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Abstract
A binding hot spot is a small area at a protein-protein interface that can make significant

contribution to binding free energy. This work investigates the substantial contribution made

by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic

contact is a pair of atomic contacts that are close to each other with no more than three

covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an

important part in the accurate prediction of binding hot spot residues. One is the co-occur-

rence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen

bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interac-

tion considerably. The other kind of co-occurring atomic contact is the co-occurrence of a

hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π

ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We

also found that the B-factor measurements of several specific groups of amino acids are

useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the

co-occurring contacts as features, we developed a new prediction method and thoroughly

assessed its performance via cross-validation and independent dataset test. The results

show that our method achieves higher prediction performance than well-known methods

such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in partic-

ular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpret-

able characterization of protein binding hot spots.

Introduction
Residues at a protein interface always exhibit an uneven free energy distribution for the interac-
tion [1]. Mutations on the majority interfacial residues have little effect on the binding free
energy, but a mutation of the other interfacial residues (a small fraction of the interface) can
significantly decrease the binding strength. This small fraction of interfacial residues is called a
binding hot spot [1, 2]. Binding hot spots are thus of critical importance for our understanding
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of how proteins bind and function. Using wet-lab experiments, binding hot spots can be deter-
mined by site-directed mutagenesis such as alanine scanning mutagenesis [3]. However, exper-
imental methods are often expensive, time-consuming and labour-intensive, and cannot be
applied to characterize potential binding hot spots in a large number of proteins in a high-
throughput and cost-effective manner.

As an alternative approach, a variety of in silicomethods have been proposed to characterize
and predict binding hot spots. These methods can be categorized into three groups: molecular
simulation-based, empirical knowledge-based or machine learning-based methods [4]. The
molecular simulation-based methods mutate candidate residues into alanines in silico and take
advantage of molecular dynamics to examine the effect of mutations on the binding free energy
change (ΔΔG) [5]. Molecular simulation-based methods can achieve relatively high prediction
accuracy, but they are too slow to be applied for high-throughput screening. Empirical knowl-
edge-based approaches utilize experts’ prior knowledge—important factors that contribute to pro-
tein binding, and calibrate the weights of these factors such as hydrogen bonds, the van derWaals
terms and Coulomb electrostatics, in a linear function for estimating ΔΔG after residue mutations.
Popular approaches in this group include FoldX [6, 7], Robetta [8, 9] and CC/PBSA [10].

More recently, machine learning-based methods have been proposed to study the effect of
mutations [10–13]. These methods usually employ a set of features, ranging from hundreds to
thousands, related to a mutation. These features, such as conservation, accessible surface area
(ASA), residue propensity, residue pairwise potentials, van der Waals potentials, solvation
energy, hydrogen bonds and Coulomb electrostatics, are extracted from different levels of het-
erogeneous protein data including sequence, structure and molecular interaction. Based on
such features, machine learning algorithms, such as support vector machine (SVM), decision
tree [14, 15], random forest [16], probabilistic model [4, 17] or Bayesian Networks [18], are
used to learn the relationship between the features and ΔΔG scores of the hot spot residues.
Although some of these machine learning-based methods used the features derived from pro-
tein sequences only [19, 20] and others used the information from protein tertiary structures
[21], most of them used different combinations of features from quaternary structures [21–23].
All the existing methods are useful; however, improvement in prediction performance is still
desirable. Meanwhile, more interpretable and novel knowledge of binding hot spots needs to
be investigated.

In this work, we propose a new computational method to improve the performance on the
prediction of ΔΔG and binding hot spots (upon alanine mutations). Our method explores the
distinction capability of four types of features. These include: (i) the mutated atomic contacts
and (ii) cross-interface atomic contacts in the neighborhood of a mutation residue. The third
type of features relate to the co-occurrence of different types of atomic contacts in the neigh-
borhood of a mutation residue. To the best of our knowledge, the co-occurrence of atomic con-
tacts has seldom been investigated previously, despite its critical role in the contact cooperation
of different atoms. For example, the co-occurrence of atomic contacts could capture the contri-
bution of long-range interactions to protein interfaces. A previous work has shown that the
non-interacting surface (a residue-based representation of long-range interactions), especially
polar and charged residues, plays an important role in binding affinity [24]. This literature
work strengthens our idea of co-occurring atomic contacts. The fourth feature type is related to
B factor, which is a useful measurement reflecting the atomic vibrational motion. Interfacial
residues in protein binding complexes have been found to have lower B-factors compared to
the rest of the tertiary structural surfaces [25]. In this work, all atomic contacts are integrated
with normalized B factors.

Our method uses a machine learning algorithm, random forest (RF) [26], to match the rela-
tionship between these features and ΔΔG scores. The RF model is evaluated using leave-complex-
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out cross-validation on the ASEdb database [27]. It is also tested on the independent datasets BID
[28] and SKEMPI [11], and on complexes which are either incorrectly labeled or not included in
the dataset ASEdb or BID. This RF model can derive important features that contribute signifi-
cantly to the accurate prediction of protein binding hot spots. These interpretable features can
improve our understanding of binding hot spots and protein binding. The source code of our
method can be downloaded from https://sourceforge.net/projects/pprf/files/.

We note that both the method proposed in this work and the one in our previous work [29]
used β atomic contacts for the prediction of binding hot spots. Although sharing some similar
ideas, the new method has five key points of differences/improvement from the previous
method. (i) This work investigates co-occurring atomic contacts, while the previous work [29]
did not; (ii) This work conducts thorough analysis of important features, while the previous
work [29] did not; (iii) In [29], water exclusion hypothesis was integrated, while in this work, B
factor is used instead; (iv) The method in [29] is developed based on a Ridge regression idea,
while the classification method here is trained using RF. RF is used because it is able to produce
a ranked list of important features. More importantly, the RF method can outperform the
Ridge regression method when trained on the same feature space in this work—Details are
reported in Tables 3 and 4. (v) The method in [29] is useful for hot spot prediction in protein-
protein binding interfaces and might not perform well for prediction of protein-peptide bind-
ing (possibly due to the water exclusion effect); however, the method presented in this work is
powerful even when tested on a dataset containing both protein-protein binding and protein-
peptide binding. The study of protein-peptide binding is also important as it is involved in a
wide range of biological processes and the small interfaces are attractive for therapeutic targets.

