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Objective: This research aimed to provide evidence for the early identification and

intervention of children at risk for auditory processing disorder (APD). Electrophysiological

studies on children with suspected APDs were systematically reviewed to understand the

different electrophysiological characteristics of children with suspected APDs.

Methods: Computerized databases such as PubMed, Cochrane, MEDLINE, Web of

Science, and EMBASE were searched for retrieval of articles since the establishment of

the database through May 18, 2020. Cohort, case-control, and cross-sectional studies

that evaluated the literature for the electrophysiological assessment of children with

suspected APD were independently reviewed by two researchers for literature screening,

literature quality assessment, and data extraction. The Newcastle–Ottawa Scale and 11

entries recommended by the Agency for Healthcare Research and Quality were used to

evaluate the quality of the literature.

Results: In accordance with the inclusion criteria, 14 articles were included.

These articles involved 7 electrophysiological testing techniques: click-evoked

auditory brainstem responses, frequency-following responses, the binaural interaction

component of the auditory brainstem responses, the middle-latency response, cortical

auditory evoked potential, mismatch negativity, and P300. The literature quality was

considered moderate.

Conclusions: Auditory electrophysiological testing can be used for the characteristic

identification of children with suspected APD; however, the value of various

electrophysiological testing methods for screening children with suspected APD requires

further study.

Keywords: auditory processing, auditory processing disorder, electrophysiological testing, children, systematic

review, screening

INTRODUCTION

Central auditory processing is the perception of auditory information by the central auditory
nervous system (CANS) and neurobiological activity in the processing of auditory information
and its evoked auditory physiological potentials (1). The American Speech–Language–Hearing
Association (ASHA), the American Academy of Audiology (AAA), and the British Society of
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Audiology (BSA) define perceptual processing deficits of auditory
information by the CANS as a central auditory processing
disorder (CAPD) (1–3). These children primarily exhibit
difficulty with speech-in-noise comprehension, frequently
demand repetition, and have associated auditory attention and
auditory memory deficits (4). The proposal of an auditory
processing deficit has resulted from complaints of hearing
problems despite normal audiograms noted in the study by
Bocca et al. (5). Auditory problems still occur at 0.5–1% in
children with normal peripheral hearing (6). According to
Chermak and Musiek, the prevalence of auditory processing
deficits in children ranges from 2 to 3% (7). Meanwhile, the
presence of auditory processing abnormalities in children with
learning difficulties reaches 30–50% (8). Auditory processing
deficits are often comorbid with other mental developmental
disorders (9–12). Children with speech delay, dyslexia, and
ADHD are often accompanied by relatively poor auditory
processing skills (13–15), and children with auditory processing
deficits may face problems with language, learning, and
social communication.

Auditory processing deficits stem from impaired neural
function in the CANS (1, 2); meanwhile, the plasticity of the
brain structure and function can activate neurons or form
effective synaptic connections within the brain (16). Performing
top–down auditory training can effectively improve auditory
processing in children with auditory processing deficits (17, 18).
Therefore, the early identification of children with abnormal
auditory processing, followed by an auditory intervention, bears
clinical significance.

Current assessment methods used to identify abnormalities in
the auditory processing function in children include subjective
behavioral tests and objective electrophysiological tests (19).
Subjective behavioral tests are divided into verbal and non-
verbal tests, such as auditory discrimination tests, temporal
processing tests, binaural interaction tests, dichotic speech tests,
and monaural low-redundancy speech tests, among others (1).
The diagnostic criteria for APD recommended by ASHA are
as follows: in the behavioral testing battery, at least two or
more behavioral test results, two standard deviations below
the mean on either one or both ears (1, 7) or in one
test, three standard deviations below the mean on both ears.
In addition, several audiologists with extensive experience in
the clinical evaluation of auditory processing also reached a
consensus on this criterion (8, 20, 21). This criterion assesses
auditory processing skills in children by using at least two or
more behavioral testing methods while supplying information
beyond auditory processing deficits and provides a basis for
individualized interventions (2). However, the use of behavioral
tests as diagnostic criteria for APD yields inconclusive results
(22, 23). Wilson assessed auditory processing in 150 children
by using nine sets of diagnostic criteria for behavioral tests; the
prevalence of suspected auditory processing disorder (sAPD)
ranged from 7.3 to 96.0% (22). No uniform standards have
been established in the current screening for auditory processing
(1, 2, 24); meanwhile, the sensitivity and specificity of various
subjective behavioral tests have not been clarified because of
the heterogeneity of auditory processing deficits (7). However,

the current gold standard for the diagnosis of CAPD has not
been established, leading to controversy over the definition and
use of APD (25, 26). The abnormal performance of children
with auditory processing deficits in life and the challenges
presented are undeniable; thus, effective screening tools for
auditory processing have to be further explored.

The AAA practice guidelines indicate the clinical value
of auditory electrophysiological testing in screening children
for APD (2). Objective electrophysiological testing partly
compensates for the inadequacy of behavioral testing, which
(i) provides more objective results regardless of the level
of language, attention, and cognition of the child and (ii)
and owing to the faster development of the CANS (27),
electrophysiological testing can be used when unable to
cooperate with the completion of behavioral testing and the
evaluation of auditory processing in younger children while
enabling the early screening of children with sAPD. Owing
to its advantages, auditory electrophysiological testing has
gained increasing attention from audiologists and clinicians in
hearing processing assessment but the clinical application of
electrophysiological testing remains more limited because of
the lack of supporting evidence. Currently, systematic reviews
of behavioral tests for auditory processing screening have been
conducted (28, 29); by contrast, no systematic review has
been performed on the results of different electrophysiological
tests in children with abnormal auditory processing. Thus,
the current study provides a supportive basis for selecting
screening tools for electrophysiological tests in children with
sAPD through a systematic review of the clinical use of
different electrophysiological tests in children with abnormal
auditory processing.

