 0.411 (p59) 64.66 0.72 10.38 0.12 8.32E−05

18 prop_higher_edu < 0.212 (p54) &prop_private_resid > 0.104 
(p66)

rate_local3 > 0.372 (p57) 17.56 0.94 9.55 0.39 3.17E−05

19 prop_private_resid < 0.021 (p36) rate_local3 < 0.041 (p16) 22.79 0.30 10.35 0.14 4.46E−05

20 prop_publicResid > 0.063 (p74) rate_local3 > 0.295 (p50) 40.41 0.74 12.49 0.23 6.57E−05

21 prop_publicResid < 0.063 (p74) rate_local3 < 0.295 (p50) 90.45 0.57 12.43 0.08 6.57E−05

22 med_income < 18,723.236 (p62) &prop_rural_set < 0.000 (p44) 
&prop_industrial < 0.008 (p69)

rate_local3 > 0.428 (p63) 29.28 0.77 15.05 0.15 6.34E−05

23 build_area_pp < 61.380 (p50) rate_local3 > 0.222 (p38) 75.64 0.75 14.46 0.14 6.15E−06

24 build_area_pp > 61.380 (p50) rate_local3 < 0.222 (p38) 58.89 0.52 14.37 0.13 6.15E−06

25 med_income < 23,040.421 (p78) &prop_agricultural < 0.028 
(p72)

rate_local3 > 0.335 (p53) 72.65 0.64 20.12 0.09 5.81E−05

26 ave_household_size < 2.636 (p29) &prop_rural_set < 0.001 
(p46)

rate_local3 > 0.493 (p68) 25.71 0.65 13.15 0.17 5.45E−05

27 prop_shrubland < 0.009 (p30) rate_local3 > 0.570 (p76) 28.29 0.43 12.25 0.19 1.27E−05

28 prop_woodland < 0.012 (p22) rate_local3 > 0.409 (p59) 30.91 0.65 12.19 0.26 1.01E−05

29 prop_grassland < 0.000 (p16) rate_local3 > 0.500 (p68) 21.99 0.64 11.34 0.33 1.08E−05

30 prop_woodland > 0.322 (p82) rate_local3 < 0.409 (p59) 34.03 0.87 10.45 0.27 3.92E−05

31 prop_shrubland > 0.281 (p89) rate_local3 < 0.166 (p30) 16.40 0.71 9.31 0.40 1.54E−06

32 prop_open_recreation < 0.002 (p14) rate_local3 < 0.016 (p15) 13.07 0.44 8.31 0.28 9.22E−06

33 med_income < 17,081.439 (p53) &prop_open_recrea-
tion > 0.026 (p45)

rate_local3 > 0.352 (p56) 49.42 0.71 18.23 0.11 1.03E−05

34 prop_higher_edu < 0.224 (p58) &prop_gov_insti_faci > 0.027 
(p38)

rate_local3 > 0.297 (p50) 54.45 0.74 17.12 0.12 6.17E−05

35 prop_transport > 0.141 (p55) rate_local3 > 0.382 (p57) 54.56 0.56 13.89 0.14 4.17E−05

36 prop_business > 0.039 (p84) rate_local3 > 0.518 (p71) 19.10 0.54 8.80 0.25 2.87E−05

37 prop_higher_edu < 0.222 (p58) &POI_pp_sports < 12.643 
(p42)

rate_local3 > 0.277 (p47) 49.14 0.79 16.23 0.13 7.74E−05

38 med_income < 19,861.505 (p65) &POI_pp_edu < 19.291 (p73) rate_local3 > 0.180 (p33) 94.43 0.80 15.87 0.06 2.84E−05
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Table 2 (continued)

(c) Rules for wave‑3 local case rate; POI accessibility was used

Antecedent Consequent Supp Conf Lev Imp P

39 prop_higher_edu < 0.228 (p61) &POI_pp_mall_mkt < 9.663 
(p69)

rate_local3 > 0.233 (p39) 75.07 0.74 15.46 0.06 4.66E−05

40 POI_pp_transport < 16.809 (p38) rate_local3 > 0.191 (p35) 65.98 0.84 14.48 0.18 1.67E−07

41 POI_pp_telecom_elec < 6.955 (p37) rate_local3 > 0.193 (p35) 65.22 0.82 13.81 0.17 2.01E−06

(d) Rules for wave‑4 local case rate; POI accessibility was used

Antecedent Consequent Supp Conf Lev Imp P

1 med_income < 12,559.030 (p7) rate_local4 > 0.831 (p79) 8.91 0.64 5.86 0.42 2.82E−05

2 med_income < 29,532.689 (p84) &prop_grassland < 0.007 
(p31)

rate_local4 > 0.852 (p80) 30.41 0.62 20.17 0.13 4.52E−05

3 med_income < 23,878.185 (p79) &den_bldg > 0.293 (p72) rate_local4 > 0.774 (p75) 29.22 0.65 17.99 0.13 5.12E−05