Materials and Methods

Dataset
The training dataset. The training dataset in this work contains 20 protein complexes,

most of which are collected from the ASEdb database [27], denoted herein as the ASEdb data-
set. Interfacial mutations for these complexes are defined by FoldX for the sake of making a fair
performance comparison with FoldX and other existing works. All interfacial mutations are
alanine mutations, and each of them is associated with a ΔΔG. We note that the mutation of
Gly to Ala is not considered because this kind of mutations might cause significant reconfigu-
ration. The structures of protein complexes are also required to have available B factors in the
Protein DataBank (PDB). Furthermore, an interacting protein pair in a complex must have no
more than 40% sequence identity compared to interacting protein pairs in other complexes;
otherwise, two protein complexes must have different mutations in similar proteins. The
sequence identity in two given protein complexes (e.g., interacting pair A and B, and interact-
ing pair C and D) is calculated using BLAST with the default setting for A and C, A and D, B
and C, and B and D, denoted by S(A, C), S(A, D), S(B, C) and S(B, D) respectively. Two com-
plexes are redundant if S(A, C)� 40% and S(B, D)� 40%, or S(A, D)� 40% and S(B, C)�
40%. Applying all the requirements above results in our ASEdb dataset with 366 alanine muta-
tions. Of these, 79 are binding hot spot residues with ΔΔG� 2 kcal/mol.

The independent test datasets. The first independent test dataset has 19 protein com-
plexes which are mainly retrieved from the BID database [28]. It is denoted as the BID dataset
hereafter. A number of label errors in this dataset are corrected according to the original publi-
cations. Similar to the ASEdb dataset, interfacial mutations in the BID dataset are defined
strictly according to the FoldX method. The mutations of Gly to Ala are not considered in this
work, and the structures of protein complexes are required to have available B factors in PDB.
All the 118 mutations in this BID dataset are annotated as ‘Strong’, ‘Intermediate’, ‘Weak’ or
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‘Insignificant’. The 36 alanine mutations labeled as ‘Strong’ are considered as binding hot spot
residues in this work.

The second independent test dataset is downloaded from SKEMPI [11]. Following the filter-
ing step for constructing the ASEdb dataset, the PDB entries in the SKEMPI datset are also
required to have low sequence identities with those in the ASEdb or BID datasets, or have sig-
nificantly different mutations from similar proteins. The resultant SKEMPI dataset has 36 PDB
entries with 232 alanine mutations. Of these mutations, 53 are hot spots with ΔΔG greater than
or equal to 2 kcal/mol. The requirements for the B factors in the PDB entries and the require-
ments for the interfacial mutations are set as the same as those for the ASEdb dataset.

B factor
B factor, also known as temperature factor or Debye-Waller factor, measures the relative vibra-
tional motion or the disorder of an atom in the protein crystal. It quantifies the displacement
of an atomic position from its mean position in dynamic protein 3D structures and can be cal-
culated using Bi ¼ 8p2U2

i , where U
2
i is the mean square displacement of the atom i. As U2

i

increases, B factor increases. A low B factor implies that the atom is in the well-ordered region
of a structure, while a large B factor suggests a high flexibility of the atom. The distribution of B
factor in different PDB structures varies greatly. We accordingly normalize the original B factor
in this work. A normalized B factor is calculated using the following Eq (1).

Bi
norm ¼ Bi � �B

dB � 1:645

€Bi
norm ¼ max½minðBi

norm � 1;�2Þ; 0�
ð1Þ

where Bi is the original B factor of the atom i, �B and δB are the mean and standard deviation of
the B factors of most atoms in the PDB of protein complexes, respectively. (After ranking the B
factors of all atoms for a protein complex from the smallest to the largest values, 1% minimum
atomic B factors are not used to eliminate possible errors with Bi = 0, and 9% maximum atomic
B factors are also excluded to remove outlier values. The two percentages are empirically deter-
mined.) Also, Bi

norm is the normalized B factor of the atom i. The value 1.645 is a typical thresh-
old under a standard normal distribution, indicating the 0.05 probability of a value outside
[−1.645, 1.645] for each of the two tails.minmeans the minimum of two values, whilemax
denotes the maximum. The first equation in Eq (1) is used to normalize and scale the 90% con-
fidence interval of the B factor to [-1, 1]. The second equation in Eq (1) is used to set any value
outside the 90% confidence interval to either -2 or 0, whichever is closer.

B factor-based vector. Two kinds of B factor-based features are used to describe each muta-
tion. One is the averaged Bi

norm for all mutated atoms, denoted by Br
avg . The other is the difference

(denoted by Br
dif ) of B

r
avg and the averaged B

i
norm for the backbone N and C atoms. The 20 standard

amino acids are categorized into four groups: the first group contains ILE, VAL, LEU, MET,
ALA and GLY, and the second group contains CYS, THR, SER, PRO, HIS, GLN and ASN. The
charged residues, GLU, ASP, LYS and ARG, fall into the third group, while the remaining resi-
dues, i.e., PHE, TRP and TYR, comprise the fourth group. Therefore, the B factor-based feature
vector has 8 elements, where Br

avg are in (p � 2)-th positions and Br
dif in (p � 2 + 1)-th positions,

and p is the amino acid group number to which a mutated residue belongs.
For comparison, two well-known ΔASA (the change of the accessible surface area upon pro-

tein complexation) features are also used. One is the logarithm of ΔASA of the mutated resi-

dues and the other is DASAi
ASAi

, where ASAi is the accessible surface area in proteins without binding

partners.
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Atomic contact graph for an interface
Atomic contacts and their co-occurrence are intensively used for the prediction of protein
binding hot spots in this work. Before defining the atomic contact features for a mutation resi-
due, we illustrate how to generate an atomic contact graph for a protein binding interface. This
process of generating contact graphs is similar to the process in our previous work [29], and is
briefly discussed below for easy reference.

