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recovery. Muscle biopsies were obtained from m. vastus 
lateralis pre and post intervention and were subsequently 
analysed for metabolic enzyme activity and muscle protein 
expression. Moreover, the Yo–Yo Intermittent Recovery 
level 2 test (Yo–Yo IR2) was performed.
Results Muscle CS maximal activity increased (P < 0.05) 
by 18% in SET only, demonstrating larger (P < 0.05) 
improvement than SSG, while HAD activity increased 
(P < 0.05) by 24% in both groups.  Na+–K+ ATPase α1 subu-
nit protein expression increased (P < 0.05) in SET and SSG 
(19 and 37%, respectively), while MCT4 protein expression 
rose (P < 0.05) by 30 and 61% in SET and SSG, respec-
tively. SOD2 protein expression increased (P < 0.05) by 28 
and 37% in SET and SSG, respectively, while GLUT-4 pro-
tein expression increased (P < 0.05) by 40% in SSG only. 
Finally, SET displayed 39% greater improvement (P < 0.05) 
in Yo–Yo IR2 performance than SSG.
Conclusion Speed endurance training improved muscle 
oxidative capacity and exercise performance more pro-
nouncedly than small-sided game training, but comparable 
responses were in muscle ion transporters and antioxidative 
capacity in well-trained male soccer players.

Keywords Antioxidant capacity · Intermittent exercise · 
Muscle fatigue · Muscle oxidative capacity · Na+–K+ 
ATPase activity · Football

Abbreviations
AAT  Arrowhead agility test
ANOVA  Analysis of variance
ATP  Adenosine triphosphate
BSA  Bovine serum albumin
CAT  Catalase
CS  Citrate synthase
CV  Coefficient of variation

Abstract 
Purpose To examine the skeletal muscle and performance 
responses across two different exercise training modalities 
which are highly applied in soccer training.
Methods Using an RCT design, 39 well-trained male 
soccer players were randomized into either a speed endur-
ance training (SET; n = 21) or a small-sided game group 
(SSG; n = 18). Over 4 weeks, thrice weekly, SET performed 
6–10 × 30-s all-out runs with 3-min recovery, while SSG 
completed 2 × 7–9-min small-sided games with 2-min 
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DTT  Dithiothreitol
EDTA  Ethylenediaminetetraacetic acid
EGTA  Ethylene glycol tetraacetic acid
ES  Effect size
FXYD1  Phospholemman protein
GLUT-4  Glucose transporter type 4
GPX  Glutathione peroxidase
HAD  Beta-hydroxyacyl-CoA-dehydrogenase
HCl  Hydrogen chloride
HEPES  4-(2-Hydroxyethyl)-1-piperazineethane-

sulfonic acid
HIR  High-intensity running distance 

(m > 14 km/h)
HRP  Horseradish peroxidase
HSR  High-speed running distance 

(m > 21 km/h)
Ia  Intense accelerations (n > 3 m/s2)
Id  Intense decelerations (n > 3 m/s2)
MCT4  Monocarboxylate transporter 4
NaCl  Sodium chloride
Na3VO4  Sodium orthovanadate
NF-κΒ  Nuclear factor kappa-light-chain-

enhancer of activated B cells
NHE1  Na+/H+ exchanger isoform 1
NP-40  Tergitol-type NP-40 

(nonylphenoxypolyethoxylethanol)
PGC-1α mRNA  Peroxisome proliferator-activated 

receptor-γ coactivator messenger ribo-
nucleic acid

PFK  Phosphofructokinase
PVDF  Polyvinylidene difluoride
ROS  Reactive oxygen species
RST  Repeated sprint test
SDS  Sodium dodecyl sulphate
SET  Speed endurance training
SOD1, SOD2  Superoxide dismutase 1 and 2
SSG  Small-sided games
TBST  Tris-buffered saline including Tween-20
TCA cycle  Tricarboxylic acid cycle
TD  Total distance
Yo–Yo IR2  Yo–Yo Intermittent Recovery test level 
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Introduction

Human skeletal muscle has a high plasticity and adapts to 
various exercise modalities due to specific training-induced 
stimuli and the type and magnitude of these adaptations 
impact on high-intensity exercise (Nader and Esser 2001). 
For example, 2–6 weeks of high-intensity intermittent train-
ing termed ‘speed endurance training’ increased mitochon-
drial protein content and maximal activity of key enzymes 