4 med_area_home < 15.641 (p45) rate_local4 > 0.299 (p29) 74.53 0.81 9.64 0.10 7.30E−05

5 med_area_home > 15.641 (p45) rate_local4 < 0.299 (p29) 45.56 0.37 9.68 0.08 7.30E−05

6 gender_ratio > 109.623 (p94) rate_local4 < 0.334 (p34) 10.16 0.79 5.84 0.45 5.99E−05

7 prop_over65 > 0.229 (p93) rate_local4 < 0.299 (p29) 11.05 0.78 6.81 0.48 2.32E−05

8 ave_household_size < 2.713 (p37) rate_local4 > 0.865 (p80) 27.87 0.38 12.90 0.17 2.34E−07

9 den_road > 16.383 (p71) rate_local4 > 0.722 (p72) 36.83 0.60 19.40 0.31 4.63E−12

10 den_bldg > 0.226 (p62) rate_local4 > 0.603 (p64) 50.39 0.60 18.56 0.22 3.09E−07

11 den_population > 26,219.620 (p60) rate_local4 > 0.466 (p46) 63.71 0.71 16.81 0.19 1.21E−06

12 den_public_trans > 95.120 (p92) rate_local4 > 0.780 (p76) 12.45 0.67 7.89 0.42 1.19E−05

13 den_road < 16.383 (p71) rate_local4 < 0.722 (p72) 128.58 0.84 19.36 0.13 4.63E-12

14 den_bldg < 0.226 (p62) rate_local4 < 0.603 (p64) 99.30 0.76 18.44 0.14 3.09E−07

15 den_population < 26,219.620 (p60) rate_local4 < 0.466 (p46) 75.80 0.61 16.78 0.14 1.21E−06

16 den_public_trans < 46.130 (p78) rate_local4 < 0.780 (p76) 136.41 0.85 15.26 0.10 4.31E-10

17 prop_private_resid > 0.087 (p64) rate_local4 > 0.731 (p73) 36.23 0.45 13.84 0.17 1.00E−06

18 prop_private_resid < 0.022 (p36) rate_local4 < 0.117 (p14) 22.60 0.29 11.64 0.15 2.50E−08

19 prop_publicResid > 0.042 (p70) rate_local4 = 0.168–1.073 (p16-87) 56.16 0.86 10.24 0.16 3.66E−05

20 prop_industrial < 0.000 (p36) rate_local4 > 1.033 (p86) 23.82 0.31 12.74 0.17 2.01E−07

21 LU_entropy < 0.548 (p47) rate_local4 > 0.863 (p80) 34.55 0.34 14.21 0.14 1.67E−07

22 LU_entropy > 0.548 (p47) rate_local4 = 0.140–0.863 (p14-80) 90.44 0.80 17.54 0.15 3.55E−08

23 build_area_pp < 58.100 (p47) rate_local4 > 0.222 (p21) 83.55 0.87 10.09 0.11 1.52E−05

24 build_area_pp > 58.100 (p47) rate_local4 < 0.222 (p21) 36.65 0.31 9.66 0.08 1.52E−05

25 prop_rural_set < 0.001 (p46) rate_local4 > 0.630 (p64) 50.56 0.52 15.79 0.16 4.68E−05

26 prop_agricultural > 0.017 (p64) rate_local4 < 0.430 (p43) 46.73 0.61 13.80 0.18 5.87E−06

27 prop_shrubland < 0.000 (p0) rate_local4 > 0.785 (p76) 27.11 0.71 17.92 0.47 4.93E−14

28 prop_agricultural < 0.001 (p40) rate_local4 > 0.766 (p74) 39.90 0.46 17.43 0.20 1.13E−08

29 prop_grassland < 0.004 (p23) rate_local4 > 0.848 (p80) 28.16 0.56 17.42 0.34 1.39E-13

30 prop_woodland < 0.016 (p25) rate_local4 > 1.282 (p90) 15.27 0.29 10.03 0.19 3.76E−08

31 prop_shrubland > 0.064 (p49) rate_local4 < 0.785 (p76) 101.16 0.90 15.67 0.14 2.93E−07

32 prop_grassland > 0.085 (p71) rate_local4 < 0.188 (p16) 20.40 0.32 9.55 0.15 6.50E−06

33 prop_open_recreation > 0.030 (p48) &LU_entropy < 0.551 
(p49)

rate_local4 > 0.804 (p78) 26.92 0.55 15.70 0.18 7.19E−06

34 prop_gov_insti_faci > 0.025 (p36) &LU_entropy < 0.546 (p47) rate_local4 > 0.765 (p74) 29.27 0.51 14.66 0.11 5.00E−05

35 prop_transport > 0.241 (p71) rate_local4 > 0.897 (p81) 25.98 0.43 14.55 0.24 3.65E−08