Given a protein complex p, we first identify interfacial atoms which have β contacts with
their interaction partners. β contact is a new definition of atomic contacts [30] which requires
that there are no other atoms interrupting the contact and assumes that two atoms should have
enough direct contact area to form an important interaction. For this purpose, this contact def-
inition requires two thresholds. One is a spatial distance threshold Td of the contact between
atom i and atom j. The other is ∠β, defining a forbidden region fr of the contact between i and
j. fr is required to cover no other atoms. In this work, ∠β = 85, and Td = 1.25 × (vdwi + vdwj)
where vdw* is the van der Waals radius of the atom � defined by [31]. Since there is no gold
standard to determine the optimal thresholds for Td and ∠β, the two thresholds are determined
empirically. Previous works indicate that the number of atomic β contacts in protein binding
interfaces only account for a small fraction of the number of distance-based contacts and less
than half the number of contacts in the Voronoi diagrams [30]. More importantly, the use of β
contacts has been demonstrated to be capable of achieving a better prediction performance in
distinguishing false binding of crystal packing from homodimers [30], predicting binding hot
spots and the change of binding free energy after mutations [29], and estimating protein-ligand
binding affinity [32].

We identify all supporting atoms which have β contacts with any of the interfacial atoms,
and then identify all covalently-bonded nearby atoms of all supporting atoms and of interfacial
atoms as the neighborhood atoms if the nearby atoms are not backbone atoms. The covalently-
bonded nearby atoms of a given atom i are those atoms within 3 covalent-bond steps of i. For
example, given a chain of covalent bonds i − j − k − l −m, where − indicates a covalent bond.
From i, the covalently-bonded step is 0 to i, 1 to j, 2 to k, 3 to l, and 4 tom, respectively. Thus, i,
j, k and l are covalently-bonded nearby atoms of the atom i, whilem is not.

All contacts involving neighborhood atoms (including supporting and interfacial atoms) are
composed of an atomic contact graph for p. These contacts are used to extract atomic contact
features.

A water molecule in PDB is considered as a part of an atomic contact graph if its accessible
surface area is less than 1 Å2, and it has at least 3 β contacts with hydrogen bond donors (such
as a nitrogen atom) and/or hydrogen bond acceptors (such as an oxygen atom). However, the
contacts between any two water molecules are not considered.

Atomic contact vectors for a mutation
We design three kinds of atomic contact vectors to describe a mutation. To generate these
atomic contact vectors, we categorize all atoms of the twenty standard amino acids into 10
groups, as listed in Table A in S1 File. We then group all pairs of atomic contacts into 14 types
(see Table B in S1 File). In particular, we also take into consideration π rings in PHE, TYR,
TRP and HIS. In this work, each aromatic ring is represented by two pseudo atoms whose
positions are just above the center of the ring and at about 0.5 Å spatial distance from the cen-
ter. The atomic types of the pseudo atoms are also shown in Table A in S1 File. Based on these
types of atomic pairs, three kinds of atomic contact vectors of a mutation are calculated as
follows.
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Mutated atomic contacts. Given a mutation, an atomic contact vector with 14 elements is
used to describe the mutated atomic contacts. The mutated atomic contacts of a mutation are
those contacts involving any of its mutated atoms. For each mutation, the value of an element k

in this vector is calculated using
Pð€Bi

norm þ €Bj
normÞ=2 for all contacts between i and j which

belong to the kth group in Table B in S1 File.
Cross-interface atomic contacts in the neighborhood. Another atomic contact vector

with 14 elements is also used to characterize the cross-interface atomic contacts that involve
any of its neighborhood atoms (including mutated atoms and their supporting atoms) of a
mutation. The element values of this vector are calculated in the same way as the vector of
mutated atomic contacts.

The co-occurrence of atomic contacts in the neighborhood. The third vector is particu-
larly used to represent the co-occurrence of atomic contacts in the neighborhood of a mutation.
To the best of our knowledge, this is the first study to use contact co-occurrence to dissect pro-
tein binding hot spots. In this work, two atomic contacts, formed between atoms i and j or
between i0 and j0, are considered to co-occur if i0 is i’s covalently-bonded nearby atom or j’s
covalently-bonded nearby atom, or j0 is i’s covalently-bonded nearby atom or j’s covalently-
bonded nearby atom. The contact co-occurrence can be used to illustrate the cooperation
between atomic contacts. Given a mutation, the co-occurrence of mutated atomic contacts and
their co-occurring contacts is represented by a vector which has 105(= 14 × 15/2) elements for
all possible co-occurring pairs of the 14 types of atomic contacts. Given all co-occurring atomic
contacts of c between the atoms i and j, and c0 between i0 and j0, assume that the atomic contact
type of c is tc and that of c0 is tc0; then, the value of the element (tc, tc0) is calculated by
P½ð€Bi

norm þ €Bj
normÞ=2þ ð€Bi0

norm þ €Bj0
normÞ=2�.

Random forest learning model
Integrating all the aforementioned features, each mutation is represented by a feature set with
143 (= 10 + 14 + 14 + 105) elements to associate with its ΔΔG. The relationship between the
features of each mutation and its corresponding ΔΔG is learned by a machine learning algo-
rithm, random forest (RF) [26] as implemented in the randomForest package. This learning
method is termed ppRF. In ppRF, only those features which each have more than 3 non-zero
values in all mutations are used. In the randomForest learning process, 500 trees are built and
every terminal node is required to contain at least three mutations.