(Burgomaster et  al. 2008; Gibala et  al. 2006), whereas 
mitochondrial enzyme activity remained constant after 6 
weeks of continuous training at a lower exercise intensity 
(Cochran et al. 2014). Speed endurance training for peri-
ods of 2–9 weeks has been extensively studied (Bangsbo 
et al. 2009; Christensen et al. 2011; Gunnarsson et al. 2013; 
Laursen and Jenkins 2002; Mohr et al. 2007; Thomassen 
et al. 2010) and has been shown to improve high-intensity 
intermittent exercise performance (Gibala et al. 2012; Iaia 
and Bangsbo 2010). Improved muscle function may pos-
sibly be caused by an increased expression of muscle ion 
transporters, such as the  Na+–K+ ATPase, monocarboxy-
late transporters and the  Na+/H+ exchanger, which may 
facilitate ion handling capacity. Moreover, speed endurance 
training has been shown to elicit larger performance gains 
than sprint training (15 × 6 s sprints) (Mohr et al. 2007) and 
endurance training (prolonged submaximal runs) (Iaia et al. 
2008). Moreover, muscle ion transport capacity and high-
intensity exercise performance are improved with the inclu-
sion of speed endurance training, even when the training 
volume is markedly reduced (Iaia et al. 2008; Thomassen 
et al. 2010), or when speed endurance training is added to 
normal training (Gunnarsson et al. 2013). In the past stud-
ies, speed endurance training protocols have been included 
at the expense of less intensive training. However, it is cur-
rently unknown if additional speed endurance training elicits 
a different muscle and performance response compared to 
additional training at moderate intensity in high-intensity 
athletes such as competitive soccer players. In competitive 
soccer, different training modalities are applied (Ade et al. 
2014), but a major part of the fitness training is conducted 
as small-sided games (Dellall et al. 2011). However, limited 
information exists on the efficiency of this training modal-
ity compared to more controlled running drills. In a study 
by Ade et al. (2014), the characteristics of speed endurance 
running and small-sided game where compared and marked 
differences were observed. However, no study has yet tested 
the muscle and performance adaptations of speed endurance 
versus small-sided game training.

In a high-intensity intermittent sport such as soccer, the 
physical demands are complex, encompassing both high 
endurance capacity and fatigue resistance during high-
intensity exercise (Fransson et al. 2017; Mohr et al. 2005). 
Endurance performance in a soccer game is related to mus-
cle oxidative capacity, while muscle  Na+-K+ ATPase pro-
tein expression displays a strong correlation to high-intensity 
exercise performance in a game (Mohr et al. 2016b). As a 
consequence of these observations, studies relating adapta-
tions in both endurance and high-intensity exercise perfor-
mance to muscular adaptations are highly warranted.

During soccer exercise the oxidative stress is highly 
upregulated (Mohr et al. 2016a) challenging antioxidative 
enzymes such as superoxide dismutase (SOD) and catalase 
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(CAT) that prevent oxidative damage (Jackson et al. 2011). 
Exercise training may increase the skeletal muscle antioxida-
tive capacity, as evidenced by upregulated activity in GPX, 
SOD1 and SOD2 in untrained populations (Gliemann et al. 
2014). However, limited studies have addressed whether 
the muscular antioxidant capacity is augmented by speed 
endurance training in an athletic population. High-intensity 
interval training may upregulate the muscle antioxidative 
capacity and lower systemic oxidative stress (Atalay et al. 
1996), even after just a very brief training exposure (e.g. 3 
weeks) (Bogdanis et al. 2013; Scribbans et al. 2014). When 
high-intensity exercise protocols were compared to con-
tinuous endurance training of lower intensity, antioxidant 
enzymes such as SOD, GPX, and catalase (CAT) seemed 
to be upregulated to a greater (Songstad et al. 2015; Tucker 
et al. 2015) or to the same (Lu et al. 2015) extent in the for-
mer than in the latter. However, these studies did not include 
trained athletes, who are likely to have a high muscle anti-
oxidant capacity, and may require additional high-intensity 
training to induce further redox-dependent adaptations such 
as mitochondrial biogenesis.

Thus, this study aimed to examine muscle oxidative 
capacity, ion transporters, and antioxidant adaptations, as 
well as performance responses to 4 weeks of additional 
speed endurance training or small-sided game training in 
trained male soccer players. It was hypothesized that speed 
endurance training would result in more pronounced adap-
tations in (1) high-intensity intermittent performance, (2) 
skeletal muscle oxidative capacity, and (3) muscle ion trans-
porters and antioxidant proteins compared to small-sided 
game training at moderate exercise intensity.

Methods

Subjects

Thirty-nine trained semi-professional male soccer players 
(mean ± SD, age 21.1 ± 2.4 years; height 184 ± 7 cm; body 
mass 77.5 ± 7.8 kg) representing two teams in the third 
division in Sweden volunteered to participate in the study. 
The participants represented all outfield positions (central 
defenders n = 7, full-backs n = 8, central midfielders n = 6, 
wide midfielders n = 10, attackers n = 8). The players trained 
four times a week and did not participate in match play dur-
ing the intervention period. The intervention was initiated 2 
weeks into the pre-season in January 2016. All participants 
had played competitive soccer for at least 5 years prior to 
the start of the study. Players who had been injured within 
a period of 6 weeks prior to the start of the study were 
excluded from the study. All participants were informed of 
potential risks and discomforts associated with the experi-
ment before giving their written consent to participate 

according to the guidelines of the Helsinki Declaration. The 
study was approved by the local ethics committee in Goth-
enburg (Dnr: 687-15).

Experimental design

The study applies a randomized controlled design. The par-
ticipants were randomized to a speed endurance training 
group (SET; n = 21) or a small-sided game training group 
(SSG; n = 18). Players from the two teams were randomized 
within teams and playing position to ensure and equal rep-
resentation of both intervention groups. The two different 
types of training were added to the players’ normal training 
programs three times a week for 4 weeks in total. We have 
chosen to compare SET and SSG, since pilot studies have 
demonstrated a markedly higher exercise intensity during 
SET compared to SSG, which also is supported by Mohr 
and Krustrup (2016). Pre and post intervention physical per-
formance tests were performed to measure the impact of the 
two intervention training protocols on high-intensity exer-
cise performance. Moreover, a muscle biopsy was obtained 
pre and post intervention from the m. vastus lateralis of the 
dominant leg. The muscle tissue was analysed for metabolic 
enzyme maximal activity and expression of a wide range 
of skeletal muscle proteins. In addition, activity pattern 
during training was assessed and capillary blood samples 
were taken during training and analysed for blood lactate 
concentration.