METHODS

Search Strategy
Computer searches of the databases PubMed, Cochrane,
Medline, Web of Science, and EMBASE were performed
from their inception to May 18, 2020 by using the search
terms “auditory processing, “auditory processing disorder,”
“electrophysiology,” “event-related potential,” “evoked potential,”
“auditory evoked response,” “AER,” “auditory brainstem
response,” “ABR,” “cortical response” “P300,” “Biomark,”
“mismatch negativity response,” “MMN,” “auditory middle
latency response,” “AMLR,” “auditory late response,” and “ALR.”

Inclusion and Exclusion Criteria
The inclusion criteria were as follows: (1) Study subjects included
children with APD or children with sAPD who had normal
peripheral hearing; (2) The testing method conducted was
electrophysiological testing; (3) Study types included cohort,
case-control, and cross-sectional studies; and (4) The articles
were published in English.

Exclusion criteria: (1) Study subjects included neonates or
adults and those diagnosed with the disease or in combination
with othermental developmental disorders, such as ADHD, ASD,
dyslexia, language impairment; (2) Reviews and republications;
and (3) Animal experimental studies.
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Literature Screening, Extraction and
Evaluation
In accordance with the inclusion and exclusion criteria,
two authors independently screened the literatures. After the
duplicate articles were deleted, the literatures were screened by
reading the title and abstract of the literatures. For inconclusive
literatures, the third authormediated and jointly decided. Finally,
the literatures that met the inclusion criteria were retained based
on the full reading of the text. Data were extracted independently
by two authors and included the following: author, research
object, sample size, electrophysiological testing method, results,
and conclusion. Two authors used 11 items recommended by the
Agency for Healthcare Research and Quality (30) to evaluate the
literature quality of the cross-sectional study; a “no” or “unclear”
response was assigned a score of “0,” whereas a “yes” response
was assigned a score of “1.” The Newcastle-Ottawa Scale (31) was
used to evaluate the quality of cohort studies and case-control
studies, and a ⋆ was assigned a score of “1” (Table 1).

RESULT

A total of 1,202 articles were retrieved from five databases, as
follows: PubMed (22), Cochrane (328), MEDLINE (41), Web
of Science (251), and EMBASE (560). In accordance with the
inclusion and exclusion criteria, 14 articles were selected using
the screening process shown in Figure 1. The 14 articles included
7 electrophysiological tests: click-evoked auditory brainstem
responses (click ABR), frequency-following responses (FFR),
binaural interaction component of the auditory brainstem
responses (BIC of ABR), the middle-latency response (MLR), the
cortical auditory evoked potential (CAEP), mismatch negativity
(MMN), and P300. All aforementioned electrophysiological tests
were conducted on participants aged 5–18 years. The literature
quality was moderate.

Click-Evoked Auditory Brainstem
Responses
The click ABR is an objective electrophysiological test widely
used to assess hearing threshold and brainstem neural integrity
(46, 47). Ankmnal-Veeranna et al. retrospectively compared
108 children with sAPD and 22 normal children for auditory
brainstem response recording (32). Recording of click ABR in
this study consisted of a slow stimulus (13.3 beats/s) and a fast
stimulus (57.7 beats/s) presented to the left and right ears via
headphones at an acoustic stimulus of 80 dBnHL, and the typical
clinical indexes (latency and interpeak interval of waves I, III,
and V) were analyzed. Wave I latencies were significantly longer
in children with sAPD than those in normal children (P =

0.027), whereas wave III and V latencies were not statistically
different between the two groups. No significant difference in
the interwave interval was observed between children with sAPD
and normal children, except for a prolonged mean interval
(>2 standard deviations above normal) in individual children
with sAPD. The children with sAPD were less stable than the
normal children (P = 0.039). The ABR is a useful tool for
exploring the integrity of auditory brainstem pathways but has

not been widely used for auditory processing assessment because
of the lack of supporting evidence (23). In addition, the sAPD
children included in the Ankmnal-Veeranna et al. study were
not identified by an evaluation with the recommended behavioral
testing battery; instead, they were referred solely by physicians,
community audiologists, parents, and family friends. They were
assessed using the children auditory performance scale (48)
and screening identification for targeting educational risk (49).
These two subjective scales screen for children with pre-existing
auditory problems. Thus, the value of click ABR for auditory
processing assessment needs further validation.

Frequency-Following Response
Frequency-following Response (FFR) is an electrophysiological
method that reflects the fidelity and precision of brain encoded
sound (50). For many years, FFR has been confused with some
terms, such as speech evoked ABR (sABR) and complex sounds
evoked ABR (cABR). In order to unify the terms and avoid
unnecessary differences among researchers, scholars suggest
using a more accurate and appropriate term FFR (50). Therefore,
we will use FFR as a substitute for speech evoked ABR (sABR)
used by other authors.

FFR has increasingly gained research interest in recent
years. Contrary to the traditional click and tone burst, FFR
uses the complex syllable /da/ to evoke auditory brainstem
response, which is mainly used to analyze the neural activity
of the brainstem to speech stimulus (51). The FFR is highly
reproducible in young adults (52) and tends tomature in children
by age 5 (53). In 2017, Zakaria and Jalaei studied the test-
retest reliability of the FFR in normal schoolchildren (35). The
test was conducted on 17 healthy children (6 males and 11
females) aged 5–9 years, using 30 dB SL, 40ms speech sounds
/da/ for low-level stimulation. After 3 months, the FFR test was
repeated. No significant difference between the first and second
FFR test was found (P > 0.05). Correlation analysis of the two
recordings was performed; the peak latencies, peak amplitudes
(V, A, C, D, E, F, O), and composite initiation indexes (V/A
duration, V/A amplitude, and V/A slope) of the FFR were highly
correlated, particularly the peak latencies of the FFR. In 2012,
Hornickel et al. analyzed the speech /da/ evoked FFR in 26
normal children (aged 8–13 years) with an interval of 1 year,
collected in a quiet environment and with background noise
(sounds spoken by six individuals). Reaction times and spectral
coding were found to be highly reproducible over a period of
1 year (40).