Using randomForest, the importance score of each feature is also produced according to the
difference in the performance before and after the permutation of the values of the feature.
Note that after the permutation, the relation between the feature and the ΔΔG becomes ran-
dom. A feature with a larger importance score is generally considered to be more important in
the learning process. Thus, the importance score can be used to assess a feature quantitatively.
For the atomic contacts and the co-occurring contacts, especially, their unique contribution to
the prediction of protein binding hot spots can be properly assessed.

Evaluation measures
Our method ppRF and many existing methods generate a predicted ΔΔG (ΔΔGp for short) for
each mutation. We assess the performance of the methods by comparing this predicted value
with the observed ΔΔG value. To test the performance of ppRF on the independent BID data-
set, a threshold (Ths) of the predicted ΔΔG is used to define hot spot residues. Ths = 1.5 kcal/
mol is used under the assumption that ppRF underestimates ΔΔG.
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The prediction performance for binding hot spots is then evaluated by using the metrics in
the following Eq (2).

precision ¼ TP
TP þ FP

recall ¼ TP
TP þ FN

F1 ¼ 2� precision� recall
precisionþ recall

accuracy ¼ TP þ TN
TP þ FN þ TN þ FP

specificity ¼ TN
TN þ FP

ð2Þ

where binding hot spot residues are considered as the true cases and non-hot spot residues as
the false cases; TP, FP, TN and FN represent true positives, false positives, true negatives and
false negatives respectively. precision is the number of correct hot spot predictions divided by
the number of positive predictions, recall is the fraction of correct hot spot predictions over all
hot spot residues, and specificity is the fraction of correct non-hot spot predictions over all
non-hot spot residues. These measures are commonly used in [15, 22, 33] with the same
definitions.

Results

Prediction performance
Test on three protein complexes to demonstrate that whether a residue becomes a hot

spot residue is closely dependent on its binding partner. A residue of a protein can become
a hot spot residue when the protein binds with a right protein, while the same residue may not
be a hot spot residue anymore even when the protein uses almost the same binding site to inter-
act with other partners. Our work was applied to three protein complexes to understand this
point and to evaluate the performance of ppRF, Robetta, KFC2 (KFC2a and KFC2b) and Hot-
point [34]. These complexes are used here for two reasons. One is that they were either incor-
rectly labeled, or not included in the ASEdb or BID dataset of previous works (i.e., fresh
benchmark data). The second is that they serve as good examples to illustrate that the binding
hot spots of the same protein are not the same when the protein binds with different partners
(forming different quaternary structures). The hot spots in the three complexes are shown in
Fig 1 where the proteins in green are the same. The protein in green is able to use the signifi-
cantly overlapping surface to bind with the three different partner proteins in red (not at the
same time); however, the mutations of those overlapping residues make completely different
contributions to the three complexes. For example, as shown in Table 1, the mutation of His470
would have an insignificant influence on the binding in Fig 1(a) and 1(b), while the mutation
would strongly damage the binding in Fig 1(c). In another example, the mutation of Trp383 is a
hot spot residue in Fig 1(a), but it is a non-hot spot residue in Fig 1(b) and 1(c). This kind of
example exists widely in real world situations. Developing computational predictors that are
able to capture the differences between such complexes and then accurately predict hot spot res-
idues for each complex is thus technically challenging but practically extremely useful.

We use four different methods to predict which of Trp383, Arg386, Lys435 and His470 are
hot spot residues for the complexes shown in Fig 1. As an example, a correct prediction
(ground truth) for His470 is that: this residue is not a hot spot residue in either 1TH1 or in
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1JPP, but it is a hot spot residue in 3OUX (Please see Table 1). The prediction results are
shown in Table 1. It can be seen that our method ppRF outperforms all other methods. It is not
surprising that the prediction results of Hotpoint, KFC2a and KFC2b are almost the same for
the three complexes. This is because these methods rely heavily on residue-level features, such
as ASA, to make predictions and thus are incapable of capturing the change in atomic contacts
in different complexes. In contrast, ppRF and Robetta are able to produce varying scores and
ranking for the same mutations in the proteins of the three different complexes. For
instance, ppRF produced the highest score for the mutation of Lys435 in 3OUX, because
Lys435 has an ‘Insignificant’ contribution to the binding in 1TH1 and an ‘Intermediate’ contri-
bution to the binding in 1JPP, but a ‘Strong’ contribution to the binding in 3OUX (Table 1).
Also, ppRF labels more residues as hot spots on these three protein complexes than the other
methods; thus it has a higher negative precision (the fraction of correct non-hot spot prediction
over the number of predicted non-hot spots) and a worse specificity of non-hot spot predic-
tion. Nevertheless, ppRF does not have worse specificity on the other datasets, as shown below.

Since several in silicomethods have been proposed to predict ΔΔG and binding hot spots
using only protein sequences [19, 20] or protein tertiary structure information [21], our evalua-
tion also suggests that more attention should be paid to the fact that binding hot spots are
closely related to quaternary structures, if the quaternary structures or structural information
are not available and the differences between protein complexes cannot be uncovered. Accord-
ingly, a ground-truth dataset used in sequence-based or tertiary-structure-based hot spot

Fig 1. The binding hot spots [35] (in magenta) unique to 1TH1 (Chain A in green and Chain C in red in
(a)), 1JPP (Chain A in green and Chain C in red in (b)) and 3OUX (Chain A in green and Chain B in red
in (c)). There is an overlapping common area to the interfaces of these protein complexes; the chains in
green are the same, but the binding partner proteins in red are different. The binding hot spots in Chain A
(Lys-345 and Trp-383 in (a), Arg-386 in (b), and Lys-435 and His-470 (c)) are all in a ‘spheres’ view.

doi:10.1371/journal.pone.0144486.g001
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prediction should be carefully constructed by considering the different mutational effects of
the same residues at different complexes.