Experimental protocol

SET (n = 21) performed speed endurance production training 
(Mohr and Krustrup 2016), three times a week for a 4-week 
period. The training comprised a 20-m straight forward 
run and 90° turn followed by a 10-m forward run and 180° 
turn, then another 20-m forward run, another 180° turn, and 
finally a 40-m forward run. This specific drill was chosen 
after pilot testing with GPS technology and with feedback 
from the coaches. Participants in SET were informed to 
run with maximum effort during the entire drill and were 
continuously verbally encouraged. The drill was performed 
individually as a time trial drill in 30-s intervals separated 
by 150 s of passive recovery. The course of the drill ensured 
that players could perform the drill several times without 
stopping to ensure that the drill lasted exactly 30-s. The 
number of exercise intervals was six during the first inter-
vention week, eight during the second and third weeks, and 
ten during the fourth week. The SSG group performed a 
6-a-side soccer game with goal keepers on a pitch 40 m 
long and 32 m wide three times a week for 4 weeks (Dellal 
et al. 2011). Pilot studies showed that this specific drill had 
a markedly lower exercise intensity compared to SET. The 
training was performed in two intervals lasting 7 min in the 
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first week, two intervals lasting 8 min in the second and 
third weeks, and two intervals of 9 min in the fourth week. 
The participants had a passive recovery interval of 2 min 
between exercise intervals. The 6-a-side games were played 
with normal rules and players were verbally encouraged. The 
two different drills were performed at the end of the normal 
training (~ 60 min) three times a week. The normal training 
included a ~ 15-min warm-up, ~ 15 min of technical training, 
and ~ 30 min of tactical training. The players were familiar-
ized with the drills prior to the study. The intervention took 
place during the pre-season and was conducted outdoors on 
an artificial pitch. The environmental temperature during the 
intervention period was 3–8 °C. Forty-five players started 
the study. There were six drop-outs due to injury (n = 4) or 
illness (n = 2). These players were excluded from the meas-
ures and analysis, giving a final sample of 39. During the 
study, participants were instructed to follow their usual diet 
before all testing and training sessions.

Muscle analyses

Twelve players did not give informed consent to have muscle 
biopsies taken but underwent all other measurements. Thus, 
27 participants had a muscle biopsy taken (~ 70–120 mg wet 
weight) in resting conditions a week before the start of the 
intervention. The biopsies were obtained with the subjects 
lying in the supine position on a portable bed. This proce-
dure was repeated in the week after the intervention 3 days 
after the last training session. The muscle tissue was imme-
diately frozen in liquid nitrogen and stored at − 80 °C. The 
frozen sample was weighed after freeze-drying as well as 1 h 
later to correct for the water content. After freeze-drying, the 
muscle samples were dissected free of blood, fat, and con-
nective tissue. Next, 1–2 mg dry weight muscle tissue was 
extracted in 1 M HCl, hydrolyzed at 100 °C for 3 h, and the 
glycogen content determined using the hexokinase method. 
Maximal citrate synthase (CS), 3-hydroxyacyl-CoA-dehy-
drogenase (HAD), and phosphofructokinase (PFK) activi-
ties were determined fluorometrically in triplicate for each 
biopsy on a separate piece of muscle from the biopsy, as 
described by Lowry (Lowry and Passonneau 1972), and 
these analyses displayed CV values between 4 and 7%.

Western blotting

The protein expression was determined as described by 
Thomassen et al. (Thomassen et al. 2010). In short, ~ 2 mg 
of the dissected human muscle tissue was homogenized in 
duplicate for each biopsy (Qiagen Tissuelyser II, Retsch 
GmbH, Haan, Germany) in a fresh batch of buffer contain-
ing (in mM): 10% glycerol, 20 Na-pyrophosphate, 150 NaCl, 
50 HEPES (pH 7.5), 1% NP-40, 20 β-glycerophosphate, 2 
Na3VO4, 10 NaF, 2 PMSF, 1 EDTA (pH 8), 1 EGTA (pH 8), 

10 µg/ml aprotinin, 10 µg/ml leupeptin, and 3 benzamidine. 
Afterwards, the samples were rotated end over end for 1 h 
at 4 °C, centrifuged at 18,320 g for 20 min at 4 °C, and the 
supernatant (lysate) used for further analysis. Total protein 
concentration in each sample was determined by a bovine 
serum albumin (BSA) standard kit (Pierce), and samples 
were mixed with 6 × Laemmli buffer (7 ml 0.5 M Tris-base, 
3 ml glycerol, 0.93 g DTT, 1 g SDS, and 1.2 mg bromophe-
nol blue) and  ddH20 to obtain similar concentrations in all 
samples.