The FFR was first used in studies of children with learning
disabilities and speech perception deficits (54). In 2014, Rocha-
Muniz et al. analyzed the sensitivity, specificity, and efficiency of
the FFR for the diagnosis of sAPD (39). The study included 25
children with sAPD and 25 normal children. Children with sAPD
had subnormal results on two or more of the four behavioral
test battery (the dichotic digits test, staggered spondaic words,
speech-in-noise testing and frequency pattern testing) (1). FFR
was induced by the syllable /da/, and the waveforms V, A, C, D,
E, F, and O were analyzed. The latencies of waves V, A, C, and
O were significantly prolonged in children with sAPD, relative
to those in normal children. Wave cutoffs were determined by
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TABLE 1 | Data of selected articles, including study, sample, electrophysiological, results, conclusion and quality score.

Study Sample Electrophysiological Results Conclusion Quality score

1. Ankmnal-Veeranna et al. (32) G1: sAPD (n = 108, 5.25–15.7

years, Mean age: 9.63 ± 2.70)

G2: TD (n = 22, 4.11–16.1

years, mean age:10.71 ± 3.40)

Click ABRs Children sAPD not

significant compared with

TD children. However,

individual children

sAPD showed clinically

significant delays

This study provides

supportive evidence for

the value of click-evoked

ABRs in comprehensive

auditory processing

assessment batteries

AHRQ: 7

2. Abdollahi et al. (33) Age: 8–12 years

N = 120

G1: suspected with CAPD (n =

60)

G2: normal children (n = 60)

Both groups were

sex-matched (40 males and 20

females) and age-matched

(9.05 ± 1.25 years)

BIC of MLR Latency of Pa and Na

(ms), Pa–Na amplitude (lv),

BIC latency (ms), and BIC

amplitude (lv) in children

with suspected CAPD

were significantly different

from those in normal

children

MLR and its BIC are

clinically available and

objective tests that can be

used for determining

children with suspected

CAPD

AHRQ: 6

3. Koravand et al. (34) Age: 9–12 years

N = 23

G1: with normal hearing acuity

and CAPD (n = 10)

G2: with normal hearing

without CAPD (n = 13)

CAEP and MMN No significant differences

in P1 latency and

amplitude between

groups. Children

with CAPD had significant

N2 latency

prolongation and

amplitude reduction. No

significant differences in

MMN conditions between

groups

The N2 response may be

a marker of neural

deficits in children with

CAPD

AHRQ: 6

4. Zakaria and Jalaei (35) Age:5–9 years (mean = 6.8 ±

3.3 years)

N = 17 (6 males, 11 females)

Healthy and no

hearing difficulties

FFR No significant differences

in all FFR results between

first and second sessions

(p > 0.05)

Highly stable FFR results

(peak latencies, peak

amplitudes, and

composite onset

measures) over the period

of 3 months

NOS: 7

5. Rocha-Muniz et al. (36) Age:7–15 years (mean = 10

years)

N = 27

Abnormal FFR and normal

hearing evaluation

FFR 85.15% probability of

obtaining deficits on

behavioral evaluation of

AP in a child with

abnormal FFR

FFR in clinical practice as

a tool to evaluate AP and

assess younger children

NOS: 6

6. Tomlin and Rance (37) G1: APD (n = 27, mean age:

7–12)

G2: control group (n = 27,

mean age:7–12)

Had normal hearing

CAEP (P1, N1, P1-N1) Significant differences in

increased P1 and N1

latencies and reduced

P1-N1 amplitude in

children diagnosed with

APD

Immaturity of the CANS

as an underlying cause of

APD in children

AHRQ: 6

7. Kumar and Singh (38) Age: 8–12 years

G1: Abnormal AP (n = 15, 8

males; 7 females, mean age:

9.87 ± 1.35)

G2: age-matched typically

developing children (n = 15, 8

males; 7 females, mean

age:9.33 ± 1.45)

Had normal hearing sensitivity

FFR (Biomark) Significant prolongations

of wave V and A latencies

(p = 0.001) and marginal

reductions in V/A slope (p

= 0.052) and amplitude of

responses to first formant

(p = 0.065)

FFR, through the use of

BioMARK protocol, could

clearly demarcate

between children at risk

for CAPD and typically

developing

Children, exhibiting great

potential as an

electrophysiological tool

for the assessment of

such individuals

AHRQ: 7

(Continued)
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TABLE 1 | Continued

Study Sample Electrophysiological Results Conclusion Quality score

8. Rocha-Muniz et al. (39) Age: 6–12 years

N = 75 (had normal hearing)

G1: TD (n = 25; 8.80 ± 2.08

years; 12 males and 13

females)

G2: APD (n = 25; 8.72 ± 1.67

years; 18 males and 7 females)

G3: SLI (n = 25; 7.84 ± 1.77

years; 18 males and 7 females)

FFR The A wave exhibited

superior balance for the

APD group (68%

specificity, 80% sensitivity,

and 74% accuracy)

FFR is a useful test to

identify auditory

processing disorders

AHRQ: 6

9. Hornickel et al. (40) Age:3–18 years (mean age:

10.5 years, 14 males 12

females)

N = 26 (typically-developing

children, had normal hearing

FFR Highly replicable response

timing and spectral

encoding over the course

of 1 year

The FFR may be a unique

tool for research and

clinical assessment of

auditory function,

particularly in auditory

communication skills

NOS: 6

10. Schochat et al. (41) Age: 8–14 years

N = 52

G1: APD children (n = 30)

G2: normal children (n = 22)

Had normal hearing

MLR Before auditory training,

the MLR result for the

CAPD group exhibited

lower C3-A1 and C3-A2

wave amplitudes than

those for the control

group. After training, the

MLR C3-A1 and C3-A2

wave amplitudes of the

CAPD group significantly

increased

These findings suggest

progress in the use of

electrophysiological

measurements for the

diagnosis and treatment

of CAPD

AHRQ: 7

11. Roggia and Colares (42) Age: 9–14 years

N = 16

G1: APD children (n = 8)

G2: normal children (n = 8)