Leave-complex-out cross-validation performance of ppRF on the ASEdb dataset. We
also evaluated several methods on the ASEdb datasets, including FoldX, Robetta, KFC
and ppRF. The result is shown in Table 2, suggesting that ppRF outperforms all other methods
with the highest F1 value of 0.570. Note that the performance of ppRF is obtained using rigor-
ous leave-complex-out cross-validation tests. That is, all the hot spots in one complex are
retained for testing, while hot spots in other complexes are used to train ppRF. The other meth-
ods are trained on a subset of our ASEdb dataset and published with a web server or executable
program. They could not be re-trained under this cross-validation. Their performance is calcu-
lated using our ASEdb dataset as the input to their web servers or the local executables, gener-
ally leading to better performance than the predictor under cross-validation. In other words,
the other methods under real cross-validation usually demonstrate worse performance than
those in Table 2. Despite these aspects, ppRF still achieves better performance under strict real
cross-validation than the other methods in Table 2.

Table 1. Binding hot spot residues unique to the three complexes in Fig 1. The numeric real numbers are predicted values of ΔΔG(kcal/mol). The
Observed rows provide the BID-labels in the previous work [35].p.: precision; r. recall.

Trp383 Arg386 Lys435 His470 p. r. F1

Observed 1TH1 Strong Insignificant Insignificant Insignificant

1JPP Intermediate Strong Intermediate Insignificant

3OUX Insignificant Intermediate Strong Strong

Robetta 1TH1 1.22 1.00 1.60 0.50 0.40 0.50 0.44

1JPP 0.93 0.50 0.50 0.47

3OUX 2.58 2.38 1.69 3.05

Hotpoint 1TH1 Hot Spot Non-hot spot Non-hot spot Hot Spot 0.4 0.5 0.44

1JPP Non-hot spot Non-hot spot Non-hot spot Hot Spot

3OUX Hot Spot Non-hot spot Non-hot spot Hot Spot

ppRF 1TH1 1.06 2.61 1.76 2.40 0.38 0.75 0.50

1JPP 0.325 1.65 1.12 0.99

3OUX 1.87 2.38 2.65 3.90

KFC2a 1TH1 Non-hot spot Hot Spot Non-hot spot Hot Spot 0.33 0.50 0.40

1JPP Non-hot spot Hot Spot Non-hot spot Non-hot spot

3OUX Hot Spot Hot Spot Non-hot spot Hot Spot

KFC2b 1TH1 Non-hot spot Hot Spot Non-hot spot Non-hot spot 0.25 0.25 0.25

1JPP Non-hot spot Hot Spot Non-hot spot Non-hot spot

3OUX Hot Spot Hot Spot Non-hot spot Non-hot spot

doi:10.1371/journal.pone.0144486.t001

Table 2. Performance comparison between FoldX, Robetta, KFC2 and ppRF on the ASEdb dataset. The performance of ppRF is evaluated using
leave-complex-out cross-validation. FoldX, Robetta and ppRF are able to produce numerical values of ΔΔGp. A predicted binding hot spot for these three
methods is defined using ΔΔGp �1.5.

Method Precision Recall F1 Accuracy Specificity

FoldX 0.354 0.679 0.465 0.653 0.646

Robetta 0.438 0.548 0.487 0.743 0.799

KFC2a 0.427 0.772 0.550 0.727 0.731

KFC2b 0.511 0.582 0.544 0.790 0.847

ppRF 0.471 0.722 0.570 0.765 0.777

doi:10.1371/journal.pone.0144486.t002
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Performance evaluation on the independent datasets. The ppRF model is also tested on
the independent datasets BID and SKEMPI. The prediction results on the BID dataset are
shown in Table 3, and those on the SKEMPI dataset are presented in Table 4. The performance
of our method is compared with those by FoldX, Robetta, KFC2 and HotPoint.

It can be clearly seen from Table 3 that when Ths = 2, our method ppRF achieves a F1 value
of 0.581, which is almost 10 percent points higher than Robetta and 6 percent points higher
than FoldX. In particular, ppRF achieves the precision value of 0.692, which is 18 percent
points higher than FoldX, Robetta and HotPoint. The results indicate that around 70% of the
predicted hot spots by our method are true binding hot spots, suggesting that ppRF is particu-
larly useful when computational hot spots with higher accuracy are required with no available
wet-lab evidence. When Ths = 1.5 is used, the F1 values of all methods increase. Under this
threshold, ppRF still achieves better performance than Robetta, FoldX and Ridge regression on
the same feature space used by ppRF. In particular, the F1 value of HotPoint is 0.492, which is
about 10 percent points lower than our method.

As shown in Table 4, our method ppRF achieves a competitive F1 value with Robetta and a
considerably higher Pearson correlation coefficient than Robetta. Comparing with the other
existing methods, ppRF outperforms again. Also on the SKEMPI dataset, we have investigated
the change effect of Td on the performance of the method. We found that our method has

Table 3. Performance comparison between FoldX, Robetta, HotPoint, KFC2 and ppRF on the independent BID dataset, while all methods are
trained using thosemutations from the ASEdb dataset. FoldX, Robetta, Ridge and ppRF are able to produce numerical values of ΔΔGp. TheHS column
indicates how to define a predicted binding hot spot given a predicted binding free energy ΔΔGp:�2 suggests a predicted binding hot spot if its ΔΔGp �2,
while�1.5 suggests a predicted binding hot spot if its ΔΔGp�1.5. ‘Ridge’ indicates the prediction results of Ridge regression on our feature space used
for ppRF.