An equal amount of total protein was loaded in each well 
of pre-casted gels (Bio-Rad Laboratories, USA) and all sam-
ples from each subject were loaded side by side on the same 
gel. Proteins were separated according to their molecular 
weight by sodium dodecyl sulphate polyacrylamide gel elec-
trophoresis (SDS–PAGE) and then transferred semi-dry to 
polyvinylidene difluoride (PVDF) membranes (Bio-Rad). 
The membranes were blocked in either 2% skimmed milk 
or 3% BSA in Tris-buffered saline including 0.1% Tween-
20 (TBST) before overnight incubation in primary antibody 
at 4 °C. Subsequently, the membranes were washed for 
2 × 10 min in TBST and incubated for 1 h at room tempera-
ture in horseradish peroxidase (HRP)-conjugated secondary 
antibody. The membranes were then washed for 3 × 15 min 
in TBST before the bands were visualized with ECL (Mil-
lipore) and recorded with a digital camera (ChemiDoc MP 
Imaging System, Bio-Rad Laboratories, USA). Quantifica-
tion of the Western blot band intensity was carried out using 
Image Lab version 4.0 (Bio-Rad Laboratories, USA), and 
the mean of samples A and B in arbitrary units was used 
as the final result estimating the protein expression in each 
subject. To evaluate intervention-induced changes in protein 
expression, post versus pre, band signal intensity ratios were 
calculated for each individual and values ≥ 3 excluded from 
further analysis to avoid statistical type II errors.

Prior to the final analyses, the primary antibodies were 
optimized using human mixed muscle standard lysates to 
ensure that the band signal intensity was located on the lin-
ear part of the specific antibody standard curve. The primary 
antibodies used to detect the expression of the investigated 
proteins were diluted in either 2% skimmed milk [poly-
clonal  Na+–K+ ATPase α2 (07-674, Millipore), monoclo-
nal β1 (MA3-930, Thermo Scientific), polyclonal FXYD1 
(13721-1-AP, Datasheet), polyclonal MCT4 (AB3316P, 
Millipore), polyclonal SOD2 (06-984, Millipore), polyclonal 
CAT (ab1877, Abcam), polyclonal GLUT4 (PA1-1065, 
Thermo Fisher Scientific) and polyclonal GS (3893, Cell 
Signaling Technology)] or 3% BSA [monoclonal  Na+-K+ 
ATPase α1 (alfa6F, Developmental Study Hydridoma Bank, 
University of Iowa, USA), polyclonal SOD1 (574597, Mil-
lipore) and monoclonal NHE1 (MAB3140, Chemicon)] in 
TBST. Antibodies targeting SOD1 and SOD2 were kindly 
provided by Prof. H. Pilegaard, University of Copenhagen. 
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Applied secondary antibodies were HRP-conjugated goat 
anti-rabbit (4010-05, Southern Biotech), rabbit anti-sheep 
(P-0163, DAKO) and goat anti-mouse (P-0447, DAKO). The 
muscle buffer capacity was measured after having adjusted 
the pH of the sample to 7.1 with 0.01 M NaOH. The sample 
was titrated to pH 6.0 by serial additions of 0.01 M HCl, 
followed by titration back to pH 7.1 by serial additions of 
0.01 M NaOH. The pH was assessed after each addition. The 
non-HCO3 physiochemical buffer capacity was determined 
from the number of moles of  H+ required to change the pH 
from 7.1 to 6.5 and was expressed as millimoles  H+ per 
kilogram dry weight per unit of pH.

Physical and physiological training response

During a representative intervention training session in week 
3, blood samples were obtained from the fingertip for blood 
lactate analysis according to standard procedure (Pettersen 
et al. 2014) to have an indication of the glycolytic loading 
in the two training interventions. The baseline blood was 
taken 5 min before normal training. In SET, blood was then 
taken after intervals 4 and 8 analogous to previous stud-
ies (Ade et al. 2014), while in the SSG group blood was 
obtained after the first and last intervals. Capillary blood was 
frozen and stored at − 80 °C until analysed for lactate using 
a Biosen analyzer (Biosen C-line, EKF-diagnostic GmbH, 
Magdeburg, Germany; see Pettersen et al. 2014).

Activity pattern characteristics during the additional 
training were quantified using a 10-Hz S5 global positioning 
system (GPS) (Catapult Innovations, Melbourne, Australia) 
on three occasions per player (in weeks 1, 2 and 3). This was 
done to compare the external physical loading of the two 
training interventions (see also Mohr and Krustrup 2016). 
The GPS units were placed between the shoulder blades in 
a harness tight to the body to restrict movement artifact. 
The GPS has previously been shown to provide a valid and 
reliable measure of instantaneous velocity during accelera-
tion, deceleration, and constant motion (Varley et al. 2012). 
Time motion characteristics were quantified as total distance 
(TD), high-intensity running distance (HIR), and high-speed 
running distance (HSR), and set at > 0 km/h, > 14 km/h, and 
> 21 km/h, respectively (see Fransson et al. 2017). Intense 
accelerations (Ia) and intense decelerations (Id) were also 
analysed and set at > 3 m/s2.

Physical performance tests

Pre and post intervention, the participants performed a 
repeated sprint test (RST) comprising 5 × 30-m straight-line 
sprints separated by 25 s of active recovery (easy jogging 
back to the start line) (Nybo et al. 2013). The test has been 
shown to be reliable (Castagna et al. 2017) and to possess a 
high reproducibility (CV < 1%; Bangsbo and Mohr 2012). 

