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Abstract: Grapes contain high concentrations of secondary metabolites and antioxidants that have
been linked to a reduction of several chronic diseases. Here, we report results of a UK retail survey,
which investigated the effect of the production region (Mediterranean vs. South Africa), grape
type (white vs. red vs. black) and variety, and production system (organic vs. conventional) on
antioxidant activity and concentrations of phenolic compounds in table grapes. Black grapes had
~180% total antioxidant activity (TAA), ~60% higher total phenolic content (TPC) and ~40 times
higher anthocyanin concentrations (TAC) than white grapes, while red grapes had intermediate
levels of TAA, TPC and TAC. The effects of season and production system and differences between
varieties of the same grape type were substantially smaller. Grapes imported from Mediterranean
countries in summer had a 14% higher TPC and ~20% higher TAA than grapes imported from South
Africa in winter, and organic grapes had a 16% higher TPC and 22% higher TAA, but ~30% lower
TAC than conventional grapes. Significant differences in TPC, TAA and/or TAC between organic and
conventional grapes could only be detected for specific grape types, varieties and/or sampling years.
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1. Introduction

Grapes are one of the most popular fruit species globally and are used as table grapes and for
processing into grape juice, wine and a range of other alcoholic drinks (e.g., brandy, raki, grappa).
FAO [1] statistics suggest that around 76,000 square kilometers of agricultural land is used for grape
production and approximately 21% of global grape production is for table grapes. Table grapes
consumed in Europe are mainly produced in (a) Mediterranean countries (summer grape season)
and (b) countries in the Southern Hemisphere (mainly South Africa and to a lesser extent Australia,
Argentinia, Brazil, Chile and New Zealand) [2].

Grapes have high concentrations of plant metabolites with antioxidant activity including
polyphenols, such as flavonoids, tannins, resveratrol and anthocyanins [3–5]. There is mounting
scientific evidence for positive links between consumption of antioxidant/polyphenol-rich foods/drinks
and lower risk of cardiovascular and other chronic diseases [6,7]. For example, a large epidemiological
study that monitored diet and health of human participants over 20 years has described the consumption
of grapes and grape products (in particular red wine) as a possible explanation for the “French paradox”,
the observation that French consumers, despite consuming high fat/animal fat diets, have a very low
rate of coronary heart disease [8,9]. However, this and previous studies showed that total antioxidant
activity and total concentrations and profiles of individual phenolics, in particular anthocyanins, differ
substantially between different grape types (white, red and purple/black), with levels often shown
to be lowest in white and highest in black grapes [10]. It is therefore likely that the type of grape
consumed may also affect the relative impact of grape consumption on health.

The demand for organic table grapes has rapidly increased mainly due to consumer perceptions
that organic foods have higher sensory and nutritional quality [11–13]. A recent systematic
review and meta-analysis reported that organic crops on average have higher concentrations of
phytochemical/antioxidants and higher antioxidant activity [14]. Long-term field experiments on
arable crops linked the higher phenolic concentrations and antioxidant activity in organic compared
to conventional wheat to a lower and/or more balanced supply of nitrogen when organic instead
of mineral N-fertilizers are used [15]. However, there is still considerable controversy on whether
and to what extent organic table grapes have higher phenolic, anthocyanin and/or antioxidant levels,
because several previous comparative studies, reported contrasting results on composition differences
between organic and conventional table grapes or grapes of specific varieties [12,16–22]. For example,
a study by Tassoni et al. [22,23] reported significantly higher total antioxidant (TAATEAC) levels in (a)
organic white grapes of the variety Albana, (b) organic red grapes of the variety Lambrusco, but (c)
conventional red grapes of the variety Sangiovese, while production system had no significant effect
on TAATEAC in white grapes of the variety Pignoletto.

Apart from variety choice and environmental conditions (e.g., temperature, solar radiation, soil
type), a range of specific agronomic factors (including fertilization, irrigation, use of plant growth
regulators and bud load levels, cluster thinning and fruit yield) factors are known to affect total
phenolic, anthocyanin and/or antioxidant activity levels in gapes, and may therefore explain the
variability of results of these comparative (organic vs. conventional) studies.

The contrasting effects of grape exposure to high temperatures (>35 ◦C) and solar irradiation
were studied in a groundbreaking study by Tarara et al. [24]. Total anthocyanin content in grape skins
decreased when berries were exposed to temperatures above 35 ◦C, while berries exposed to sun had
more than twice the amount of flavonol-glycosides than berries from shaded clusters [24].

The type of fertilizer, input levels, and the ratio (e.g., N:K) of mineral fertilizers applied to grapes
are shown to affect phenolic and/or antioxidant levels in grapes [25–27]. Previous studies showed that
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the ratio of N:K applied with fertilizer is an important driver for grape polyphenol and anthocyanin
levels. For example, a study by Delgado et al. [25] reported that increasing mineral N-applications in
combination with no or medium-level K fertilizer reduce polyphenol and anthocyanin concentrations
in Tempranillo grapes, while grapes fertilized with high levels of both mineral N and K fertilizer had
the highest polyphenol concentrations. Fruit with an N:K ratio of between 3.6 and 4.3 were shown to
have the highest polyphenol levels [25]. Similar trends were found in a long-term study in France
which compared different input levels of cattle manure, with high levels of manure inputs resulting in
lower anthocyanin and tannin content in grapes, but interestingly higher anthocyanin levels in wine
made from them [26]. A recent study from Iran reported lower fruit yields, but higher antioxidant
activity and phenolic levels when white seedless grapes were fertilized with organic than mineral
fertilizers [27].

Studies by Peterlunger et al. [28] with Merlot grapes in Italy and Kennedy et al. [29] with Savignon
grapes in the US both reported that, compared to an optimum irrigation control, minimum/deficit
irrigation treatment resulted in higher anthocyanin concentrations.

A study in Spain with Tempranillo and Grenache grapes reported that mechanical thinning led to
a higher Brix and increased concentrations of berry phenolics, but not anthocyanins and the study also
found strong treatment x year interactions for berry phenolics [30].