Had normal hearing

MMN No significant differences

in latency and amplitude

values among children

with APD

The CAPD individuals

evaluated showed no

changes in MMNf or

MMNd

MMN could not be

considered as a measure

of the presence or

absence of hearing

disorders in CAPD

subjects

AHRQ: 6

12. Liasis et al. (43) G1: sAPD (n = 9, 8–12 years,

mean 9.5 years, 4 males, 5

females)

G2: normal control group (n =

9, 8–12 years, mean 10 years,

5 males, 4 females)

Had normal hearing

CAEP and MMN Significantly increased N1

peak latency and a larger

peak-to-peak amplitude of

the P85−120-N1 and

P2-N2 and smaller

peak-to-peak amplitude of

the N1-P2 in the sAPD

children

No significant difference in

MMN between the control

subjects and sAPD

Neurophysiological

measures may identify a

group of children with

specific problems

suggestive of APD, in the

absence of an obvious

structural or functional

lesion, who deserve

further study to assess

whether these findings

reflect delayed CNS

myelination

AHRQ: 6

13. Delb et al. (44) Age: 6–12 years

N = 60

G1: sAPD children (n = 17,

mean: 8.8 ± 1.6)

G2: normal children (n = 25,

mean: 8.8 ± 1.4)

Had normal hearing

BIC of ABR 76% sensitivity and

specificity could be

achieved

BIC measurements might

be of some diagnostic

value in CAPD patients

AHRQ: 5

(Continued)
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TABLE 1 | Continued

Study Sample Electrophysiological Results Conclusion Quality score

14. Jirsa and Clontz (45) Age: 9.2–11.6 years

N = 36

G1: CAPD children (n = 18)

G2: normal children (n = 18)

CAEP and P 300 Significant increases in

latency for the N1, P2,

and P3 components in the

processing disordered

group

The interpeak latency

interval P2-P3 was

significantly longer in the

clinical group

The long-latency

potentials may be useful in

the assessment of

children with processing

disorders

AHRQ: 7

G, group; TD, typically developing; AP, auditory processing; APD, auditory processing disorder; sAPD, suspected auditory processing disorder; ABR, auditory brainstem responses;

BIC, binaural interaction component; MLR, middle-latency response; CAEP, cortical auditory evoked potential; MMN, mismatch negativity; FFR, frequency-following response; AHRQ,

Agency for Healthcare Research and Quality; NOS, Newcastle-Ottawa Scale.

FIGURE 1 | Flowchart of literature screening.

Frontiers in Neurology | www.frontiersin.org 6 August 2021 | Volume 12 | Article 692840

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Liu et al. Electrophysiological Screening of Auditory Processing in Children

analyzing receiver operating characteristic (ROC) curves. The A-
wave sensitivity was 80%, and specificity was 68%. The accuracy
of the identification of sAPD was 74%.

In 2016, Rocha-Muniz et al. once again explored the clinical
utility of FFR (36), A total of 27 children (aged 7–15 years) with
an abnormal FFR were evaluated based on 5 tests of the auditory
processing behavior, including sound localization, sequential
memory for non-verbal sounds, sequential memory for verbal
sounds, speech perception in noise or identification of figures
with noise, staggered spondaic word test, frequency and duration
pattern tests, and gaps in noise. The results showed that at least
one behavioral test abnormality was present in 23 of 27 children
with abnormal FFR. This study determined an 85.15% probability
of auditory processing deficits in children with abnormal FFR.
This calculation is similar to previous findings (39). However, one
limitation of this study is the small sample size.

The FFR has been used to explore brainstem encoding of
speech signals in children with dyslexia (38, 55), language
impairment (56, 57), and learning problems (58–60).
However, studies on children with isolated auditory processing
abnormalities have rarely been reported. The study of FFR in
children with auditory processing abnormalities requires the
exclusion of children with higher-order functional deficits,
considering that auditory processing abnormalities often
coexist with neurodevelopmental disorders, such as language
impairment, ADHD, and learning disabilities. In 2015, Kumar
et al. first explored BioMark (commercialized FFR) in children
with sAPD in whom dyslexia had been excluded (38). The
results showed that BioMark waveform morphology was poorer
in the presence of children at risk for APD, compared with
normal children. Moreover, intergroup comparison indicated
that V and A wave latencies were significantly longer in the
presence of children at risk for APD (P = 0.001). These results
suggest the validity of the FFR as an electrophysiological tool
for the evaluation of auditory processing. However, Kumar used
only the auditory processing screening scale as a tool to identify
children with sAPD. Although the scale exhibited high sensitivity
and specificity, it also merely stated that these children might be
at risk for APD.

BIC of Auditory Brainstem Responses
The binaural interaction component (BIC) represents the
difference between the sum of the monaural evoked potentials
and the binaural evoked potentials. Binaural interaction (BI)
supports sound localization and auditory behavior under
noise and competing acoustic signals at the brainstem level.
Electrophysiological testing with BIC is used to evaluate central
auditory system abnormalities (61). Gopal and Pierel showed
a significant reduction in the BIC amplitude of auditory
brainstem responses in children with language disorder and
at risk for APD (62). Delb et al. reported on the sensitivity
and specificity of the BIC of the auditory brainstem response
as a discriminator between children with sAPD and normal
children (44). The BIC test was performed on 60 children,
divided into the sAPD group (n = 17, 8.8 ± 1.6 years)
and the normal group (n = 25, 8.8 ± 1.4 years) by
three behavioral tests: dichotic testing, speech discrimination

in noise, and binaural fusion testing. The sensitivity and
specificity of the ß component of the BIC as an index
for discriminating between children with sAPD and normal
children were 76% when subjects underwent 4,000 alternating
stimulations of both ears or one ear at 65 dB HL and 60ms
interstimulus intervals.