RST performance was determined as mean sprinting time, 
which has been shown to be reliable (Spencer et al. 2006). 
Also a fatigue index was calculated as the percentage decline 
in sprint performance from the first to the last sprint. The test 
was chosen as a measure of repeated sprint ability in rela-
tion to soccer (Bangsbo and Mohr 2012). The participants 
also performed an arrowhead agility test (AAT) consisting 
of four trials, two right and two left, according to previous 
studies (Di Mascio et al. 2015; Noon et al. 2015). This test 
was applied as a measure of soccer-specific agility and has 
a high reproducibility (CV < 1% Bangsbo and Mohr 2012; 
Di Mascio et al. 2015). Cones are placed in an arrowhead 
shape, with one set of cones indicating the start and finish 
line. The RST and AAT were performed in an indoor hall 
with a temperature of ~ 20 °C. The sprint times were meas-
ured by photocell gates placed 1.0 m above ground using 
Muscle Lab V8 (Bosco System, Rome, Italy) photocells 
with a precision of 0.001 s. Each sprint was initiated from a 
standing position with the arms raised to chest height 50 cm 
behind the photocell gate, which started a digital timer. The 
time of each sprint was recorded and total sprint time cal-
culated. A fatigue index was also calculated between the 
fastest time and the slowest sprint in the RST as well as the 
accumulated total time of the five sprints. The participants 
were familiarized with the tests in two pre-trials prior to 
commencement of the study. Finally, pre and post inter-
vention with 3 days of recovery after the RST and AH, a 
Yo–Yo intermittent recovery test level 2 (Yo–Yo IR2) was 
performed following a 10-min standardized warm-up (see 
Bangsbo and Mohr 2012). The Yo–Yo IR2 test has a high 
sensitivity and a relatively high reproducibility (CV = 9.6%, 
Krustrup et al. 2006) and is correlated to high-intensity run-
ning in a soccer game as well as muscle variables of impor-
tance for fatigue resistance during intense exercise (Mohr 
et al. 2016b). The test was performed outside on artificial 
grass at an environmental temperature of ~ 4–8 °C. The test 
consists of repeated 2 × 20-m runs back and forth between a 
start and finish line at progressively increasing speeds until 
exhaustion, controlled by audio bleeps. Between each run-
ning bout, the participants have a 10-s active recovery period 
in which they have to jog around a cone placed 5 m behind 
the starting line. The participants run until exhaustion, as 
previously described (Bangsbo and Mohr 2012). Yo–Yo IR2 
testing was part of the clubs’ test battery, so the participants 
were familiar with the test procedures.

Statistical analyses

Data are presented as means ± SD. Differences in change 
score in physical test performance and muscle responses 
between SET and SSG, as well as within-group differences, 
were evaluated using a two-way ANOVA test. Activity pro-
files and training responses were compared using a two-way 
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ANOVA with repeated measurements. When a significant 
interaction was detected, data were subsequently analysed 
using a Newman–Keuls post hoc test. 95% confidence inter-
vals are presented and effect size (ES; Cohens d calculation) 
was used to assess the magnitude of the differences and con-
sidered trivial (< 0.2), small (0.2–0.6), moderate (0.6–1.2), 
large (1.2–2.0) and extremely large (> 2.0) as suggested 
by Hopkins et al. (2009). A significance level of 0.05 was 
chosen.

Results

Exercise training

The SSG group (n = 13) covered 24% greater (P < 0.05) 
distance in total during the assessed intervention trainings 
compared to SET (n = 17; Table 1). However, SET covered 
approximately four- and 16-fold more (P < 0.05) high-
intensity and high-speed running, respectively, than SSG 
(Table 1). In addition, the SET intervention induced 41 and 
163% more intense accelerations and decelerations in com-
parison to SSG based on the assessed sessions (Table 1). 
Finally, capillary blood lactate concentrations during SET 
(n = 16) were more than twice as high in comparison to SSG 
(n = 12; Table 1).

Muscular metabolic enzyme expression and substrate 
level

Skeletal muscle CS maximal activity increased (ES = 1.6, 
CI = 9.2–3.1, P < 0.05) over the intervention period from 
25.5 ± 3.1 to 30.0 ± 3.1 µmol·g−1·min−1 in SET (n = 15) 
only, with a larger (P < 0.05) change score compared to 
SSG (n = 11; Fig. 1). Muscle HAD maximal activity was 
also elevated (ES = 1.1, CI = 5.1–1.3, P < 0.05) post inter-
vention in SET (15.3 ± 1.9 to 18.5 ± 4.0 µmol·g−1·min−1; 

n = 15) and in SSG (ES = 1.3, CI = 6.4–1.4) (15.7 ± 2.8 
to 19.5 ± 3.0 µmol·g−1·min−1; n = 11) with no between-
groups difference (Fig. 1). Muscle PFK maximal activ-
ity showed no changes between pre and post analysis and 
no between-groups difference (Fig. 1). GLUT-4 protein 
expression responded in SSG (ES = 0.6, CI = 5–75%) 
(40 ± 54%; n = 12; P < 0.05), with no changes in SET 
(Fig. 2b), while GS protein expression showed a nega-
tive change score (P < 0.01) of − 22 ± 30% (n = 15) in 
SET (ES = 0.2, CI = − 38 to − 5%) with no change in SSG 
(Fig. 2b). Resting muscle glycogen concentration was 
679 ± 91 and 678 ± 85 mmol·kg−1 d.w. in SSG (in front of 
(n = 12)), pre intervention, but was elevated (P < 0.05) to 
758 ± 143 and 853 ± 189 mmol·kg−1 d.w. post intervention. 
Resting muscle glycogen concentration tended (P = 0.09) 
to increase more in SSG than in SET.