The use of gibberellic acid (GA3) to increase fruit yield was reported to decrease total phenolic,
flavonoid and antioxidant activity in ‘Muscat’ grape berry skin and flesh, although levels in leaf, stem
and tendril tissue increased [31]. Iincreasing high yield levels by contrasting levels of winter pruning
or cluster thinning were also reported to result in lower total phenolic, anthocyanin and/or antioxidant
activity in table grapes, and wine [30,32,33]. Garrido et al. [33] also reported that the increase in
phenylpropanoids and flavonoids concentrations effect resulting from cluster thinning/lower yields
was greater in non-irrigated than irrigated grapes [11].

The main objective of the retail survey reported here was to quantify and compare the
concentrations of phenolics, anthocyanins and antioxidant activity in organic and conventional
white, red and/or black grapes available to consumers in UK supermarkets. Another objective was to
identify composition differences between grapes from the two different regions that supply the UK and
European market by comparing grapes in the two periods when both organic and conventional grapes
are available in UK supermarkets, which are between (a) July and October (when grapes imported
from Mediterranean countries) and (b) January and April (when grapes are imported from South
Africa and other countries in the Southern hemisphere).

Preliminary supermarket surveys had shown that the varieties available as organic and
conventional tables grapes differed substantially in both the winter and summer periods and
variety-matched samples of organic and conventional grapes are rarely available. It was therefore not
possible to quantify to what extent the contrasting variety of profiles of organic and conventional grapes
contributed to/confounded the composition differences detected between organic and conventional
grapes. However, to identify the potential impact of variety choice we carried out supplementary
statistical analyses using data obtained for varieties available both as organic and conventional
grapes only.

It should also be pointed out that, although retail surveys can provide an accurate estimate
of composition differences between (a) organic and conventional and (b) white, red and black
grapes experienced by consumers, they do not allow these differences to be linked to contrasting
(a) pedoclimatic conditions in grape-producing regions, (b) agronomic practices (e.g., variety choice,
and fertilization, pruning, crop protection regimes) and (c) supply chain-related parameters (e.g.,
maturity stage at harvest, postharvest treatments, time spend in transport). This is primarily because
the information on pedoclimatic, agronomic and supply chain-related parameters cannot be obtained
from the supermarkets where grapes were collected.
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2. Materials and Methods

2.1. Retail Survey Strategy

The table grape retail survey was conducted within two seasons (winter and summer) and during
two years (2015 and 2016). During each season grapes were collected at regular weekly intervals in
stores of three different UK supermarkets that sold both organic and conventional table grapes within
the Newcastle upon Tyne (NE) UK postcode area. Table grapes collected during the winter season
were all imported from South Africa while those collected during the summer season were imported
from Egypt, Morocco, Greece, Italy and Spain. Depending on the season and sampling date, different
color (white, red and black) grape varieties were available in the shops. The varieties available as
organic and conventional table grapes also differed on most sampling dates. White and red color grape
varieties were available from both organic and conventional production in both seasons (winter and
summer), whereas black colored grape varieties were only available during the summer season.

In each of the three supermarkets, all organic table grape varieties available on sampling days
were purchased, together with either (a) conventional table grapes of the same variety (when available)
with the same sell-by date (+/− 1 day), or (b) conventional table grapes of a different variety (if the
same variety was not available), but the same color type and sell-by date (+/− 1 day).

We collected up to three paired samples (one organic and one conventional bunch/pack per
supermarket) per grape type (white, red and black) on an individual sampling date (3 supermarkets ×
2 production systems × 3 grape types = 18 samples). However, on many sampling dates, matching
samples for some grape types were only available in one or two of the supermarkets, and black
organic grapes were mainly available in the summer season when grapes were imported from the
Mediterranean. A list of varieties available in the UK as both organic and conventional products in the
UK during the summer and winter seasons is shown in Table 1.

2.2. Grape Sample Storage and Preparation

All 485 fresh grape samples (each sample being 1.5 or 2 bunch(es) of grapes in a plastic container)
were transferred to Newcastle University within an hour of purchase and stored at −20 ◦C until
sample preparation. After defrosting for 2 h at room temperature and under a dim light, about 40–50
whole grape berries (approximately 250–350 g) were randomly selected from each sample (1.5 or 2
bunch(es) of grapes/box), cut in half in order to allow removal of seeds and then crushed/homogenized
(skin and pulp) for 30–120 s in a homogenizer (multipurpose food blender) to prepare grape juice.
Following homogenizing, 5 aliquots of juice (for each sample) were labeled (date, management,
supermarket, production country and cultivar name) and stored at −80 ◦C until use in different
biochemical assays/analyses. Dry matter (DM) [34] and sugar content (SC) (OPTi Brix 54 Handheld
Digital Refractometer) were determined as physical properties of grape fruit. SC was also included as
a marker for the ripening stage at harvest [35].

2.3. Chemical Reagents

Folin-Ciocalteau phenol reagent, gallic acid, potassium persulfate and radical scavenging
assay reagents: 6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid (Trolox),
2,2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2′-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Sodium carbonate, methanol, hydrochloric
acid (12 N), sodium chloride, sodium dihydrogen phosphate, sodium hydrogen phosphate, potassium
chloride, sodium acetate, formic acid, acetonitrile and methanol (for HPLC grade) were supplied by
Fisher Scientific.
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Table 1. Varieties and number of samples of organic and conventional white, red and black grapes
collected and analyzed in 2015 and 2016.