36 prop_business > 0.058 (p86) rate_local4 > 0.784 (p76) 18.49 0.65 11.61 0.41 1.45E−08

37 med_income < 24,082.337 (p79) &prop_rural_set < 0.001 (p46) 
&POI_pp_sports > 19.996 (p53)

rate_local4 > 0.827 (p79) 19.48 0.68 13.18 0.22 4.62E−05

38 med_income < 24,082.337 (p79) &den_road > 10.205 (p48) 
&POI_pp_mall_mkt > 6.459 (p57)

rate_local4 > 0.895 (p81) 18.62 0.63 13.02 0.22 4.56E−05
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Table 2 (continued)

(d) Rules for wave‑4 local case rate; POI accessibility was used

Antecedent Consequent Supp Conf Lev Imp P

39 med_income < 23,241.294 (p78) &prop_rural_set < 0.002 (p49) 
&POI_pp_transport > 32.416 (p54)

rate_local4 > 0.815 (p78) 18.37 0.70 12.49 0.24 6.88E−05

40 POI_pp_sports > 33.191 (p70) rate_local4 < 0.062 (p13) 22.58 0.35 14.17 0.22 8.48E−12

41 POI_pp_telecom_elec > 30.272 (p80) rate_local4 < 0.039 (p13) 19.74 0.45 14.04 0.32 3.55E−13

42 POI_pp_transport > 68.907 (p80) rate_local4 < 0.048 (p13) 19.71 0.45 14.01 0.32 7.44E−15

43 POI_pp_edu > 25.063 (p83) rate_local4 < 0.061 (p13) 15.92 0.40 10.72 0.27 2.21E−09

44 POI_pp_mall_mkt > 19.264 (p88) rate_local4 < 0.071 (p13) 12.77 0.48 9.31 0.35 2.60E−09

(e) Rules for wave‑4 local case rate, excluding cases in the Dancing/Singing Cluster; POI accessibility was used

Antecedent Consequent Supp Conf Lev Imp P

1 prop_higher_edu < 0.346 (p82) &prop_rural_set < 0.000 (p43) rate_local4nondance > 0.389 (p53) 48.36 0.76 18.27 0.14 2.36E−05

2 prop_higher_edu < 0.342 (p81) &den_road > 11.532 (p53) rate_local4nondance > 0.421 (p58) 49.83 0.68 17.91 0.09 2.44E−05

(f) Rules for wave‑3 local case rate; POI density was used

Antecedent Consequent Supp Conf Lev Imp P

1 POI_den_mall_mkt > 307.693 (p78) rate_local3 > 0.547 (p72) 24.39 0.53 12.21 0.26 5.24E−06

2 POI_den_sports > 882.075 (p78) rate_local3 > 0.528 (p71) 24.72 0.55 11.96 0.26 4.03E−06

3 POI_den_telecom_elec > 540.287 (p78) rate_local3 > 0.539 (p71) 24.30 0.53 11.95 0.26 2.43E−06

4 POI_den_transport > 1382.534 (p79) rate_local3 > 0.530 (p71) 24.57 0.54 11.70 0.26 1.18E−05

5 POI_den_edu > 611.274 (p81) rate_local3 > 0.558 (p74) 21.47 0.51 10.87 0.26 2.04E−05

(g) Rules for wave‑4 local case rate; POI density was used

Antecedent Consequent Supp Conf Lev Imp P

1 POI_den_transport > 904.959 (p71) rate_local4 > 0.726 (p73) 36.27 0.60 19.27 0.32 1.95E−14

2 POI_den_mall_mkt > 208.752 (p73) rate_local4 > 0.753 (p74) 34.64 0.58 19.11 0.32 1.82E−11

3 POI_den_sports > 598.644 (p72) rate_local4 > 0.751 (p74) 34.76 0.58 19.11 0.32 9.18E−12

4 POI_den_telecom_elec > 374.340 (p72) rate_local4 > 0.741 (p74) 34.54 0.58 18.63 0.31 9.93E−12

5 POI_den_edu > 1372.584 (p94) rate_local4 > 0.751 (p74) 10.59 0.79 7.09 0.53 5.28E−07

(h) Rules for average waiting period; POI accessibility was used

Antecedent Consequent Supp Conf Lev Imp P

1 POI_pp_transport > 39.683 (p60) ave_waiting_period > 5.790 (p75) 22.98 0.34 9.81 0.14 6.65E−05

2 POI_pp_telecom_elec > 15.395 (p57) ave_waiting_period > 5.765 (p74) 24.76 0.33 9.65 0.13 7.16E−05

3 POI_pp_mall_mkt > 8.676 (p64) ave_waiting_period > 5.822 (p75) 20.26 0.33 8.90 0.14 0.0001

4 med_area_home > 17.644 (p50) ave_waiting_period > 5.807 (p75) 26.33 0.29 8.89 0.10 1.14E−05