Table 1  Activity pattern and blood lactate during training

TDC Total distance covered, HIR high-intensity running, HSR high speed running, Ia intense accelerations, Id decelerations (upper panel) and 
blood lactate concentrations (lower panel) during training in SET and SSG
*Significant different from SSG. Significant level P < 0.05. Data are means ± SD

Group TDC (m) HIR (m) HSR (m) Ia (n) Id (n)

SET (n = 17) 1364 ± 84* 826 ± 102* 239 ± 53* 38 ± 9* 50 ± 8*
SSG (n = 13) 1683 ± 348 180 ± 133 14 ± 15 27 ± 14 19 ± 11

Group Baseline Post 4-min Post 8-min

Blood lactate concentration (mmol·L−1)
 SET (n = 16) 3.4 ± 1.7 11.8 ± 2.8* 13.7 ± 3.4*
 SSG (n = 12) 2.6 ± 1.9 4.7 ± 2.0 4.8 ± 2.3
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Fig. 1  Relative change from pre to post intervention in citrate syn-
thase (CS), 3-hydroxyacyl-CoA-dehydrogenase (HAD), and phospho-
fructokinase (PFK) maximal enzyme activity determined in muscle 
tissue from vastus lateralis muscle in SET (n = 15; solid bars) and 
SSG (n = 11; open bars). #Significant between-group differences in 
change score. *-Significant within-group difference from pre to post 
intervention. Significance level P < 0.05. Data are means ± SD
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Muscular ion-regulatory enzyme expression

Protein expression for the α1  Na+–K+ ATPase subunit 
increased in SET (ES = 0.5, CI = 46–34%) (19 ± 26%; 
n = 15; P < 0.05) and SSG (ES = 0.7, CI = 13–63%) 
(37 ± 41%; n = 12; P < 0.01), with a tendency (P = 0.07) 
for a greater change score in SSG (Fig. 2a). In contrast, 
no between-group or within-group differences were 
detected in the α2, β1 and FXYD1  Na+–K+ ATPase subu-
nits post intervention (Fig. 2a). MCT4 protein expression 
was upregulated in response to both interventions (SET: 
30 ± 41%; n = 15; ES = 0.3, CI = 7–52%, P < 0.05; SSG: 
61 ± 49%; n = 12; ES = 0.7, CI = 30–92%, P < 0.01), with 

no between-group effects (Fig. 2a). No between-group 
or within-group effects were observed in NHE1 protein 
expression or muscle buffer capacity (Fig. 2a).

Muscular antioxidative enzyme expression

SOD2 protein expression increased in SET (ES = 0.8, 
CI = 10–46%) and SSG (ES = 1.1, CI = 19–55%) [28 ± 32% 
(n = 15) and 37 ± 29% (n = 12), respectively; P < 0.05], 
while no intervention-induced changes occurred in protein 
expression of SOD1 (Fig. 2b). The SET and SSG interven-
tions did not affect CAT protein expression (Fig. 2b).

Exercise performance

At baseline Yo–Yo IR2 performance was 569 ± 147 and 
563 ± 145 m in SET and SSG, respectively. Yo–Yo IR2 
performance increased in SET (ES = 1.9, CI = − 386.8 
to − 357.9, P < 0.05) (n = 21) and SSG (ES = 1.3, 
CI = − 387.1 to 158.0, P < 0.05) (n = 18) by 323 ± 125 
and 222 ± 113 m, respectively, with a 39% greater change 
score (P < 0.05) in SET than in SSG (Fig. 3). RST perfor-
mance was unaltered in both SET and SSG, as mean sprint 
time did not change during the intervention. However, the 
fatigue index improved (P < 0.001) in both groups (Fig. 3). 
AAT performance did not change during the intervention 
period (Fig. 3).
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Quadriceps muscle metabolite markers
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Fig. 2  Relative change from pre to post intervention in  Na+-K+ 
ATPase α1, α2, β1 and FXYD1, MCT4 and NHE1 protein expression, 
as well as buffer capacity (a), and SOD1, SOD2, GLUT4, GS and 
CAT protein expression (b) determined in muscle tissue from vastus 
lateralis muscle in SET (n = 15; solid bars) and SSG (n = 12; open 
bars). #Significant between-group differences in change score. *Sig-
nificant within-group difference from pre to post intervention. Signifi-
cance level P < 0.05. Data are means ± SD
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Fig. 3  Relative change from pre to post intervention in Yo–Yo inter-
mittent recovery test, level 2 (Yo–Yo IR2), repeated sprint test (RST), 
and RST fatigue index  (RSTFI) and arrowhead agility test (AAT) per-
formance in SET (n = 21; solid bars) and SSG (n = 18; open bars). 
#Significant between-group differences in change score. *Significant 
within-group difference from pre to post intervention. Significance 
level P < 0.05. Data are means ± SD



118 Eur J Appl Physiol (2018) 118:111–121

1 3

Discussion

The principal findings of the present study were that 4 
weeks of additional speed endurance training induced more 
pronounced improvement of shuttle-run performance and 
CS maximal activity, whereas small-sided games tended 
to induce more pronounced increases in the expression of 
 Na+–K+ ATPase α1 and GLUT4 as well as a higher level of 
muscle glycogen. The observed increases of HAD maxi-
mal activity, as well as MCT4 and SOD2 expression were 
comparable between groups. Thus, the training outcome is 
clearly different between the applied protocols in terms of 
exercise capacity, as well as muscle phenotype.