Season
Grape Type

Varieties Available (No. of Samples)
Organic Conventional

Winter 2015

White Early Sweet (n = 2) Early Sweet (n = 4)
Prime (n = 7) Prime (n = 8)

Sugraone (n = 11) Sugraone (n = 11)
Sweet Sunshine (n = 2) Sweet Sunshine (n = 1)

Thompson (n = 7) Thompson (n = 21)
Muscat (n = 1)
Regal (n = 12)

Sundance (n = 4)
Red Allison (n = 6) Allison (n = 2)

Crimson (n = 6) Crimson (n = 19)
Flame (n = 4) Flame (n = 6)

Sweet Celebration (n = 12) Sweet Celebration (n = 2)
Jack’s Sallute (n = 8) Ralli (n = 4)

Sunred (n = 2) Scarlotta (n = 4)
Timco (n = 1)

Black Autumn Royal (n = 3) Autumn Royal (n = 5)
IFG16 (n = 5) Desert (n = 1)
IFG17 (n = 1)

Sweet Surrender (n = 3)

Summer 2015

White Sugraone (n = 14) Sugraone (n = 13))
Superior (n = 3) Superior (n = 1)
Timpson (n = 3) Timpson (n = 4)
Regal (n = 13) Mellisa (n = 1)

Princess (n = 1)
Thompson (n = 13)

Red Allison (n = 2) Allison (n = 2)
Crimson (n = 13) Crimson (n = 20)

Flame (n = 5) Flame (n = 5)
Scarlotta (n = 10) Scarlotta (n = 3)

Black Autumn Royal (n = 4) Autumn Royal (n = 4)
Midnight Beauty (5) Midnight Beauty (n = 7)

Summer Royal (n = 4) Summer Royal (n = 1)
Melody (n = 1)

Winter 2016

White Thompson (n = 9) Thompson (n = 10)
Early Sweet (n = 1) Sugraone (n = 3)

Regal (n = 1)
Sundance (n = 5)

Sweet Globe (n = 3)
Sweet Sunshine (n = 1)

Red Flame (n = 1) Flame (n = 1)
Jack’s Sallute (n = 2) Crimson (n = 8)

Sweet Celebration (n = 8) Ralli (n = 1)
Black Autumn Royal (n = 1)

Summer 2016

White Sugraone (n = 11) Sugraone (n = 9)
Superior (n = 2) Superior (n = 2)

Thompson (n = 1) Thompson (n = 5)
Timpson (n = 4) Timpson (n = 2)
Sophia (n = 3) Cotton Candy (n = 1)

Sublima (n = 3) Early Sweet (n = 1)
ITUM (n = 2)

Red Allison (n = 3) Allison (n = 2)
Scarlotta (n = 1)

Crimson (n = 4) Crimson (n = 5)
Sweet Celebration (n = 2) Sweet Celebration (n = 1)

Black Midnight Beauty (n = 6) Midnight Beauty (n = 6)
Summer Royal (n = 6) Summer Royal (n = 1)

Vitroblack (n = 3) Autumn Royal (n = 5)
Melody (n = 2)
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2.4. Extraction of Secondary Metabolites from Table Grapes

Secondary metabolites were extracted according to Tassoni, et al. [22]. In brief half a gram (0.5 g
FW) of the homogenized grape sample was mixed with 4 mL of extraction solution (MeOH:HCl (98:2))
and left for overnight extraction under the dim light. Extracted samples then were centrifuged at 4000
rpm for 15 min at 4 ◦C and diluted with extraction solution.

2.5. Determination of Total Phenolic Content (TPC) and Total Antioxidant Activity (TAA)

Total phenolic content was determined by the Folin-Ciocalteau (FC) colorimetric assay method [36].
An extract aliquot of 20 µL was mixed with 100 µL FC solution and kept for 5 min at room temperature.
After this, 300 µL of SC solution was added, covered with parafilm and left for 2 h at room temperature.
The absorbance of samples was recorded at 765 nm wavelengths using a UV-VIS spectrophotometer
(UV mini-1240, Shimadzu). Gallic acid (GA) solution was used as the standard for calibration curve
calculations and the results were expressed as mg GA equivalent/kg of sample’s fresh weight (FW).

Total antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) [37] and 2,
2′-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid radical (TEAC) assays [38]. Absorbance was read at
517 nm for DPPH and 734 nm for TEAC. Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic
acid) solution was used as the standard for calibration curve calculations and the results were expressed
as mmol Trolox Equivalent (TE)/g of sample’s FW.

2.6. Extraction and Determination of Total Anthocyanin Content (TAC)

Anthocyanins were extracted from the grape sample using the methods described by Tassoni, et
al. [22] and Chiou, et al. [39] with slight modifications, and the total anthocyanin content (TAC) in
extracts was measured using the pH differential method [40]. In brief, half a gram (0.5 g (FW)) of the
homogenized grape sample was mixed with 4 mL of 0.1% acidified methanol solution and incubated
in a water bath at 65 ◦C for 2 h, under dim light. After incubation samples were centrifuged at 4000
rpm for 10 min, at 25 ◦C and diluted with pH buffers. A suitable volume of diluted grape samples was
used for spectrophotometric analyses, in order to measure absorbance at 520 nm (A520) and 700 nm
(A700) wavelength. Final absorbance was calculated according to the formula: A = (A520 nm − A700
nm) × pH 1.0 − (A520 nm − A700 nm) × pH 4.5. Two of the most common anthocyanin pigments
(cyandin 3-glucoside and malvidin 3-glucoside) were used in the calculation as an equivalent.

2.7. Identification and Quantification of Individual Anthocyanins by HPLC

Individual anthocyanins in grape samples were detected and their concentrations were quantified
according to Kammerer, et al. [41] with slight modifications. In brief, aliquots of 0.5 g of grape juice
sample were mixed with 1.5 mL of 0.1% acidified methanol and vortexed for 2 h for complete extraction.
Vortex tubes were then centrifuged at 10,600 rpm for 5 min and the supernatant was transferred into a
second tube. The extraction was repeated adding 0.5 mL of 0.1% acidified methanol into the remaining
residue and vortex for another 15 min. The extracts were centrifuged and the supernatants were
combined and centrifuged again. After centrifugation, extracts were passed through filtered and stored
at −80 ◦C until they were directly injected into the HPLC.

Analyses and separation of individual anthocyanin components were performed using a
Phenomenex, SynergiTM 4 µm Hydro-RP 80Å (C18 phase, 250 × 4.6 mm) column, fitted with a
C18 guard column (3.2–8.0 mm internal diameters) at a temperature of 25 ◦C. The HPLC system
(Shimadzu Corporation, Japan) was equipped with LabSolution software, a DGU-20A3R degasser, 2
LC-20AD pump, a SIL-20AC HT autosampler, a SPD- M20A diode array detector and a CTO- 20AC
column oven. The detector was set to an acquisition range of 190–700 nm.