5 med_income > 19,979.413 (p60) ave_waiting_period > 5.751 (p74) 21.18 0.33 8.39 0.13 9.48E−05

6 POI_pp_sports > 29.352 (p65) ave_waiting_period > 6.163 (p81) 16.16 0.27 8.26 0.14 1.53E−07

7 POI_pp_edu > 14.015 (p63) ave_waiting_period > 5.788 (p75) 20.68 0.31 7.75 0.12 0.0002

(i) Rules for median waiting period; POI accessibility was used

Antecedent Consequent Supp Conf Lev Imp P

1 med_area_home > 18.602 (p52) med_waiting_period > 4.392 (p67) 31.27 0.38 10.07 0.12 0.0002

2 med_income > 19,680.813 (p60) med_waiting_period > 5.030 (p82) 17.80 0.27 7.39 0.11 0.0002

3 build_area_pp > 57.721 (p46) med_waiting_period > 5.317 (p82) 19.22 0.18 6.54 0.06 0.0002

For clarity, the antecedent and consequent of each rule are put in separate columns. For example, rule 1 in Table 2a is “prop_higher_edu > 0.361 (p85) → rate_
local12 > 0.143 (p86)”, where p85 means the  85th percentile of the variable among the 214 TPU-level areal units in Hong Kong. Variables in the rules are described in 
Table 1. Rules are shown together with the values of four RIMs: support (supp), confidence (conf ), leverage (lev), and improvement (imp). P is the P value of each rule 
in the chi-square test described in the Methods. The full sets of resultant rules are shown in Table S2 in Additional File 1
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to co-occur with a high income. The income of all 21 
TPUs fulfilling rule 9, Table  2b was above the Hong 
Kong median of HK$16,250/month, with an average of 
HK$38,952/month.

Density and connectivity characteristics
All four density and connectivity variables, namely the 
densities of population, buildings, roads, and public 
transport stations, showed generally positive associations 
with the wave-3 and wave-4 local case rates (rule 11–17, 
Table  2c; rule 9–16, Table  2d). Judged by larger lever-
age and improvement of the rules, the wave-3 local case 
rate was more strongly associated with population den-
sity, while the wave-4 rate was more strongly associated 
with road and building densities (rule 11–14, Table  2c; 
rule 9–12, Table 2d). The wave-4 rate was most statisti-
cally significantly associated with road density, that is, 
connectivity (P value in rule 9 compared with rule 10–12, 
Table 2d).

A high wave-1&2 imported case rate was, instead, asso-
ciated with a low-to-medium population density. Also, 
very low density and connectivity were associated with 
low confirmed case rates (rule 10–12, Table  2b), which 
represented low-density rural TPUs with few imported 
cases.

Functionality: urban residence and related variables
The proportion of private residential LU gener-
ally showed positive associations with the confirmed 
case rates in all waves (rule 6–7, Table  2a; rule 13–14, 
Table 2b; rule 18–19, Table 2c; rule 17–18, Table 2d). A 
low proportion of industrial land, which was usually far 
from major residential areas, was also associated with 
high confirmed case rates in all waves (rule 8, Table 2a; 
rule 16, Table 2b; rule 22, Table 2c; rule 20, Table 2d).

Public housings in Hong Kong were reserved for lower-
income residents. A high proportion of public residential 
LU was associated with a high wave-3 local case rate but 
a medium wave-4 local case rate (rule 20–21, Table  2c; 
rule 19, Table 2d). A low proportion of public residential 
LU, indicating a higher income, was again associated with 
a high wave-1&2 imported case rate (rule 15, Table 2b).

The LU mix index value was negatively associated with 
the rates of wave-1&2 imported cases as well as wave-
1&2 and wave-4 local cases (rule 9–10, Table  2a; rule 
17–18, Table 2b; rule 21–22, Table 2d). This echoed the 
association between residential LU and the confirmed 
case rate, since TPUs with high proportions of residential 
area tended to have low LU mix index values. The TPUs 
ranked the lower half in terms of LU mix index had an 
average of 17.2% residential area, while the Hong Kong 
average was 11%. The negative association between the 
local case rate and LU mix index disappeared in wave 

3, during which some New Towns and rural areas with 
high LU mix index values also had high local case rates 
(Fig.  1c, e). These areas had high LU mix because they 
contained both typical urban LUs (e.g., residential and 
business area) and typical suburban or rural LUs (e.g., 
rural settlement and agricultural land).

Average per-capita floor area (ave_area_all) was equal 
to the total floor area of buildings divided by the number 
of residents in the TPU. In the experimental data, high 
ave_area_all values appeared in industrial or hotel area, 
remote rural TPUs, and high-income TPUs, while lower 
ave_area_all values mainly occurred in densely populated 
lower-income TPUs. This variable showed overall nega-
tive associations with wave-3 and wave-4 local case rates 
(rule 23–24, Table  2c; rule 23–24, Table  2d). TPUs ful-
filling these rules were mainly densely populated lower-
income TPUs with higher local case rates. A mid-to-high 
ave_area_all value was associated with a high wave-1&2 
imported rate, while a high ave_area_all value was associ-
ated with a low imported case rate (rule 19–20, Table 2b). 
Looking into the data, rule 19 and 20 largely corre-
sponded to high-income TPUs and remote rural TPUs, 
respectively.