HS Method Precision Recall F1 Accuracy Specificity

�2 FoldX 0.514 0.528 0.521 0.703 0.780

Robetta 0.577 0.417 0.484 0.729 0.866

ppRF 0.692 0.500 0.581 0.780 0.902

HotPoint 0.552 0.444 0.492 0.720 0.841

KFC2a 0.560 0.778 0.651 0.746 0.732

KFC2b 0.697 0.639 0.667 0.805 0.787

�1.5 FoldX 0.436 0.667 0.527 0.636 0.622

Robetta 0.500 0.611 0.550 0.695 0.732

Ridge 0.500 0.583 0.538 0.744 0.695

ppRF 0.533 0.667 0.593 0.720 0.744

doi:10.1371/journal.pone.0144486.t003

Table 4. Performance comparison between FoldX, Robetta, KFC2, HotPoint and ppRF on the SKEMPI dataset. FoldX, Robetta, Ridge and ppRF are
able to produce numerical values of ΔΔGp. A predicted binding hot spot for these three methods is defined using ΔΔGp �1.5. ‘Ridge’ indicates the prediction
results of Ridge regression on our feature space used for ppRF, and ‘PCC’ denotes Pearson correlation coefficients between the predicted ΔΔG and experi-
mental ΔΔG.

Method Precision Recall F1 Accuracy Specificity PCC

FoldX 0.408 0.547 0.468 0.716 0.765 0.30

Robetta 0.472 0.642 0.544 0.754 0.788 0.39

KFC2a 0.412 0.755 0.533 0.698 0.682

KFC2b 0.446 0.472 0.459 0.746 0.827

HotPoint 0.339 0.377 0.357 0.690 0.782

Ridge 0.382 0.491 0.430 0.765 0.703

ppRF 0.492 0.585 0.534 0.767 0.821 0.52

doi:10.1371/journal.pone.0144486.t004
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Pearson correlation coefficients from 0.492 to 0.54, and F1 scores from 0.48 to 0.564, when Td

changes from Td = 1.1 × (vdwi + vdwj) to Td = 1.6 × (vdwi + vdwj) where vdwi and vdwj are the
van der Waals radii of two contacting atoms i and j. As there is no monotonic correspondence
between the change of Td and the change of performance, it is still an open question to find an
optimal Td.

Important atomic contacts
Important atomic contacts such as hydrogen bonds and salt bridges have previously been
included in energy functions to estimate ΔΔG [7, 8]. These atomic contacts are also important
for hot spot prediction [7, 8, 36] and have been found to be closely related to hot spots [22].
More types of atomic contacts are worthy of intensive investigation to further our understand-
ing of binding hot spots and protein binding. Using the randomForest model and the atomic
contact graph representation, we analyzed all types of atomic contacts to examine (i) whether
the important contacts revealed by the literature can be confirmed and (ii) whether new types
of contacts critical to protein binding hot spots exist that were previously unknown.

Each feature in the randomForest model is assigned an importance score. A larger score
suggests that the feature provides irreplaceable knowledge in the prediction of binding hot
spots. Trained on the ASEdb dataset, the top-ranked features and their importance scores are
shown in Fig 2, whereas the meanings of the top 25 features are given in Table 5. We give
examples as follows.

Top three features, all showing the hydrophobic effect. As can be seen from Fig 2, the
top first feature is the feature of mutated contacts (V14) among those carbon atoms (denoted
by C_c for short) which have no covalent bonds with oxygen/nitrogen atoms. This ranking
highlights the importance of the hydrophobic effect on protein binding hot spots. After the
permutation of V14 in the randomForest learning process, MSE (mean standard error)
increases by more than 10%. The distribution of V14 and ΔΔG are shown in Fig 3(a) where the
mutations with the smallest V14 values are almost hydrophobic residues (denoted by ‘�’) in the
first group and aromatic residues (denoted by ‘!’) in the fourth group.

Fig 2. Top-ranking features useful for protein binding hot spot prediction by random forest. ‘%
IncMSE’ indicates the increase of the mean standard error (MSE) after the permutation of the features. The
definitions of the top 25 important features are listed in Table 5.

doi:10.1371/journal.pone.0144486.g002
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The top second feature in Fig 2 is related to the cross-interface contacts (V34) between π
rings and C_c in the neighborhood of the mutations. This highlights the importance of both
the hydrophobic effect and aromatic residues for protein binding hot spots. The permutation
of V34 in the randomForest learning process leads to the increase of MSE by more than 10%.
Its distribution together with ΔΔG is shown in Fig 3(b) from which the same conclusion can be
drawn as from V14.

The top third feature in Fig 2 is the co-occurrence (V84) of a contact in C_c and a contact
between C_c and π rings. Although individual V14 and V34 both emphasize a hydrophobic
effect on the prediction of binding hot spots, V84 still has a high ranking. Its permutation also
leads to an increase of more than 9%MSE. This suggests that the co-occurrence of the two
types of contacts represents a unique property of binding hot spots which is absent in

Table 5. Top 25 important features from Fig 2. RPCC represents the Pearson correlation coefficient. As many features have tens or hundreds of zero values
(refer to Figs 3, 4 and 5 for example), RPCC itself is not able to produce a useful ranking here.