Water/formic acid/acetonitrile (A) (87:10:3) and water/formic acid/acetonitrile (B) (40:10:50) were
used as a mobile phase with a flow rate of 0.8 mL/min. The gradient programme for the mobile phases
(A:B) was at 0.02 min (10:90), 5 min (10:90), 15 min (25:75), 20 min (31:69), 25 min (40:60), 35 min (50:50),
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45 min (100:0), 50 min (10:90) and 55 min (10:90). The injection volume was 50 µL for all samples and
quantification was performed at 520 nm.

Identification of individual anthocyanins was based on peak relative retention times and elution
order of chromatograms obtained by Kammerer, et al. [41]. Individual anthocyanins were quantified
using a calibration curve of malvidin-3-O-glucoside in the range of 50 to 0.05 µg/mL. LC-MS analysis
was performed separately by Newcastle University Protein and Proteome Analysis (NUPPA) laboratory
team to confirm the identity of the peaks based on m/z identified by HPLC analysis.

2.8. Statistical Analysis

Principle component analyses (PCA) were carried out for both secondary metabolite, antioxidant
activity and sugar content data obtained for individual samples using the ‘prcomp’ function in R and
visualized by using the ‘autoplot’ function of the ggplot2 package in R [42]. PCA-results were then
used to select appropriate Analyses of Variance (ANOVA) tests to further investigate main effects and
interactions between the factors grape type (white, red, black), grape variety, management system
(organic, conventional) and production region/season (South Africa, Mediterranean) included in the
retail survey.

ANOVA derived from Linear mixed-effects (lme) models [43] was used to assess the effects and
interactions between factors on measured parameters by using the ‘nlme’ package in R [42]. Data
obtained for 410 matched samples (=organic and conventional grapes of the same grape type collected
on the same date) from different sampling dates within the same year and season were used as
replicates and supermarket was included as a random factor.

For secondary metabolites and antioxidant activity, PCA identified a clear separation between
results obtained for different grape types (white, red, black) (Figure 1a), but not year, production region
or production system (Figure S1). For sugar content no clear separation of data was detected between
different years, production regions, production systems and grape types (Figure 1b and Figure S2).

The two main factorial ANOVA, therefore, focused on identifying the main effects of grape type
and potential interactions between grape type, and year, production region and production system.
ANOVA 1 was based on all data from matching organic and conventional white and red grape samples
and included (a) year, (b) production system (organic vs. conventional), (c) season (winter vs. summer)
and (d) grape type (white vs. red) as factors. ANOVA 2 was based on all data from matching organic
and conventional white, red and black samples collected in the summer season.

The hierarchical nature of the experimental design was designated in the random error
structures of the model as: replicate (brand)/year/production system/season (ANOVA 1); and replicate
(brand)/year/production system (ANOVA 2).

Separate PCA with data obtained for white (Figure S3), red (Figure S4) and black (Figure S5)
grapes were also carried out to identify separation/variation between (a) different varieties of the same
grape type (b) grapes of the same variety produced by organic and conventional production systems.
PCA results indicated some separation/variation between varieties for all three grape types and for
some varieties also between organically and conventionally produced grapes.
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Figure 1. Principle component analyses of data for (a) secondary metabolite concentration and
antioxidant activity and (b) sugar content (Brix) data in different grape varieties showing the level of
separation/variation between grape types (white, red, black). Dots are results obtained for individual
grape samples.

However, due to the differences in the range of varieties available (1) in summer and winter
and (2) from organic and conventional production systems (Table 1), variety could not be included
as an additional factor in the main ANOVA described above. In order to identify/estimate potential
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confounding effects of variety choice we, therefore, carried out separate supplementary ANOVA for
subsets of data from (1) white, (2) red and (3) black varieties that were available both (a) from organic
and conventional production and/or (b) in summer and winter. Detailed results of the supplementary
ANOVA are provided in the supplementary information only (Tables S1–S9), because most comparisons
are based on (a) a low number of replicates and (b) data from only one year and/or production region,
and therefore need to be interpreted carefully until they are confirmed in future studies.

In order to further investigate the significant (p < 0.05) interactions between factors, general linear
hypothesis tests (Tukey contrasts) were performed using the ‘glht’ function of the ‘multcomp’ package
in R [44]. The experimental design was reflected in the same random error structures used for the
lme models. This method allows multiple comparisons in unbalanced models with arbitrary error
distribution and hence arbitrary data distribution and variance structure. Real means and standard
errors of means for the main effect and the interaction tables were generated by using the ‘tapply’
function in R.

3. Results

The retail survey reported here was carried out to compare the nutritional quality of different
table grapes products available to consumers via supermarket supply chains. Samples of organic
and conventional white, red and/or black grapes were collected at regular intervals during the
winter (when grapes were imported from South Africa) and summer (when grapes were imported
from Mediterranean countries) in two consecutive years (2015 and 2016). All experimental factors
significantly affected the grape composition and ANOVA also detected a wide range of significant
interaction between factors (Tables 2–4). The effects of the different factors are described in separate
sections below.
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Table 2. Effect of, and interactions between, year, production system (organic (ORG) vs. conventional (CON), production region (South Africa (RSA) vs. the
Mediterranean (MED)) and table grape type (red vs. white) on the dry matter content (DM), sugar content (SC) of pulp/juice, total phenolic content (TPC), total
antioxidant activity (TAA; DPPH and ABTS assays) and total anthocyanin content (TAC) in grape samples from a UK supermarket survey (4-factor ANOVA, the
values presented are means ± SE).