Middle-Latency Response
The middle-latency component mainly represents potentials
from the thalamus and the primary auditory cortex (63). In
2010, Schochat et al. examined the characteristics of MLRs in
30 children with sAPD, aged 8–14 years (41). At least one ear
of the 30 sAPD children’s pediatric speech intelligibility test
(64), speech-in-noise test (65), staggered spondaic word test
(66), the dichotic digit test (67), and the dichotic non-verbal
test (65) was lower than the average in two tests. Compared
with 22 normal children aged 8–14 years, those with sAPD
showed significantly lower Na, PA, and Pb amplitudes at C3-
A1 and C3-A2. In the children with sAPD subjected to auditory
training for 8 weeks, the amplitudes increased to values similar
to those in normal children. Therefore, the MLR is important
in identifying children with sAPD and evaluating the efficacy
of interventions.

In 2019, Abdollahi et al. identified 60 children with sAPD,
aged 8–12 years, in accordance with multiple auditory processing
assessment test batteries. These 60 children with sAPD were
compared with 60 normal children with respect to the middle-
latency response (MLR) and its BIC (33). Significant differences
in PA andNa latency (ms), PA and Na amplitude (lv), BIC latency
(ms), and BIC amplitude (lv) were determined between children
with sAPD and normal children (P ≤ 0.001). All waveform
latencies were greater and all amplitudes were lower in children
with sAPD than in normal children (P ≤ 0.001). Therefore, the
BIC of MLR and MLR are valuable for identifying potential
children with sAPD.

Cortical Auditory Evoked Potential
As an auditory long-latency response, cortical auditory evoked
potential (CAEP) has been used to examine the function of
the central auditory system in children with language disorder
(68), learning disability (55), and hearing loss (69). The P1-N1
complex components of the CAEP are often used to track the
maturation of the central auditory system in hearing-impaired
children (70, 71), Tomlin contrasted the CAEP between 27
children with sAPD, aged 7–12 years as determined using AAA-
recommended behavioral test battery and 22 matched normal
children (37). Presented to the left and right ears as tone burst
stimuli at 80 dB HL, 500Hz, waves P1 and N1 were detected
in all children. Compared with normal children, children with
sAPD showed increases in P1 and N1 latencies by about 10ms
(P < 0.05) and a decrease in P1-N1 amplitude by about 10 µV
(P = 0.03), whereas no significant difference in the subsequent
P2 waves was found between the two groups. P1-N1 complex
components may be valid markers of auditory cortex maturity
in children with sAPD. In 2003, Liasis et al. compared the
ERPs in 9 children with sAPD and 9 normal children in the
SCAN/SCAN-A test (43). N1 latency was significantly longer in
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sAPD children than in normal children, as determined using
speech /ba/ as the standard stimulus (P = 0.04). On the basis
of the wave morphology, the peak-to-peak amplitudes of P85-
120-N1 and P2-N2 were larger (P = 0.007), whereas the peak-
to-peak amplitudes of N1-P2 were smaller in the sAPD children
(P = 0.004).

The central auditory system processes verbal and non-verbal
stimuli differently (72). Consequently, different response patterns
can be generated using different types of stimuli. In 2017,
Koravand et al. used the “oddball” paradigm for verbal and
non-verbal stimuli to record CAEPs (34). The study population
included 13 children with sAPD and 10 normal children.
The results showed that P1 and N2 waves were observable
in all children, and the N2 latency of speech /da/ evoked
was longer than that of non-verbal /da/ evoked (P < 0.016),
and was significantly longer in children with sAPD compared
with normal children (P < 0.001). During 2 kHz pure tone
stimulation, the N2 amplitude was significantly reduced in
children with sAPD (P < 0.01). However, P1 latency and
amplitude were not statistically different between the two
groups. The abnormal N2 latency and amplitude may reflect
the immaturity of the cerebral cortex in the sAPD children. In
addition, the N2 latency evoked by simple stimuli varies from
that evoked by complex stimuli. This difference indicates that the
central auditory system needs additional time and effort to deal
with complex stimuli. A small number of children with hearing
processing disorders were included in the study, considering that
those with comorbidities, such as children with language and
reading difficulties, were excluded.

Mismatch Negativity
Mismatch negativity (MMN) is an auditory evoked potential
with the long-latency response that reflects the early sensory
stage of sound processing, the underlying auditory perceptual
mechanism (73). It is the difference obtained when auditory
event-related potentials obtained with a standard stimulus are
subtracted from those obtained with a target stimulus (74). In
2003, Liasis et al. investigated cortical auditory responses in 9
schoolchildren with sAPD (children suspected with APD, based
on the clinical presentation and SCAN/SCAN A test) and 9
normal children (43). Speech stimuli consisted of 76% standard
stimuli (/ba/) and 24% target stimuli (/da/). No significant
differences in MMN latency and peak amplitude were found
between children with sAPD and normal children, which was
similar to that reported by Roggia and Colares (42). Moreover, no
significant differences in the latency or amplitude of MMN were
determined between the 8 children with sAPD (as determined
by an audiological behavioral assessment in an audiology clinic)
and the 8 normal children in whom MMN was evoked with
stimuli of different frequencies and durations (standard stimulus,
750Hz, 100ms; target stimulus, 1,000Hz, 50ms). These results
were consistent with the study by Koravand et al. (34), which
used non-verbal and verbal stimuli to record CAEPs and involved
23 children, aged 9–12 years. The participants consisted of 10
children with sAPD and 13 normal children. Ten children with
sAPD scored below the mean in at least one ear in one test in the
behavioral testing battery that included the French adaptation of

the Staggered Spondaic Word Test (75), the French adaptation
of the Synthetic Sentence Identification-Ipsilateral Competing
Message Test (76), the Pitch Pattern Test (77), the Duration
Pattern Test (77), and the Random Gap Detection Test (78),
with 85% probability for standard stimuli (speech /ba/, non-
verbal/ba/, and 1 kHz pure tones) and 15% for target stimuli
(speech/da/, non-verbal/da/, and 2 kHz pure tones). The results
showed no significant difference in MMN between the two
groups. Therefore, the current study cannot yet demonstrate that
MMN is a reliable electrophysiological tool for screening children
with auditory processing defects.