Features1 RPCC RPCC
2 3 Meaning4

V14 -0.315 -0.294 1 group 3: hydrophobic contacts between C_c5

V34 -0.277 -0.149 2 group 9: π involving contacts

V84 -0.273 -0.195 3 the co-occurrence of group 3 and group 9

V27 -0.525 -0.499 2 group 2: the contacts between C_c and oxygen/nitrogen

V29 -0.509 -0.501 2 group 4: C_on6 and oxygen/nitrogen

V11 -0.426 -0.425 1 group 0: hydrogen bond contacts

V39 -0.413 -0.390 3 the co-occurrence of group 0 and group 0

V38 -0.349 -0.473 2 group 13: the contacts between hydrogen-bond acceptors

V10 -0.054 -0.179 Br
dif of aromatic residues

V16 -0.300 -0.240 1 group 5: C_on and C_c

V20 -0.307 -0.408 1 group 9: π involving contacts

V67 -0.397 -0.326 3 the co-occurrence of group 2 and group 3

V25 -0.550 -0.530 2 group 0: hydrogen bond contacts

V30 -0.422 -0.356 2 group 5: C_on and C_c

V79 -0.351 -0.307 3 the co-occurrence of group 3 and group 4

V85 -0.235 -0.578 3 the co-occurrence of group 3 and group 10

V13 -0.399 -0.379 1 group 2: the contacts between C_c and oxygen/nitrogen

V68 -0.482 -0.501 3 the co-occurrence of group 2 and group 4

V8 -0.213 -0.439 Br
dif of charged residues

V78 -0.258 -0.230 3 the co-occurrence of group 3 and group 3

V28 -0.291 -0.213 2 group 3: hydrophobic contacts

V73 -0.295 -0.232 3 the co-occurrence of group 2 and group 9

V89 -0.234 -0.260 3 the co-occurrence of group 4 and group 4

V7 -0.313 -0.500 Br
avg of charged residues

V94 -0.208 -0.035 3 the co-occurrence of group 4 and group 9

1: features are in descending rank order according to the importance score generated by the random forest model in Fig 2.
2: RPCC is calculated over mutations with non-zero feature values.
3: ‘1’ indicates mutated atomic contacts, ‘2’ indicates interfacial atomic contacts in the mutation neighborhood, while ‘3’ denotes the co-occurrence of

atomic contacts.
4: ‘group X’ indicates the Xth group of atomic contacts in Table B in S1 File.
5: C_c denotes carbon atoms which have no covalent bonds with oxygen/nitrogen atoms.
6: C_on denotes carbon atoms which have covalent bonds with oxygen or nitrogen atoms.

doi:10.1371/journal.pone.0144486.t005
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individual V14 or V34. Thus, the clustering influence of hydrophobic contacts is of critical
importance to protein binding.

An example of the hydrophobic effect is presented in Fig 3(d) where one mutation Tyr54
(ΔΔG = 4.83kcal/mol) in Chain A of protein structure (PDB ID: 1BXI) has the smallest value of
V34 in Fig 3(b), and the other mutations Tyr55 in Chain A has the smallest value of V84 in Fig
3(c). Fig 3(d) clearly shows that there are many C_c carbons around these two mutations,
while the two residues also have π rings. Thus, in the neighborhood of the mutations, there are
a large number of contacts between π rings and C_c, and their co-occurrence with the contacts
in C_c, thereby illustrating why these two residues are important to protein binding. Interest-
ingly, Tyr55 has a large ASA in the complex (ASA = 73.6 Å), but its ΔΔG = 4.63kcal/mol is still
quite high.

Hydrogen bonds and hydrogen bond network. Hydrogen bonds are widely considered
to be an important factor for protein folding and binding. As can be seen from Fig 2, ppRF
gives higher ranking for three kinds of hydrogen bond features: mutated hydrogen bonds
(V11), cross-interfacial hydrogen bonds in the neighborhood of the mutations (V25), and the
co-occurrence of hydrogen bonds in the neighborhood (V39). Their distribution of these fea-
tures with ΔΔG is shown in Fig 4. It is not surprising to see in Fig 4(a) that most of the muta-
tions with the smallest feature (V11) values are from the third group (GLU, ASP, LYS and

Fig 3. The distribution of top three features V14 (in (a)), V34 (in (b)) and V84 (in (c)). The definitions of
V14, V34 and V84 are listed in Table 5. The importance of V14, V34 and V84 is ranked as 1st, 2nd and 3rd,
respectively, as shown in Fig 2, while the Pearson correlation coefficients of the three features are -0.315,
-0.277 and -0.273, respectively, as shown in Table 5. The y-axes denote ΔΔG. �: ILE, VAL, LEU, MET, ALA
and GLY;◻: CYS, THR, SER, PRO, HIS, GLN and ASN; ♢: GLU, ASP, LYS and ARG;!: PHE, TRP and
TYR. (d) shows an example of the neighborhood of the two mutations (in brown): Tyr54 and Tyr55 of Chain A
(in red) in 1BXI together with the partner protein (Chain B in green). All carbon atoms in the neighborhood
which have no covalent bond with any oxygen or nitrogen are shown in ‘sphere’ view. The alanine mutation of
Tyr54 has ΔΔG = 4.83kcal/mol with the smallest value of V84, and that of Tyr55 has ΔΔG = 4.63kcal/mol with
the smallest value of V34.

doi:10.1371/journal.pone.0144486.g003
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ARG). The neighborhood of these mutations also contains many hydrogen bonds, as shown in
Fig 4(c). The co-occurrence of hydrogen bonds is shown in Fig 4(b) where the mutations with
the smallest feature values are all hot spots. In fact, the co-occurrence of hydrogen bonds is a
property of a hydrogen bond network. Fig 4(b) thus indicates the contribution of the hydrogen
bond network to protein binding.