Factors
Dry Matter

Content
%

Sugar Content (SC) Total Phenolic
Content (TPC)

mg GAE
kg−1

Antioxidant Activity (TAA) Total Anthocyanin
Content (TAC)

(Pulp)
Brix◦

(Juice)
Brix◦

DPPH
µmol TE g−1

TEAC
µmol TE g−1 mg cyan kg−1 mg mal kg−1

Year (Yr)
2015 (n = 292) 19.5 ± 0.1 17.6 ± 0.1 17.8 ± 0.1 1583 ± 36 78 ± 2 7.7 ± 0.3 48 ± 4 51 ± 4
2016 (n = 118) 19.7 ± 0.3 17.7 ± 0.2 17.9 ± 0.2 1551 ± 44 77 ± 3 5.1 ± 0.4 45 ± 6 48 ± 7

Production
system (PS)

ORG (n = 210) 19.8 ± 0.2 17.7 ± 0.1 17.9 ± 0.2 1689 ± 42 78 ± 2 7.7 ± 0.4 39 ± 3 41 ± 3
CON (n = 200) 19.3 ± 0.2 17.6 ± 0.1 17.8 ± 0.1 1452 ± 37 77 ± 2 6.2 ± 0.3 56 ± 6 59 ± 6

Production
region (PR)

RSA (n = 220) 19.8 ± 0.2 17.9 ± 0.1 18.0 ± 0.1 1481 ± 32 72 ± 2 6.3 ± 0.3 48 ± 4 51 ± 5
MED. (n = 190) 19.3 ± 0.2 17.3 ± 0.2 17.7 ± 0.2 1681 ± 49 85 ± 3 7.7 ± 0.4 46 ± 5 49 ± 5

Grape type
(GT)

red (n = 174) 20.6 ± 0.2 18.3 ± 0.1 18.5 ± 0.1 1827 ± 42 104 ± 2 7.1 ± 0.4 98 ± 6 103 ± 6
white (n = 236) 18.8 ± 0.2 17.2 ± 0.1 17.3 ± 0.1 1386 ± 34 59 ± 1 6.9 ± 0.4 10 ± 1 11 ± 1

ANOVA
p-values

Main effects
Yr NS NS NS NS NS <0.0001 NS NS
PS 0.0179 NS NS <0.0001 NS 0.0008 0.0001 0.0001
PR 0.0270 0.0014 NS 0.0002 <0.0001 0.0002 NS NS
GT <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 NS <0.0001 <0.0001

Interactions *
Yr:PS NS NS 0.0797 0.0005 NS 0.0363 NS NS
Yr:PR NS NS NS 0.0327 NS <0.0001 0.0244 0.0237
Yr:GT 0.0453 NS NS 0.0306 <0.0001 NS NS NS
PS:PR NS 0.0233 0.0305 NS NS NS NS NS
GT:PS NS NS NS NS NS NS <0.0001 3 <0.0001 3

GT:PR NS NS NS 0.0004 1 <0.0001 1 NS NS NS
Yr:PR:GT 0.0858 NS 0.0112 2 NS 0.0155 2 <0.0001 2 0.0003 0.0004
PS:PR:GT NS 0.0300 4 0.0204 4 NS NS 0.0036 4 0.0438 0.0434

Yr:PS:PR:GT NS NS NS NS NS NS 0.0187 5 0.0188 5

GAE, Gallic acid equivalent; TE, Trolox equivalent; cyan, cyanidin 3-glucoside equivalent; mal, malvidin 3-glucoside equivalent; p-values in italic are for trends (0.1 < p < 0.05); p-values in
bold are significant (p < 0.05). * only interactions for which significant results were detected are shown; 1 see Table 3 for interaction means ± SE; 2 see Table 4 for interaction means ± SE; 3

see Table 8 for interaction means ± SE; 4 see Table 4 for interaction means ± SE; 5 see Table 10 for interaction means ± SE.
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Table 3. Interactions means ± SE for the effects of grape type and production region on the total
phenolic content and antioxidant activity in table grapes.

Parameter Factor 1
Factor 2

Production Region

Grape Type South Africa Mediterranean

Total phenolic content
(mg GAE kg−1)

White 1365 ± 44 a B 1409 ± 52 a B
Red 1629 ± 41 b A 2070 ± 72 a A

Antioxidant activity
(DPPH, µmol TE g−1)

White 55 ± 1 a B 62 ± 2 a B
Red 93 ± 2 b A 117 ± 4 a A

GAE, Gallic acid equivalent; TE, Trolox equivalent; For each parameter assessed means labeled with the same lower
case letter within the same row and same capital letters within the same column are not significantly different
(General Linear Hypothesis test p < 0.05).

Table 4. Interactions means ± SE for the effects of year, production region and grape type on the total
sugar content and antioxidant activity (TEAC) and TAC in table grapes.

Parameter
Factor 3

Factor 1 Factor 2 Grape Type

Year Production
Region White Red

Sugar content
(juice)
Brix◦

2015
South Africa 17.2 ± 0.2 b A 18.8 ± 0.2 a A

Mediterranean 17.5 ± 0.3 a A 17.9 ± 0.2 a B

2016
South Africa 17.6 ± 0.3 b A 18.7 ± 0.4 a AB

Mediterranean 17.1 ± 0.4 b A 19.3 ± 0.4 a A

Antioxidant
activity (DPPH)
(µmol TE g−1)

2015
South Africa 56.7 ± 0.8 b B 91.4 ± 2.6 a B

Mediterranean 63.5 ± 2.2 b A 110.0 ± 4.3 a A

2016
South Africa 51.6 ± 2.2 b B 98.7 ± 2.3 a B

Mediterranean 60.1 ± 3.5 b A B 140.0 ± 1.2 a A

Antioxidant
activity (TEAC)
(µmol TE g−1)

2015
South Africa 5.9 ± 0.4 a B 6.4 ± 0.5 a B

Mediterranean 10.1 ± 0.8 a A 9.4 ± 0.7 a A

2016
South Africa 8.8 ± 1.3 a A 3.8 ± 0.3 b C

Mediterranean 2.8 ± 0.2 b C 5.8 ± 0.3 a B C

TE, Trolox equivalent; cyan, cyanidin 3-glucoside equivalents; mal, malvidin 3-glucoside equivalents; For each
parameter, assessed means labeled with the same lower case letter within the same row and capital letters within
the same column are not significantly different (General Linear Hypothesis test p < 0.05).

3.1. Effects of Production Region and Year on Grape Composition

Since only red and white grapes were available in UK supermarkets from both (a) organic and
conventional production and (b) production regions (South Africa in winter and Mediterranean in
summer) main effects of production region and interactions of production region with year, grape type
and/or production systems could only be assessed for red and white varieties (Table 2).

For white and red grapes from both production regions and black grapes from the Mediterranean
samples were collected in two successive years (2015 and 2016) and the year was included in the
ANOVA to estimate effects of production year (and associated differences in climatic conditions during
the grape growing season) on grape composition.