Functionality: rural area, urban area, and POI density
In general, the proportion of LUs concentrating in rural 
area, including rural settlement, agriculture land, and 
vegetations (woodland, shrubland, and grassland), had 
negative associations with the confirmed case rates in all 
waves (rule 11, Table  2a; rule 21, Table  2b; rule 25–32, 
Table 2c; rule 25–32, Table 2d). As an exception, vegeta-
tion coverage had no obvious associations with the wave-
1&2 confirmed case rates. Indeed, some high-income 
TPUs with high wave-1&2 imported case rate, especially 
those in hilly urban areas on Hong Kong Island, also had 
high vegetation coverage.

In contrast, the five types of POIs in this study, as well 
as business, recreation, governmental, institutions and 
facilities, and transport LUs, concentrated in urban areas. 
High densities of all five types of POIs and high propor-
tions of all four LUs were associated with high wave-3 
and wave-4 local case rates (rule 33–36, Table  2c; rule 
33–36, Table  2d; Table  2f, g). Yet since these POIs and 
LUs also concentrated in densely populated areas, it was 
not very clear whether these associations were more 
related to the high level of activities brought by these 
POIs and LUs, or instead to the high population density.

Functionality: POI accessibility
High per-capita accessibilities to all five types of POIs 
were associated with high wave-1&2 imported case 
rates (rule 24–28, Table  2b). These associations mostly 
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reflected the wealthy areas in or around the downtown, 
which had convenient access to a great number of POIs 
in the downtown and also mid-to-low population den-
sity (Fig.  3a). Low per-capita POI accessibilities were 
associated with medium wave-1&2 imported case rates 
(rule 29–34, Table  2b), which mainly reflected some 
New Towns with mid-to-high population density and 
relatively limited access to POIs due to the farness to the 
main urban area (Fig. 3b).

Low or mid-to-low accessibilities to all five types of 
POIs, alone or combined with a relatively low income or 
higher-education rate, were associated with mid-to-high 
wave-3 local case rates (rule 37–41, Table  2c). Looking 
into the data, TPUs involved in these rules were largely 
densely populated lower-income urban areas, where 
the per-capita POI accessibility was low due to the large 
populations.

In wave 4, mid-to-low-income urban TPUs with high 
accessibilities to mall and market, sports, and transport 

POIs, in contrast to low accessibilities in wave 3, were 
associated with very high local case rate (rule 37–39, 
Table  2d). The associations mainly reflected the mid-
to-low-income TPUs located in major commercial and 
entertainment areas and in adjacent to high-income 
TPUs (Fig.  3c). These TPUs also contained most enter-
tainment venues involved in the super-spread of the 
Dancing/Singing Cluster (Fig. 3c), and their associations 
with very high wave-4 local case rate disappeared when 
the Dancing/Singing Cluster were excluded (Additional 
file 1: Table S2f ).

In addition, very high per-capita POI accessibili-
ties were associated with very low local case rates in all 
waves (rules 222, 324, 326, 329 and 332, Additional file 1: 
Table  S2a; rules 169, 176, 180, 181 and 185, Additional 
file 1: Table S2c; rule 40–44, Table 2d). These rules mainly 
covered some remote TPUs with high per-capita POI 
accessibilities due to their small populations.

Fig. 3 Exemplary rules. a TPUs fulfilling rule 27, Table 2b, i.e., TPUs with POI_pp_mall_mkt > 10.941 (p75) and rate_imported12 > 0.202 
(p80), together with median monthly income. b TPUs fulfilling rule 32, Table 2b, i.e., TPUs with POI_pp_mall_mkt < 1.922 (p22) and rate_
imported12 = 0.003–0.083 (p36-66), together with population density. c TPUs fulfilling rule 38, Table 2d, i.e., TPUs with med_income < 24,082.337 
(p79), den_road > 10.205 (p48), POI_pp_mall_mkt > 6.459 (p57), and rate_local4 > 0.895 (p81), together with the median monthly income and 
entertainment venues involved in the super-spread of Dancing/Singing Cluster [32]
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Associations for the waiting period
A high median accommodation area and a high median 
income were associated with longer average and median 
waiting periods (Table  2h, i). Long average waiting 
periods were also associated with high per-capita POI 
accessibilities (Table 2h). As stated earlier, large median 
accommodation areas and high per-capita POI accessibil-
ities tended to occur in high-income TPUs and sparsely 
populated rural TPUs. It is of note that high-income 
TPUs still contributed to a minority of cases with long 
waiting periods, since they had much smaller popula-
tions and number of confirmed cases than lower-income 
TPUs. For example, the TPUs with median incomes of 
at least HK$20,000/month (top 40% TPUs) contributed 
1226 out of the 8,238 (14.9%) local cases with available 
waiting periods, and contributed 76 out of 357 cases 
(21.2%) with waiting periods of 12 or more days.