In the present study, SET performed as all-out 30-s runs 
induced superior effects on skeletal muscle oxidative capac-
ity compared to SSG training in well-trained soccer players. 
SSG are highly applied in competitive soccer training com-
pared to SET (Dellal et al. 2011), but the two methods have 
not been compared in relation to performance and physi-
ological impact. We demonstrate that CS maximal activity 
in the quadriceps muscle showed greater responses in SET 
than in SSG (see Fig. 1). In contrast, muscle HAD maximal 
activity was enhanced to a similar extent after both train-
ing protocols. Thus, these findings indicate that exercise 
training-induced adaptations in skeletal muscle oxidative 
capacity are not strongly associated with metabolic flow 
during training. For example, the SSG approach has been 
shown to have a marked aerobic component (Halouani et al. 
2014) which is also supported by a ~ 25% longer running 
distance in SSG than SET (see Table 1). In divergence, SET 
demonstrated a markedly higher exercise intensity as well as 
glycolytic activity, as observed in previous studies (Iaia et al. 
2009; Mohr et al. 2007). Despite this, and in contrast to the 
oxidative markers, muscle PFK activity was not upregulated 
in response to the intense training regime, which is in line 
with other speed endurance training studies (Harmer et al. 
2000; Mohr et al. 2007; Nordsborg et al. 2015), supporting 
the notion above. The finding of upregulated mitochondrial 
capacity after SET has been reported in several other stud-
ies in both untrained individuals (Burgomaster et al. 2008; 
Gibala et al. 2006; Nordsborg et al. 2015) and trained ath-
letes (Iaia and Bangsbo 2010; Skovgaard et al. 2016). SET 
appears to increase muscle oxidative capacity when added 
to normal training (Gunnarsson et al. 2013), as in the pre-
sent study, and when performed in conjunction with low-
ered training volume (Christensen et al. 2011; Nordsborg 
et al. 2015). Recently, MacInnis et al. (MacInnis et al. 2017) 
also demonstrated that single-leg cycling performed in an 
interval compared to a continuous manner elicited superior 
skeletal muscle mitochondrial adaptations despite equal total 
work. Collectively, this research supports the present study 
that SET upregulates oxidative capacity in skeletal muscle 
and appear to be superior to endurance-based training even 

in well-trained athletes. A potential mechanism may be that 
high-intensity interval training enhances aerobic metabolism 
(Harmer et al. 2000) via upregulation of PGC-1α mRNA 
expression (Nordsborg et al. 2010; Skovgaard et al. 2016) 
and subsequently improved mitochondrial biogenesis.

An interesting finding in the current study was a nearly 
40% greater improvement in Yo–Yo IR2 test performance 
in the SET compared to the SSG training group. In contrast, 
RST and agility performance was unaltered, but the fatigue 
index in the RST displayed comparable improvement in both 
SET and SSG. It should be noted that the application of 
fatigue indexes in RST is questionable (Oliver 2009). There 
is strong backing in the literature for the proposition that 
SET increases high-intensity exercise performance in both 
habitually active (Mohr et al. 2007) and trained populations 
(Iaia et al. 2009; Mohr and Krustrup 2016; Thomassen et al. 
2010). For example, it was demonstrated by Thomassen 
et al. (Thomassen et al. 2010) that repeated sprint ability 
improved after only 2 weeks of SET even after the training 
volume was markedly reduced in well-trained soccer play-
ers. Fatigue during high-intensity exercise has been linked 
to depolarization of the resting muscle membrane potential 
caused by disturbance in the muscle ion homeostasis, with 
a large  K+ efflux from the muscle cell and accumulation in 
the muscle interstitial fluid being suggested to play a central 
role (McKenna et al. 2008). Thus, an upregulation in muscle 
 Na+–K+ ATPase protein expression, may be beneficial for 
delaying the onset of fatigue during intense exercise. How-
ever, in the present study, SET and SSG training groups 
improved (19 and 37%, respectively) the protein expres-
sion of the α1  Na+–K+ ATPase subunit, with a tendency 
(P = 0.07) for more marked improvement in the SSG group 
(Fig. 2a), demonstrating that the more pronounced improve-
ments in Yo–Yo IR2 performance in SET are unrelated to 
the altered α1  Na+–K+ ATPase expression.

Muscle MCT4 protein expression increased in both 
training groups with no between-group differences, while 
no changes occurred in NHE1 protein expression (Fig. 2a). 
Thus, the muscle  lactate− and  H+ regulation capacity were 
partly improved by both interventions, despite a decline in 
muscle buffer capacity after the SSG intervention (Fig. 2a). 
The decline in buffer capacity may have influenced the infe-
rior exercise performance adaptations in SSG in compari-
son to SET. Blood lactate concentration during training was 
markedly higher in SET than in SSG (see Table 1), indi-
cating a higher muscle lactate production and a potentially 
greater degree of muscle acidification in SET (Mohr et al. 
2007), which potentially have maintained muscle buffer 
capacity in SET. In contrast, the adaptive response to exer-
cise training in MCT4 and NHE1 does not appear to be 
highly influenced by the flow rate through these transporters.