Significant main effects of production region were detected for five of the eight composition
parameters assessed (Table 2). Total DM and sugar (BRIX) concentrations in pulp were found to be
slightly (~3%), but significantly higher in samples from South Africa, while total phenolic concentrations
(TPC) and antioxidant activity by TEAC (TAATEAC), were significantly higher (by 14%, 18% and 22%
respectively) in samples from the Mediterranean. The production region had no significant main effect
on anthocyanin concentrations (Table 2).

Significant 2-way interactions between grape type and production region were detected for the
TPC and TAADPPH (Table 3). When these interactions were further investigated, red grapes from the
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Mediterranean were found to have significantly higher TPC and TAADPPH than grapes from South
Africa (27% and 26% respectively) while white grapes from the two regions had similar levels of TPC
and TAADPPH (Table 3).

A significant main effect of year was only detected for TAATEAC, which was significantly higher in
2015 than in 2016 (Table 2). However, there were also ranges of significant 2-, 3- and 4-way interactions
between year and other factors (Table 2). When the 3-way interaction between year, production region
and the grape type was further investigated, significant differences between regions were detected
only for (a) the juice sugar content in red grapes in 2015, with higher levels detected in

Mediterranean grapes, (b) TAADPPH in both red and white grapes in 2015 and red grapes in 2016
with higher levels detected in Mediterranean grapes in both years and (c) TAATEAC in both white and
red grapes in 2015, but only white grapes in 2016 with levels higher in Mediterranean grapes in 2015,
but South African white grapes in 2016 (Table 4).

Significant 3-way and 4-way interactions with the production system (organic vs. conventional)
were also detected in the 4-factor ANOVA for a range of composition parameters (Table 2) and are
described in detail in Section 3.3 and Tables 8–10 (see below).

3.2. Effect of Grape Type (White vs. Red vs. Black) on Grape Composition

Black grapes from organic production were not available during the winter grape season (when
grapes are imported from South African) main effects of all three grape types (black, red and white) and
interactions with year and production systems could therefore only be assessed for grapes produced in
Mediterranean countries during the summer grape season (Table 5).

Table 5. Effect of, and interaction between, year, production system (ORG vs. CON), and table grape
type (black vs. red vs. white) on the DMcontent, SC of pulp/juice, TPC, total antioxidant activity (TAA;
DPPH and ABTS assays) and TAC in grape samples produced in the Mediterranean (3-factor ANOVA,
the values presented are means ± SE).

Factors
Dry Matter

Content
%

Sugar Content (SC)
Total

Phenolic
Content

Antioxidant Activity (TAA) Total Anthocyanin
Content (TAC)

(Pulp)
Brix◦

(Juice)
Brix◦

(TPC)
mg GAE

kg−1

DPPH
µmol TE g−1

TEAC
µmol TE g−1

mg cyan
kg−1 mg mal kg−1

Year (Yr)
2015 (n = 152) 19.1 ± 0.2 17.1 ± 0.2 17.6 ± 0.2 1858 ± 63 93 ± 3 11.3 ± 0.6 116 ± 17 123 ± 18
2016 (n = 93) 19.2 ± 0.3 17.4 ± 0.3 17.7 ± 0.3 1735 ± 60 98 ± 4 4.3 ± 0.2 234 ± 33 247 ± 35
Production
system (PS)

ORG (n = 124) 19.4 ± 0.3 17.4 ± 0.2 17.9 ± 0.2 1891 ± 67 96 ± 4 9.5 ± 0.7 158 ± 25 167 ± 27
CON (n = 121) 18.8 ± 0.2 17.0 ± 0.2 17.3 ± 0.2 1730 ± 62 94 ± 4 7.8 ± 0.5 164 ± 22 173 ± 23

Grape Type (GT)
black

(n = 55) 18.5 ± 0.3 b 16.8 ± 0.3 b 17.3 ± 0.3 b 2262 ± 90 a 130 ± 3 a 11.9 ± 1.2 a 557 ± 41 a 588 ± 43 a

red
(n = 78) 20.2 ± 0.2 a 17.9 ± 0.2 a 18.2 ± 0.2 a 2070 ± 72 a 117 ± 4 b 8.6 ± 0.6 b 95 ± 10 b 100 ± 11 b

white (n = 112) 18.7 ± 0.3 b 17.0 ± 0.2 b 17.3 ± 0.2 b 1410 ± 52 b 62 ± 2 c 7.1 ± 0.6 b 13 ± 1 c 13 ± 1 c

ANOVA
p-values

Main effects
Yr NS NS NS NS NS <0.0001 <0.0001 <0.0001
PS 0.0875 0.0837 0.0253 0.0294 NS 0.007 NS NS
GT 0.0001 0.0014 0.0047 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Interactions *
Yr:PS NS NS NS 0.0005 NS 0.0109 NS NS
Yr:GT 0.0456 1 NS NS NS 0.0003 1 <0.0001 1 0.0013 1 0.0013 1

PS:GT NS NS NS NS NS 0.0247 2 NS NS

GAE, Gallic acid equivalent; TE, Trolox equivalent; cyan, cyanidin 3-glucoside equivalent; mal, malvidin 3-glucoside
equivalent; means labeled with the same lower case letter within the same column are not significantly different
(General Linear Hypothesis test p < 0.05); p-values in italic are for trends (0.1 < p < 0.05); p-values in bold are
significant (p < 0.05). * only interactions for which significant results were detected are shown; 1 see Table 6 for
interaction means ± SE; 2 see Table 11 for interaction means ± SE.
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Table 6. Interactions means ± SE for the effects of grape type and year on the dry matter and juice
sugar content, antioxidant activity (DPPH and TEAC) and anthocyanin content and in table grapes.