P300
P300 is an important endogenous component in the event-
related potential (ERP) that responds to high-level cognitive
functions in the brain. It is widely studied and has broad clinical
applications. Abnormalities in P300 were found in children
with cognitive impairment and language disorder, in contrast
to normal children (79, 80). In 1990, Jirsa and Clontz applied
ERP in the evaluation of children with abnormalities in central
auditory processing (45). The study included 8 normal children
and 8 sAPD children who scored below the normal response
range in at least one ear during behavioral testing (the selective
auditory attention competing subtest, pitch pattern sequence
test for children-verbal response, pitch pattern sequence test for
children-hummed response, and competing sentence test). The
16 aforementioned children showed normal peripheral hearing
and normal ABR trajectories. The test stimulus sound at 65
dB HL was presented to both ears in a random sequence,
including 20% of the 2 kHz target stimulus and 80% of the 1 kHz
standard stimulus. In the test, all children performed the task of
distinguishing and counting sounds and were able to produce
the P300 waveform. The results indicated that the latencies
of N1, P2, and P3 components were significantly increased in
the sAPD group. In addition, the peak-to-peak latency P2-P3
in the sAPD children was significantly prolonged, whereas the
amplitude of P3 was significantly decreased. These results suggest
that ERP, particularly P3, can be used to evaluate children with
auditory processing impairment; however, P300 is affected by the
attention and cognitive level of children and cannot be elicited in
young children.

DISCUSSION

Auditory processing deficits originate from abnormalities in
the development of the central auditory system, with increased
emphasis on auditory deficits that are not the result of higher-
level cognitive, language, or other related disorders. Auditory
processing deficits also fail to cause all learning, language, and
social problems (81). The central auditory nervous system is
a complex structure with a parallel afferent and a hierarchical
afferent (82). The central nervous system has a major function
and is responsible for memory, attention, language, and other
functions. The auditory system shares neuroanatomical bases
and processing with other systems; thus, children with auditory
processing deficits often have language (10, 83, 84), attention
(85–87), and memory problems (14, 85, 88, 89). The plasticity
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of the central auditory nervous system renders the auditory
training effective in improving auditory processing skills in
children with APD (17, 90). Therefore, the early identification
and intervention of children with auditory processing defects are
important. Auditory processing assessment plays an important
role in determining the severity of impaired auditory processing
function in children with APD and guiding the construction
of individualized intervention protocols (2). Studies have
shown that the correlation between the results of the auditory
processing behavior test and the electrophysiological test is
not considerably high (91). Moreover, the behavioral tests
present larger individual differences because auditory behavioral
tests require the participation of subjective factors, such as
children’s language, attention, cognition, and so on. Thus, when
children have auditory processing deficits that coexist with other
deficits, subjective behavioral tests may be affected by non-
auditory factors, influencing the accuracy of the test results.
Meanwhile, screening for auditory processing with more than
one behavioral test has been associated with enhanced sensitivity
but reduced specificity because of the heterogeneity of auditory
processing (2). Behavioral tests are more demanding for children,
and their test results are more stable only for those aged 7
years and older (2). For younger children, potential auditory
processing problems are solved by electrophysiological testing
as an objective and reliable means of auditory processing
assessment (2), rather than waiting until they reach a testable
age. Simultaneously, objective electrophysiological tests are
gaining popularity among investigators and clinicians, andASHA
recommends the addition of electrophysiological tests to the
evaluation of auditory processing (1). Parthasarathy clarified
that auditory electrophysiological measures be included in each
central auditory testing battery because they provide objective
evidence of central auditory system dysfunction (92). However,
the current clinical use of electrophysiological testing remains
relatively limited. In the current study, the electrophysiological
characteristics of children with sAPD were analyzed using a
systematic review of the relevant literature to provide supportive
evidence for the selection of electrophysiological assessment tools
and evaluation of the efficacy of interventions in children with
auditory processing deficits.

The 14 studies that were ultimately considered in this
review included 7 electrophysiological tools for auditory
processing assessment, which involved the short-latency
response, MLR, and the long-latency response of auditory
evoked potentials. These responses reflect the auditory functions
of the brainstem, thalamus, and auditory cortex of the central
auditory system, respectively.

Short-Latency Response
Auditory brainstem response (ABR) is the most commonly
used testing method in short-latency auditory evoked potentials.
This systematic review includes seven studies on short-latency
auditory evoked potentials, including one study on ABR
evoked by simple stimuli, one study on Binaural Interaction
Component of ABR, and five studies on FFR evoked by complex
speech sounds.

Click ABR is an important index clinically used to detect
auditory function and provides information about the functional
integrity of brainstem auditory pathways (93, 94). Abnormalities
in the latencies and amplitudes of the ABR imply the impaired
integrity of the auditory pathways (95, 96). ABR matures
earlier (32) and is not affected by the state of consciousness
of the child; as such, ABR is clinically more useful for
monitoring the integrity of the auditory nerve in infants
and young children. Although click ABR may be a useful
electrophysiological tool in detecting auditory nerve integrity,
its use for the identification of children with APD has not
been clearly demonstrated. In the study by Ankmnal-Veeranna
et al., click ABR latencies were not significantly prolonged in
children with sAPD relative to those in normal children (32).
The limitation of this study is that these children with sAPD
had no standardized assessment of auditory processing only
because of auditory problem referral and through the auditory
processing questionnaire evaluation of children with sAPD. The
more prominent performance characteristics of these sAPD
children are probably not caused by the central auditory nervous
system injury but overlap other defects. Therefore, more studies
are needed to prove whether click ABR can be used to identify
auditory processing defects.

FFR has drawn increasing interest among researchers (97,
98). The advantage of FFR is that compared with ABR evoked
by simple stimuli, the syllable /da/ is more compliant with
the acoustic characteristics of speech sounds and contains
more verbal information (99). The FFR includes the transient
components (V, A, C, and O) and periodic components
(D, E, and F) (97, 100, 101) and primarily originates from
neurons in brainstem nuclei (101). FFR exhibits good test–retest
reliability and stability. Zakaria and Hornickel explored the test–
retest reliability of the FFR at intervals of 3 months and 1
year, respectively. All showed that the FFR improved stability
and can provide distinct information for auditory processing
studies and clinical assessment in children (35, 40). Rocha-
Muniz conducted studies on the clinical use of the FFR in
2014 and 2016 and confirmed the validity of the FFR as an
assessment tool for children with auditory processing deficits
(36, 39). Future studies with larger samples are justified to
verify the reliability of the results. FFR is widely used in
dyslexic children (57, 102, 103). Kumar first explored the value
of the FFR as a screening tool for auditory processing when
comorbidities were excluded (38). In addition, FFR can be
used as a good index to evaluate the effectiveness of auditory
training (104).