Muscle antioxidant capacity was upregulated in both 
training groups, with SOD2 muscle protein expression 
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elevated by 28 and 37% in SET and SSG, respectively 
(Fig. 2b). SOD quenches the superoxide anion (Jiang et al. 
2014), whereas antioxidant enzymes seem to inhibit the 
translocation of NF-κΒ to the nucleus, thereby contribut-
ing to the attenuation of exercise-induced oxidative stress 
and inflammatory cascades induced by intense exercise 
(Azevedo-Martins et al. 2003). This is particularly impor-
tant for high-intensity intermittent exercise, which induces a 
marked rise in oxidative stress and inflammatory responses 
(Mohr et al. 2016a). Conventional endurance training may 
increase the expression and activity of antioxidant enzymes 
such as GPX, SOD, and CAT in skeletal muscle follow-
ing several weeks of exposure (Evelo et al. 1992; Fatouros 
et al. 2004; Oh-ishi et al. 1997). However, similar data 
from human muscle tissue following high-intensity training 
regimes such as speed endurance regimes are sparse. One 
study found that only three speed training sessions induced 
an elevation in antioxidant status (Shing et al. 2007), which 
coincides with the elevation in SOD2 protein expression 
after only 4 weeks of high-intensity intermittent training 
in our study. The supportive findings on SOD2 following 
speed endurance training have been reported in two animal 
studies (Lu et al. 2015; Tucker et al. 2015), and one human 
study with recreationally active participants (Scribbans et al. 
2014). Repeated exposure to intense exercise-induced ROS 
generation and inflammation is suggested to be a prerequi-
site for SOD upregulation (Powers et al. 1993), which may 
indicate that training intensity is an important variable for 
the adaptive response. However, statistically the two train-
ing protocols in the present study were equally effective in 
upregulating SOD2. The elevated expression in SOD2 pro-
teins has been linked to the muscle oxygen consumption dur-
ing training (Jenkins et al. 1984), since a close relationship 
has previously been reported for antioxidant enzymes and 
adaptation in TCA cycle enzymes (Burgomaster et al. 2006, 
2007; Gibala et al. 2012; Laughlin et al. 1990). In the present 
study, the cytosol-based SOD1 protein remained unaffected 
by the training intervention, whereas SOD2 located in the 
mitochondrial intermembrane space increased and may be 
indicative of interplay between antioxidant reserves and 
mitochondrial adaptations to training. Our data partly verify 
this notion, with the SOD2 expression rise which coincid-
ing with the upregulation of muscle oxidative capacity, as 
evidenced by the rise in CS activity in the SET group. How-
ever, no intervention-induced adaptations were detected in 
SSG despite the ~ 40% elevation in SOD2 expression, which 
speaks in favour of other muscle signalling mechanisms for 
mitochondrial biogenesis. In addition, no correlation was 
found between the delta change in CS and SOD2 during the 
training intervention period (data not shown). Rats bred to 
have high running capacity were characterized by having 
high muscle SOD2 activity, suggesting that increased endur-
ance is characterized by an increased molecular network of 

resistance to oxidative stress (Tweedie et al. 2011). How-
ever, in the present study, no relationship was seen between 
exercise performance adaptation and upregulation of SOD2. 
Further studies are warranted to elucidate redox adaptations 
to exercise training in trained human skeletal muscle.

Resting muscle glycogen increased in both groups after 
the training intervention, which is a common finding in 
other training studies (Nordsborg et al. 2015; Randers 
et al. 2010). However, muscle glycogen tended to increase 
more in SSG compared to SET. This is supported by the 
fact that muscle glucose transport capacity, marked by 
GLUT4 protein expression, was enhanced by 40% in SSG 
with no change after SET (Fig. 2b), while glycogen syn-
thase protein expression was down regulated in SET. Thus, 
the SSG intervention was apparently more efficient at 
improving muscle glycogen storage capacity, despite that 
no difference was detected in resting glycogen measured 
in muscle homogenate. In contrast to the present study, a 
number of studies have found increased muscle GLUT4 
content (Little et al. 2010), as well as resting muscle gly-
cogen (Nordsborg et al. 2015), after high-intensity training 
protocols. However, these studies were not performed with 
trained athletes, which may partly explain the conflicting 
findings in our study.

A limitation of the present study is that two interven-
tions are compared without a classical control group, since 
we wanted to match the training time in the two interven-
tions. Moreover, it was not possible to monitor physical and 
physiological responses during the entire training period 
to describe the full external and internal loading, since 
the players were assessed during a real setting pre-season 
period.

Conclusions

In conclusion, added high-intensity intermittent exercise 
training, organised as speed endurance training drills, 
improves skeletal muscle oxidative capacity and exercise 
performance to a greater degree than added moderate inten-
sity training, organised as small-sided soccer games, in well-
trained male soccer players, with similar group responses in 
muscle  lactate−/H+ cotransporter and antioxidative capac-
ity. In contrast, moderate intensity training increased muscle 
GLUT4 expression and tended to induce greater upregula-
tion in  Na+–K+ ATPase subunit expression and muscle gly-
cogen storage capacity than high-intensity interval training.
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