Discussion
Interpreted from the ARM results, main characteristics 
of the first four waves of COVID-19 in Hong Kong are as 
follows. The first and second waves (by May 2020) tended 
to spread among higher-SES population, represented by 
higher income, higher education level, and more spacious 
accommodations. The rules related to high income and 
education level (rule 1 and 3, Table 2b) had higher RIM 
values and statistical significance than the rules related 
to other demographic or density characteristics, making 
SES more likely to be the driving force of the distribution 
of imported cases. The results, in contrary to some previ-
ous results at coarser spatial scales [7, 8] (Table 3), could 
be explained by that most wave-1&2 imported cases, who 
had studied or lived in developed countries, tended to 
have higher SES. Wave-1&2 imported cases also tended 
to distribute in neighborhoods with mid-to-low popula-
tion density, agreeing to the fact that higher-SES people 
in Hong Kong tend to live in mid-to-low-density neigh-
borhoods. The association between a high gender ratio, a 
low elderly rate, and a high confirmed case rate appeared 
to link to the higher male proportions and lower elderly 
rate in higher-SES TPUs, instead of gender or age dif-
ference in physiological susceptibility. These high-SES 
neighborhoods also had high accessibility to POIs, 
mainly attributed to POIs in nearby higher-density com-
mercial and entertainment areas, since the POI density 
within high-SES neighborhoods was not usually high. 
The associations between urban characteristics and the 
local case rate were similar to but weaker than those for 
the imported case rate. These weaker associations might 
be shaped by the distribution of imported cases who were 
the infection sources for local cases, since local transmis-
sion was limited during the first two waves.

The wave-3 spread (Jul–Oct 2020) appeared to be more 
driven by the within-neighborhood transmission that 
was severer in densely populated neighborhoods, espe-
cially lower-SES ones. The wave-4 spread (Nov 2020–Feb 
2021) appeared to be more driven by the cross-neighbor-
hood transmission due to high activity level and connec-
tivity. The spread patterns in both waves reconfirmed the 
vulnerability of lower-SES population against COVID-
19 infections. High wave-3 local case rates were associ-
ated with high population density and connectivity (e.g., 
road density), low income and education level, crowded 
accommodations, small households, public residences 
for lower-income population, low vegetation cover-
age, and high density but low per-capita accessibility of 
POIs. Starting from the Dancing/Singing Cluster which 
heavily involved high-SES population, wave-4 local cases 
were less associated with SES or population density than 
wave-3 ones, but more concentrated in urban area and 
area with high connectivity and activity level. A high rate 
of wave-4 cases was most strongly and statistically signif-
icantly associated with road density, building density, and 
a low vegetation coverage (rule 13, 14, 27, 29, Table 2d). 
The associations for wave-4 cases excluding the Dancing/
Singing Cluster became more similar to those for wave-3 
cases, confirming that lower-SES population was still 
more vulnerable. The mid-to-low-income, high-density 
neighborhoods in main commercial and entertainment 
areas, with high activity level of lower-income residents 
as well as higher-income visitors from nearby neighbor-
hoods, was worst hit.

In addition, higher-income population was associated 
with longer waiting periods between symptom onset 
and diagnosis, which might be attributed to their higher 
concern on the economic loss due to seeking medical 
advice related to COVID-19 and less anxiety for being 
infected. Since wealthier people normally have better 
medical resources, their longer waiting periods were 
likely due to longer delays in seeking medical advice, 
rather than slower diagnoses. Such delays might not be 
due to the privacy concern about health data, which were 
reported to be similar among people in different income 
levels, or even lower for higher-income people [33, 34]. 
Instead, higher-income people were reported to concern 
more about the economic impact of COVID-19 but less 
about being personally infected [35]. Therefore, wealthier 
people could have higher concern about the economic 
loss, such as being quarantined and unable to work, and 
higher confidence that they were well protected and did 
not really get COVID-19, which might have delayed their 
hospital or clinic visits.

Household size played different roles in household 
and community transmission. A high rate of wave-1&2 
imported cases, including the cases directly infected 
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by imported cases, was associated with a large average 
household size. This might be due to aggravated house-
hold transmission in larger households [36], since quar-
antine at home was allowed until November 2020. Also, 
high-SES families tended to have larger household sizes 
by including FDHs. Oppositely, a small average house-
hold size below 2.6–2.7 was associated with high local 
case rates, which might be linked with possibly more 
activities outside homes for one-person or two-person 
households (e.g., couples without children).