BICs, which reflect binaural interactions (105–107),
have effectively responded to binaural processing functions
(108, 109). Binaural processing is one of the important
auditory processing behaviors and is associated with sound
localization and lateralization and speech recognition in
noise. Binaural processing impairment is one of the main
manifestations of auditory processing defects. Therefore,
the evaluation of binaural interaction is important for
screening children at high risk for APD (110, 111), particularly
when difficulty in sound localization is observed or when
hearing in the presence of noise presents a challenge.
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The current study of BIC for ABR is extensive and
confirms its reliability for assessing binaural processing
(112, 113).

Middle-Latency Response
Only 2 studies on middle-latency auditory evoked potentials in
children with sAPD were included in this systematic review,
indicating that tests of middle-latency auditory evoked potentials
are less frequently used in children with APD.

In the consensus meeting on the diagnosis of APDs in school-
age children, the inclusion of ABR and MLR in a minimal APD
test battery was proposed (12). MLR is a sensitive indicator
of CANS diseases and an important auditory evoked response
for identifying auditory processing defects (12, 41, 114). MLR
provides information about the integrity of the central auditory
system via the primary cortex. MLR is abnormal in children
with learning disabilities and language impairment (114, 115).
Schochat found that MLR amplitudes were smaller in children
with sAPD than in normal children, whereas MLR amplitudes
after the intervention increased to levels not significantly
different from those of normal children (41). Abdollahi indicated
that the BIC of MLR and MLR can be used to identify children
with sAPD (33). Compared with that of ABR, the sensitive index
for the MLR assessment of central auditory system development
is amplitude rather than latency (116); meanwhile, the BIC of
MLR is larger and easier to detect than the BIC of ABR. Similar
to the ABR, the MLR is not affected by child attention (63). A
middle-latency evoked potential has clinical application value
in identifying children with sAPD and evaluating intervention
effects. However, MLR and BIC of MLR in children with
abnormal auditory processing are rarely reported. More studies
on the application of middle-latency auditory evoked potentials
in children with APD need to be conducted in the future.

Late-Latency Responses
ERP belongs to late-latency auditory evoked potential, including
CAEP, MMN, and P300. ERP refers to the change in brain
potential associated with a certain cognitive activity, which
reflects the perception and processing ability of the CANS to
auditory information (117). This systematic review includes 5
studies on the application of long-latency electrophysiological
tests in children with sAPD, with each study potentially involving
more than 1 electrophysiological test −4 studies on CAEP, 3
studies on MMN, and 1 study on P300.

The wave latency and amplitude of the CAEP represent
the speed and amplitude of central auditory processing (118).
Studies showing prolonged latencies and reduced amplitudes
indicate a reduced number of contributing neurons, decreased
synchronous responses, altered synaptic density, intracortical
myelination, or altered structure/orientation of the auditory
pathway (119). The CAEP early components P1 and N1 can be
used as markers of auditory cortex maturity in children with
auditory processing deficits (37). Unlike CAEP late components,
P1 andN1 are passive and do not require the involvement of child
attention (120). Liasis noted that the latency and morphology of
the N1 wave differ in children with auditory processing deficits
and normal children (43). The N1 wave is associated with the

sudden appearance or occasional alteration in the frequency of
stimulus sounds (121) and may reflect the variable sensitivity of
the auditory cortex and cortical activity inside (122). The first
component of the N1 wave is the onset of analysis of sensory
information and may reflect the initiation of attention and
memory formation (122). The P2 wave and the late component of
the CAEP are not generated by the auditory cortex but by several
sensory modalities (123). Other studies have shown that the
source of the N2 wave may be related to the inhibitory response
(124). Koravand et al. proposed that the N2 wave can be used as
an effective discriminator of sAPD (34). Therefore, children with
sAPD can potentially have an inhibitory processing defect.

Passively evoked MMN can provide objective measures
for auditory discrimination and the automatic processing of
perception (125). Contrary to P300, theMMNwas not be affected
by subject attention. MMN can be used to assess the central
auditory system function in children with dyslexia and autism
spectrum disorder (126, 127); however, the value of MMN as a
screen in children with sAPD has not been demonstrated.

The endogenous component P300, which is produced in
areas other than subcortical structures and temporal lobes,
is involved in the attention to and recognition of stimulus
sound differences. P300 may also be related to neural activities,
such as the processing of sequence information, short-term
memory, or decision-making (128). P300 can be used as a
meaningful indicator to identify children at risk for APD. As
reported by Jirsa and Clontz, children with sAPD showed
significantly longer P300 latencies and significantly lower
amplitudes compared with normal children (45). In addition, the
P300 test can sensitively reflect changes in auditory processing
ability (129), providing a reliable basis for the evaluation of
auditory processing function and intervention efficacy. P300
maturation is influenced by the developmental level of the
child, and its latency decreases with age; meanwhile, elicitation
of the P300 wave requires active child participation, such as
performing tasks to focus attention, and results are influenced
by child attention, cognition, and psychological factors. Thus,
abnormal P300 can occur in cases of sAPD but may also be
observed in children with cognitive, attention, and other higher-
order disorders. Therefore, the interpretation of P300 results in
children with auditory processing deficits needsmultidisciplinary
collaboration to identify children with mental development
disorders, such as language impairment, ADHD, and ASD. More
electrophysiological studies of long-latency responses in children
with auditory processing abnormalities are also needed.