The importance of the hydrogen bond network is further illustrated in Fig 4(d) using an
example of the mutation of Asp39 in Chain D of 1BRS (PDB ID). This mutation has
ΔΔG = 7.7kcal/mol with the smallest value of V39 in Fig 4(b). In Fig 4(d), many hydrogen
bonds are localized in the neighborhood of the mutation, demonstrating how this network con-
tributes to protein binding. In fact, there are seven other residues in this neighborhood net-
work. Alanine mutation experiments have confirmed that five of the seven residues are true
hot spot residues: Lys27 of Chain A with ΔΔG = 5.4kcal/mol, Glu73 of Chain A with
ΔΔG = 2.8kcal/mol, Arg87 of Chain A with ΔΔG = 5.5kcal/mol and His102 of Chain A with
ΔΔG = 6kcal/mol, and the Glu mutation of Arg83 of Chain A with ΔΔG = 5.4kcal/mol. There is
no experimental evidence to date for the other two residues. The extension of this neighbor-
hood network contains two more alanine mutations: Tyr29 of Chain D with ΔΔG = 3.4kcal/
mol and Thr42 of Chain D with ΔΔG = 1.8kcal/mol. This cluster of residues strongly supports
the stability of cooperative hydrogen bonds in the network—the removal of any hydrogen
bonds involving a residue would heavily affect the whole hydrogen bond network. It also pro-
vides evidence for the ‘hot region’ property of binding hot spots [37] (binding sites—one side of

Fig 4. The distribution of three hydrogen-bond features V11 (in (a)), V39 (in (b)) and V25 (in (c)). The
definitions of V11, V39 and V25 are listed in Table 5. The importance of V11, V39 and V25 is ranked as 6th,
7th and 13th, respectively, as shown in Fig 2, while the Pearson correlation coefficients of the three features
are -0.426, -0.413 and -0.550, respectively, as shown in Table 5. The y-axes denote ΔΔG. �: ILE, VAL, LEU,
MET, ALA and GLY;◻: CYS, THR, SER, PRO, HIS, GLN and ASN; ♢: GLU, ASP, LYS and ARG;!: PHE,
TRP and TYR. (d) shows an example of all hydrogen bonds in the neighborhood of the mutation (in ‘stick’
view): Asp39 of Chain D (in green) in 1BRS together with the partner protein (Chain A in red). The alanine
mutation of Asp39 has ΔΔG = 7.7kcal/mol and the smallest value of V39. The dashed lines represent
potential hydrogen bonds whose acceptors and donors have spatial distance less than 3.5 Å.

doi:10.1371/journal.pone.0144486.g004
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the interfaces—might have several ‘hot regions’, locally tightly packed regions containing the clus-
tered, networked, structurally conserved residues) and for the ‘coupling’ theory [38] (hot spot
residues tend to couple a two-chain interface with higher local packing density).

The various importance of B factor in the prediction of binding hot spots. Protein flexi-
bility, as exemplified by B factor, is closely related to protein functions such as catalysis and
allostery [39]. Deeply buried atoms in the core of the protein structure are often rigid and have
low B factors [40], and interfacial residues in protein binding complexes also tend to have
lower B-factors compared to the rest of the tertiary structural surface [25]. The importance of
B factor in the prediction of binding hot spots has been investigated in a previous work [33]
where the B factor based on the CA atoms was found to have an insignificant effect on hot spot
prediction when used as an individual feature.

In contrast to the previous approach, we concentrate on Br
dif and B

r
avg rather than the B factor

based on the CA atoms. It can be clearly seen from Fig 2 that Br
dif of the fourth group, and both

Br
dif and B

r
avg of the third group of amino acids make a significant contribution to the prediction

of binding hot spots. To illustrate the various importance of the B factor for the four groups of
amino acids, we also show the distribution of Br

dif for all four groups of amino acids and the dis-

tribution of Br
avg for the third group in Fig 5. It can be seen from Fig 5(b) and 5(c) that the larger

values of Br
avg or B

r
dif for the third group suggest fewer binding hot spots. Note that the third

group contains GLU, ASP, LYS and ARG, which are all strongly charged residues. Thus, it is
reasonable that charged residues lose motion freedom to contribute to protein binding. The
Br
dif of the fourth group of the three aromatic residues (PHE, TRP and TYR) has a similar effect

Fig 5. The distribution of Br
dif for the fourth amino acid group (in (a)), and for the third group (in (b)),

and for the first and second groups (in (d)), and the distribution of Br
avg for the third group (in (c)). The y-

axes denote ΔΔG. �: ILE, VAL, LEU, MET, ALA and GLY;◻: CYS, THR, SER, PRO, HIS, GLN and ASN; ♢:
GLU, ASP, LYS and ARG;!: PHE, TRP and TYR. The importance of V10, V8 and V7 is ranked as 9th, 19th

and 24th, respectively, as shown in Fig 2, while the Pearson correlation coefficients of the three features are
-0.054, -0.213 and -0.313, respectively, as shown in Table 5. V4 and V6 are not in the top 40 important
features in randomForest.

doi:10.1371/journal.pone.0144486.g005
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(Fig 5(a)) with the exception of two outliers of the smallest values. In contrast, the Br
dif of all

other residues (Fig 5(d) for the first and the second groups of amino acids) contributes less to
the prediction of protein binding hot spots. This might partly explain why the work in [33]
drew the conclusion that the B factor of all types of amino acids in a same group contributed
little to the accurate prediction of binding hot spots.

Conclusions
We have proposed a new computational approach termed ppRF in this paper to characterize
protein binding hot spots. Our method ppRF integrates the contributions from multiple infor-
mative features, including B factor, mutated atomic contacts, neighborhood cross-interface
contacts and co-occurring neighborhood contacts. Assessed on independent test datasets and
under cross-validation, ppRF achieves a significant improvement compared to competitive
methods in the literature. ppRF is able to detect features which make a unique contribution to
the prediction of binding hot spots. Some features have been investigated and widely used in
existing energy prediction functions, such as hydrophobic contacts and hydrogen bonds. Some
features have seldom been studied previously, such as the co-occurrence of hydrophobic con-
tacts and π involving contacts, and hydrogen bond networks. In conclusion, this work not only
presents a more accurate prediction method, but also provides important novel insights into
the atomic-level rules of protein binding hot spots.
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