A high proportion of private residential LU was asso-
ciated with high confirmed case rates in all waves. Since 
the reported locations of the cases were mostly their 
residences, these associations are expected and do not 
indicate a higher risk of infection in residential area. 
Rural area was generally associated with lower confirmed 
case rates, likely because of its much lower density and 
connectivity.

By comparing previous studies on the same area (e.g., 
the US) but different time periods, at the city/county 
scale, an urban characteristic may have variant asso-
ciations with the COVID-19 spread in different waves of 
outbreaks [5, 6, 8, 9, 12, 13] (Table 3). This study shows 
that such temporally variant associations also exist at the 
intra-city scale, and, further, relates these associations 
with the intra-city distribution of specific population 
groups and activities. The study also reveals the intra-
city local variations of COVID-19 transmissions in main 
urban areas with different SES levels and densities, sat-
ellite towns, and rural areas. These findings may provide 
references to investigate the local variations of the associ-
ations between urban characteristics and the COVID-19 
spread at a coarser spatial scale (e.g., in different counties 
of a country) [12].

The study results have the following further implica-
tions for long-term pandemic control. First, the study 
reveals the joint and interactive contribution of density, 
connectivity, and functionality to COVID-19 spread 
within and across neighborhoods, especially in lower-
SES neighborhoods. As a result, to relieve both over-
crowdedness and overconcentration of facilities at the 
neighborhood scale is likely a critical task to improve 
the epidemic resilience in high-density cities. At the city 
scale, a significant causal effect of high population and 
employment density on the confirmed case distribution 
has been reported unable to be identified [7]. However, 
within a city, at least a high-density one, the particularly 
densely populated areas often indicate an overcrowded 
life with reduced quality. Residents in such areas, there-
fore, tend to be lower-income ones who do not afford a 
more spacious, higher-quality life. Overcrowdedness and 
low SES are linked with multiple conditions which could 
jointly or even synergistically contribute to extensive 

within-neighborhood transmission. These conditions 
include, for example, the difficulty to keep social distance 
in crowded accommodations and facilities, the tendency 
to spend more time outside less comfortable homes, the 
lower feasibility for manual labors to work from home, 
and the worse ventilation in old apartments.

Meanwhile, concentrated facilities and increased con-
nectivity (e.g., transport hubs, easily accessible locations) 
can mutually attract and thus tend to co-locate, jointly 
leading to a high infection risk within the neighborhoods 
with concentrated facilities and high connectivity. Worse 
still, in many cities, high-SES people tend to reside in 
high-income neighborhoods, while the nearby commer-
cial and entertainment areas they frequently visit often 
have lower SES. Those commercial and entertainment 
areas can suffer from an extreme risk of infection dually 
caused by intensive within-neighborhood transmis-
sions due to high density and low SES, as well as inten-
sive cross-neighborhood transmissions due to the high 
level of activities conducted by visitors of diverse SES. 
In the Hong Kong case, this was particularly reflected by 
the suffering of lower-SES TPUs in the major commer-
cial and entertainment areas from the singing/dancing 
super-spread event. These TPUs also contained most 
entertainment venues involved in the super-spread of the 
Dancing/Singing Cluster (Fig. 3c). Their nearby high-SES 
TPUs contained almost no such entertainment venues 
but had even higher rate of confirmed cases in the Danc-
ing/Singing Cluster (Additional file  1: Table  S1), mean-
ing that the cases in those TPUs should have visited the 
entertainment venues in the nearby lower-SES TPUs.

Second, higher-SES population, if infected, may have a 
higher potential to infect others and contribute to super-
spread events than the lower-SES one. This brings the 
wealthy more obligation to conform anti-pandemic poli-
cies. In wave 3, higher-income neighborhoods appear 
less affected by the outbreak initiated in lower-income 
ones, which might be attributed to the self-segregation 
of the wealthy in higher-income neighborhoods [37]. Yet 
the super-spread event in wave 4 which heavily involved 
high-income population diffused to lower-income neigh-
borhoods shortly afterwards. Such asymmetric effect 
may relate to that higher-SES people have higher mobil-
ity to more diverse area and higher accessibility to POIs 
outside their neighborhoods. Thus, on average, they con-
tact more persons in a larger geographic scope, leading 
to a higher risk of cross-neighborhood transmission and 
super-spread. Lower-SES population, in contrast, tend 
to contact less diverse people in fewer places, leading 
to more localized transmission. High-SES population is 
also obliged to seek medical advice faster when showing 
COVID-19 symptoms, to avoid infecting others during 
longer waiting periods.
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Third, by referring to the study results, pointed coun-
termeasures to early increases of the cases may be 
developed to forestall recurrent outbreaks. Intra-city 
COVID-19 spread patterns, major transmission routes, 
and their interrelations with urban characteristics varied 
greatly in different waves of the pandemic. This study has 
identified such transmission routes and interrelationships 
for different sources of outbreaks: imported cases from 
developed countries (wave 1&2), localized transmission 
concentrating in lower-SES neighborhoods (wave 3), and 
super-spread events which considerably engage higher-
SES population (wave 4). Facing an early increase of the 
cases, the study result can be used to pre-estimate the 
confirmed case distributions and transmission routes 
from the likely sources of such increase. Pointed coun-
termeasures to specific neighborhoods or transmission 
routes could be further developed to prevent the increase 
from developing into a recurrent outbreak.