Parameter Factor 1
Factor 2

Year

Grape Type 2015 2016

Dry matter content
(%)

White 18.7 ± 0.3 a A 18.6 ± 0.5 a B
Red 19.8 ± 0.2 b A 21.6 ± 0.6 a A

Black 18.6 ± 0.5 a A 18.4 ± 0.5 a B

Antioxidant activity
(DPPH, µmol TE g−1)

White 127 ± 6.5 a A 60 ± 3.5 a B
Red 110 ± 4.3 b B 140 ± 1.2 a A

Black 63 ± 2.2 a C 132 ± 2.5 a A

Antioxidant activity
(TEAC, µmol TE g−1)

White 10.1 ± 0.8 a B 2.8 ± 0.2 b B
Red 9.4 ± 0.7 a B 5.8 ± 0.3 b A

Black 18.6 ± 1.7 a A 5.9 ± 0.5 b A

Anthocyanin content
(mg cyan kg−1)

White 12 ± 1 a C 15 ± 1 a C
Red 81 ± 10 a B 139 ± 27 a B

Black 462 ± 61 b A 642 ± 50 a A

Anthocyanin content
(mg mal kg−1)

White 12 ± 1 a C 16 ± 1 a C
Red 86 ± 10 a B 147 ± 28 a B

Black 487 ± 65 b A 677 ± 52 a A

TE, Trolox equivalent; cyan, cyanidin 3-glucoside equivalent; mal, malvidin 3-glucoside equivalent; For each
parameter assessed means labeled with the same lower case letter within the same row and same capital letters
within the same column are not significantly different (General Linear Hypothesis test p < 0.05).

Three-factor (year, production system, grape type) ANOVA detected significant main effects of
grape type for all composition parameters assessed when data obtained from samples of three grape
types (white, red and black) produced in the Mediterranean were analyzed (Table 5).

The DM, SC (pulp) and SC (juice) were significantly higher in red than in both white and black
grapes, which had similar concentrations. The TPC, TAADPPH and TAATEAC were highest in black,
intermediate in red and lowest in white grapes, but only the difference between black and white grapes
was significant for all three parameters (Table 5). The largest differences between grape types were
detected for the TAC, with black grapes found to have more than 5 times higher TAC than red grapes,
while red grapes had a more than 8 times higher TAC than white grapes (Table 5).

Three-factor ANOVA also detected a significant main effect of year for TAATEAC (higher in 2015
than 2016) and TAC (higher in 2016 than 2015) and a range of significant 2-way interactions between
(a) year and grape type (Table 5). Further examination of the interactions between year and grape type
showed significant differences between years were detected for (a) the dry matter content and TAATEAC

in red grapes only (higher in 2016) and (b) TAC in black grapes only (higher in 2016). (Table 6). In
2015 white and red grapes had similar TAATEAC levels which were both significantly lower than those
found in black grapes, while in 2016 red grapes had significantly higher TAATEAC than white grapes,
which were similar to those found in black grapes (Table 6).

Interactions between grape type, and production systems and/or year identified in the 3-factor
ANOVA (Table 5) are described in detail in Section 3.3 (see below).

Since white grapes were found to have very low anthocyanin concentrations (Tables 2 and 5),
anthocyanin profiles (concentrations of individual anthocyanins) were only assessed and compared in
red and black grapes (Table 7).
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Table 7. Effect of, and interaction between, year, production system (ORG vs. CON), and table grape
type (black vs. red) on the content of individual anthocyanins in red and black grape samples from a
UK supermarket survey (3-factor ANOVA, the values presented are means ± SE).

Factor
Concentrations of Individual Anthocyanins (mg FW kg−1)

Delphindin
3-O-Glucoside

Cyanindin
3-O-Glucoside

Petunidin
3-O-Glucoside

Peonidin
3-O-Glucoside

Malvidin
3-O-Glucoside

Peonidin
3-O-p-Coumaroyl

Glucoside

Malvidin
3-O-p-Coumaroyl

Glucoside

Year
(Yr)

2015 (n = 37) 29 ± 7 23 ± 5 51 ± 12 241 ± 39 567 ± 113 31 ± 6 264 ± 65
2016 (n = 15) 40 ± 22 24 ± 10 75 ± 37 273 ± 73 759 ± 321 37 ± 14 272 ± 126
Production
system (PS)

ORG (n = 26) 37 ± 11 21 ± 6 65 ± 18 207 ± 36 673 ± 183 34 ± 8 270 ± 82
CON (n = 26) 28 ± 13 25 ± 7 52 ± 20 294 ± 59 572 ± 162 32 ± 9 262 ± 84
Grape type

(GT)
black (n = 22) 67 ± 17 21 ± 8 128 ± 25 279 ± 64 1415 ± 181 67 ± 10 627 ± 93
red (n = 30) 7 ± 3 25 ± 5 7 ± 2 229 ± 39 41 ± 7 8 ± 2 2 ± 0.4

ANOVA
p-values

Main effects
Yr NS NS NS NS NS NS NS
PS NS NS NS NS NS NS NS
GT <0.0001 NS <0.0001 NS <0.0001 <0.0001 <0.0001

Interactions *
Yr:PS 0.0360 NS 0.0846 NS NS NS NS
Yr:GT 0.0088 NS 0.0030 NS 0.0010 NS NS

Yr:PS:GT 0.01101 NS 0.0238 1 0.0142 1 NS NS NS

p-values in italic are for trends (0.1 < p < 0.05); p-values in bold are significant (p < 0.05). * only interactions for
which significant results were detected are shown; 1 see Table 12 for interaction means ± SE.

When anthocyanin profiles were compared, significant main effects were only detected for
grape type, but not the year or production system. Concentrations of delphinidin 3-O-glucoside,
penunidin 3-O-gluciside, malvidin 3-O-glucoside, peonidin 3-O-p-coumaroylglucoside and malvidin
3-O-p-coumaroylglucoside were significantly and substantially (between 8 and 31 times) higher in black
than red grapes. In contrast, concentrations of cyanindin 3-O-glucoside and peonidin 3-O-glucocside
were not significantly different in red and black grapes (Table 7).

Significant 2-way interactions between grape type and year were detected for delphinidin
3-O-glucoside, petunidin 3-O-gluciside, malvidin 3-O-glucoside and showed that the difference
between red and black grapes was only significant in one of the two years in which samples were
collected (individual data not shown).

Three-way Interactions between production system, year and grape type identified by 3-factor
ANOVA (Table 7) are described in detail in Section 3.3 (see below).