A systematic review of the use of electrophysiological testing
at different latencies in children with APD or sAPD showed
that electrophysiological testing effectively identified children
with auditory processing deficits, aiding the determination of
the site and the origin of abnormalities of the central auditory
nervous system. The short-latency auditory evoked potentials
have been more extensively studied in children with APD,
particularly the FFR. The central auditory nervous system
function at different levels, from the brainstem to the cerebral
auditory cortex, is reflected separately by short- to late-latency
electrophysiological responses exhibiting possible abnormalities
in the electrophysiological test results at different latencies in
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children with auditory processing deficits. These results may
validate the role of both bottom-up and top-down factors
in auditory information processing. The transfer of auditory
information is not simply a step-by-step, hierarchically relayed
structure of the auditory pathway (20). According to the ease
of language underlying (ELU) model (130), when auditory
signals are poor or listening under noise, increased auditory
cognitive effort is necessary, with more than usual attention
and memory involved in the comprehension of language.
Therefore, for children with auditory processing abnormalities,
electrophysiological tests at different latencies may be required
clinically to assess the degree of impairment of the auditory
processing function.

However, although the ASHA recommended diagnostic
criteria for APD [the results were two standard deviations
below the mean in at least one ear on two or more auditory
behavioral tests (1)] have been recognized by AAA (2) and many
experienced audiologists (20, 131, 132), no unified gold standard
for the diagnosis of APD has been established. Therefore, the
criteria used to identify children with APD or children with
sAPD also varied among the 14 included studies. Two studies
(33, 38) used only the children auditory performance scale (48)
and screening identification for targeting educational risk (49)
and the screening checklist for auditory processing (SCAP) (133)
to assess auditory processing abnormalities. Only 3 studies (34,
39, 41) followed the diagnostic criteria recommended by ASHA
to identify children with APD. Two studies (44, 45) used less
than a certain percentage to define children with APD. Two
studies (36, 37) used the criterion of a deficit in at least one
of the auditory processing behavioral tests to evaluate children
with APD. Additional studies (33, 42, 43) have employed other
modalities to identify children with APD. Although children
with poor performance in auditory behavioral tests in these
studies usually have poor electrophysiological test results, the
electrophysiological characteristics of APD children may vary
based on different diagnostic criteria. The conclusions drawn
for children with sAPD do not necessarily apply to children
diagnosed with APD (134); therefore, the conclusions obtained in
this study may be more biased toward children with sAPD, which
is also one of the limitations of this study. More studies need to be
conducted for validation (135). Before then, controversial issues
regarding the diagnostic criteria of APD is a critical first step to
resolve. The BSA practice guidelines state that the establishment
of a gold standard for the diagnosis and management of APD
is highly recommended (136). Although many studies have
confirmed that behavioral tests and electrophysiological tests can
effectively identify damage to the central auditory nervous system
in patients with APD, new, more precise, and effective tests for
auditory processing still need to be developed (2).

Since APD is often comorbid with other disorders of mental
development, such as language disorders, learning disabilities,
and ADHD, among others. Behavioral tests used to identify APD
often require the involvement of the child’s language, attention,
and cognition. Thus, it is of particular interest to consider when
the results of auditory behavioral tests are poor in children with
APD comorbid with other developmental disorders. Whether
it is the problem of auditory processing itself or the result

of other mental developmental disorders remains inconclusive.
This systematic review was aimed at assessing the discriminative
value of different methods of electroacoustic testing in children
with APD or sAPD. With this objective considered, this
review excludes studies in which the subjects were comorbid
with other mental developmental disorders. Therefore, some
equally important reports may not have been included in the
study, such as (62, 137–139). However, compared with other
diseases, APD clinically coexists with other psychodevelopmental
disorders (10, 12) in more children. Thus, more studies on
the electrophysiological characteristics of children with APD
combined with different psychodevelopmental disorders need to
be performed in the future. Moreover, the diagnosis of children
with APD is a complex process (135, 140) and requires the
multidisciplinary involvement of audiologists during differential
diagnosis, in conjunction with psychologists, speech pathologists,
developmental behaviorists, and educators.

CONCLUSION

A systematic review of the 7 electrophysiological characteristics
of children with sAPD suggests that auditory electrophysiological
tests are valuable in identifying children with abnormal auditory
processing. FFR has been widely studied, and its clinical
application value has been confirmed. The clinical application
value of middle- and late-latency physiological potentials in
screening children with abnormal auditory processing needs
more research for verification. Owing to the complexity of the
central auditory system and the heterogeneity and comorbidity
of auditory processing defects, the identification of auditory
processing defects requires behavioral tests combined with
electrophysiological tests of different latency responses. It
also requires multidisciplinary collaboration in the differential
diagnosis and intervention of auditory processing defects. In
addition, the auditory electrophysiological characteristics of
children with different mental developmental disorders need to
be further examined. Standardized electrophysiological testing
data of children in different regions and ages have to be
established to provide a basis for the evaluation of the test results.

LIMITATIONS

No consensus has been reached regarding the diagnostic criteria
for APD. Different auditory behavioral tests and measures were
used to identify children with sAPD in the 14 included studies,
although children with poorer performance in the behavioral
tests generally showed poorer electrophysiological test results.
However, the electrophysiological characteristics of children
with sAPD identified in accordance with different diagnostic
criteria may be more variable. Therefore, the electrophysiological
test results of children with sAPD may not be applicable
to all children with APD. Moreover, the study excluded the
study of children with APD who are comorbid with other
mental development disorders, possibly some equally important
reports were excluded, and analyses of the discriminative value
of different electrophysiological tests for auditory processing
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characteristics in children with different mental developmental
disorders are needed in the future. Because the patterns presented
by the results of the included studies were different, and not
all studies could get a quantitative result, meta-analysis of the
included studies could not be performed, so more high-quality
clinical trial studies are needed to provide strong evidence.
For electrophysiological testing, the stability of the testing tool,
testing environment, and child status may affect the test results,
and electrophysiological testing has the disadvantage of higher
examination cost, which may limit the clinical applications of
electrophysiological testing. Therefore, new auditory processing
evaluation tools with enhanced sensitivity and specificity, which
are suitable for clinical application and promotion, still need to
be developed.
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