This study has multiple limitations. First, this fine-
scale study has an advantage in revealing and reasoning 
intra-city associations between urban characteristics 
and COVID-19 transmission. Yet at such a fine scale, 
reported locations of the cases tended to be their resi-
dences and deviated from where they got infected. Such 
deviation limited the discovery of the infection risk for 
different activities outside the residences. Massive fine-
scale human mobility data which is relatively repre-
sentative for the whole population, such as smartphone 
tracking data from the carriers, may help identify peo-
ple’s daily activity areas and lead to more accurate evalu-
ations on the infection risks for different LUs. Also, while 
statistical tests have been performed in this and many 
other studies on the associations between the spatial pat-
terns of various factors and COVID-19 spread, the sta-
tistical evaluation results need to be interpreted with 
caution. Parametric statistical tests generally assume the 
independence between observations, but spatial auto-
correlation is prevalent in geographically distributed 
data, including the data for the factors investigated and 
the COVID-19 spread. The authors propose to further 
tackle this issue by exploring the use of non-parametric 
tests in future association studies, which may allow the 
data to be spatially autocorrelated. In addition, this study 
did not involve factors that were relatively homogeneous 
within a city at a certain time or had no available data at 
neighborhood level. These factors include, for example, 
environmental factors (e.g., relative humidity, tempera-
ture, and pollution) [38], non-pharmaceutical interven-
tions (e.g., closure of schools and entertainment venues) 
[39], human behaviors (e.g., wearing face masks) [40], 
and COVID-19 testing rate [41]. In particular, the poten-
tial impact of seasonal climate and change in non-phar-
maceutical interventions on the intra-city COVID-19 

spread pattern is very much worth investigation. Effec-
tive investigations into these factors at an intra-city scale, 
again, require these factors to be properly measured for 
the venue where the cases exposed to the virus, instead of 
their reported residences.

Conclusions
This study explores the intra-city associations in a high-
density city between SES, density, functionality, and 
spread of COVID-19. Leveraging the advantage of DE-
based ARM in studying optimized and complex associa-
tions, the associations were comparatively investigated 
for four waves of the pandemic in Hong Kong and for 
local and imported confirmed cases. Further analyzed 
based on these associations was how the urban charac-
teristics might have jointly and interactively shaped the 
spatiotemporal patterns of COVID-19 cases, through dif-
ferent epidemic transmission routes within and across 
neighborhoods.

The study result showed that the first two waves of 
COVID-19 in Hong Kong (by May 2020) was mainly 
shaped by imported cases from developed countries. The 
high confirmed case rate was associated with high SES 
and related characteristics, such as mid-to-low popu-
lation density and high accessibility to facilities. In the 
third (Jul–Oct 2020) and fourth (Nov 2020–Feb 2021) 
waves, densely populated and built neighborhoods, usu-
ally also lower-SES ones, were worse hit. The distribu-
tion of the wave-3 cases appeared more strongly shaped 
by the within-neighborhood transmission and lower SES. 
The patterns of wave-4 cases showed a stronger link to 
cross-neighborhood transmission and people’s activ-
ity level, likely due to the super-spread in dancing/sing-
ing venues. In particular, a diffusion was observed from 
the super-spread which considerably involved high-SES 
population to lower-SES neighborhoods and again the 
within-neighborhood transmission. Also, higher-SES 
population was found to be associated with mildly longer 
waiting periods.

The findings of this study provide potentially important 
references for precise control of COVID-19 at a neigh-
borhood scale, as well as the pandemic-resilient design 
of compact cities. The usually co-locating overcrowed-
edness and unfavored SES of residents can synergisti-
cally increase the vulnerability to epidemic of lower-SES 
neighborhoods and result in extensive within-neigh-
borhood transmission. Lower-SES neighborhoods with 
concentrated facilities and non-residential activities can 
suffer from an extreme risk of infection dually caused by 
intensive within-neighborhood transmissions as well as 
intensive cross-neighborhood transmissions brought by 
visitors of diverse SES. To improve the epidemic resil-
ience in high-density cities, it is, therefore, essential to 
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relieve both overcrowdedness and overconcentration 
of facilities at the neighborhood scale. Also, higher-SES 
population is more obliged to conform anti-pandemic 
policies, due to their higher potential to participate 
extensive transmission and super-spread events. Facing 
early increases of the cases in a city, the study results may 
be used to develop pointed countermeasures against the 
likely sources of such increase and related specific neigh-
borhoods or transmission routes, to forestall recurrent 
outbreaks.
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