3.3. Effect of Production System (Organic vs. Conventional) on Grape Composition

When data from white and red grapes collected in both the summer and winter seasons were
compared significant main effects of the production system were detected for three of the eight
nutritional composition parameters assessed (Table 2). The DM, TPC and TAATEAC were slightly, but
significantly higher (by 3%, 16% and 24% respectively) in organic grapes, while the TAC was 44%
lower in organic grapes (Table 2). Significant interactions between the production system and grape
type were detected for TAC only (Table 2). The TAC was significantly higher (~50%) in conventional
than organic red grapes, but at similar levels in organic and conventional white grapes (Table 8).
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Table 8. Interactions means ± SE for the effects of grape type and production system on TAC in
table grapes.

Factor 1
Factor 2

Production System

Parameter Grape Type Organic Conventional

TAC (mg cyan kg−1)
White 11 ± 1 a B 8 ± 1 a B
Red 77 ± 5 b A 118 ± 20 a A

TAC (mg mal kg−1)
White 12 ± 1 a B 9 ± 1 a B
Red 82 ± 5 b A 124 ± 10 a A

cyan, cyanidin 3-glucoside equivalent; mal, malvidin 3-glucoside equivalent; For each parameter assessed means
labeled with the same lower case letter within the same row and same capital letters within the same column are not
significantly different (General Linear Hypothesis test p < 0.05).

Significant 3-way interactions between production system, production region and grape type
(red vs. white) were detected for (a) the sugar content in both pulp and juice, (b) TAATEAC and (c)
TAC (Table 2). When the 3-way interaction was further investigated only white grapes produced in
the Mediterranean were found to have significantly higher sugar contents and TAATEAC in organic
compared to conventional samples (Table 9).

Table 9. Interactions means ± SE for the effects of the production system, production region and grape
type on TEAC and TAC in table grapes.

Parameter
Factor 3

Factor 1 Factor 2 Grape Type

Production
Region

Production
System White Red

Sugar content
(pulp)
Brix◦

South Africa
Organic 17.0 ± 0.2 b A B 19.0 ± 0.2 a A

Conventional 17.7 ± 0.2 b A 18.7 ± 0.2 a A

Mediterranean
Organic 17.3 ± 0.4 a A 18.0 ± 0.3 a B

Conventional 16.6 ± 0.3 b B 17.8 ± 0.3 a B

Sugar content
(juice)
Brix◦

South Africa
Organic 17.1 ± 0.2 b AB 18.9 ± 0.2 a A

Conventional 17.6 ± 0.2 b AB 18.6 ± 0.2 a A

Mediterranean
Organic 17.8 ± 0.4 a A 18.3 ± 0.3 a A

Conventional 16.9 ± 0.3 b B 18.2 ± 0.3 a A

Antioxidant
activity (TEAC)
(µmol TE g−1)

South Africa
Organic 7.0 ± 0.7 a AB 6.8 ± 0.7 a AB

Conventional 6.2 ± 0.6 a B 4.8 ± 0.5 a B

Mediterranean
Organic 8.6 ± 1.0 a A 8.5 ± 0.8 a A

Conventional 5.6 ± 0.5 b B 8.7 ± 0.9 a A

TE, Trolox equivalent; cya, cyanidin 3-glucoside equivalents; mal, malvidin 3-glucoside equivalents; For each
parameter assessed means labeled with the same lower case letter within the same row and same capital letters
within the same column are not significantly different (General Linear Hypothesis test p < 0.05).

Significant 4-way interactions between production system, year, production region and grape
types (red vs. white) were only detected for TAC (Table 10). When the 4-way interaction was further
investigated no significant differences in TAC content in white grapes produced in different years,
regions and production systems (Table 10). In contrast, the TAC in organic red grapes from South
Africa in 2015 and from Mediterranean countries in both years was compared to their conventional
comparators; while there was no significant difference in TAC between organic and conventional red
grapes from South Africa in 2016 (Table 10).
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Table 10. Interactions means ± SE for the effects of year, production region, production systems and
grape type on TAC in table grapes.

Parameter
Factor 4

Factor 1 Factor 2 Factor 3 Grape Type

Year Production
Region

Production
System White Red

TAC
mg cyan kg−1

2015
South Africa

Organic 6 ± 2 b A 89 ± 8 a C
Conventional 5 ± 2 b A 119 ±12 a B

Mediterranean
Organic 13 ± 1 b A 62 ± 7 a D

Conventional 9 ± 2 b A 101 ± 17 a C

2016
South Africa

Organic 14 ± 3 b A 78 ± 15 a C D
Conventional 10 ± 2 b A 98 ± 18 a C

Mediterranean
Organic 16 ± 2 b A 78 ± 7 a C D

Conventional 13 ± 3 b A 201 ± 45 a A

TAC
mg mal kg−1

2015
South Africa

Organic 7 ± 2 b A 94 ± 9 a C
Conventional 6 ± 2 b A 126 ± 13 a B

Mediterranean
Organic 14 ± 1 b A 66 ± 8 a D

Conventional 10 ± 2 b A 106 ± 18 a C

2016
South Africa

Organic 15 ± 3 b A 82 ± 16 a C D
Conventional 10 ± 2 b A 97 ± 19 a C

Mediterranean
Organic 17 ± 2 b A 82 ± 7 a C D

Conventional 14 ± 3 b A 213 ± 47 a A

cyan, cyanidin 3-glucoside equivalents; mal, malvidin 3-glucoside equivalents; For each parameter assessed means
labeled with the same lower case letter within the same row and same capital letters within the same column are not
significantly different (General Linear Hypothesis test p < 0.05.

When data for all three grape types produced in the Mediterranean were analyzed, a significant
interaction between the production system and grape type was detected for total TAATEAC only
(Table 5). Significantly higher TAATEAC in organic than conventional samples were only detected for
white grapes, while production systems had no significant effect on TAATEAC in red and black grapes
(Table 11) produced in Mediterranean countries.

Table 11. Interactions means ± SE for the effects of grape type and production system on TEAC in table
grapes produced in the Mediterranean.

Parameter Factor 1
Factor 2

Production System

Grape Type Organic Conventional

Antioxidant activity
(TEAC, µmol TE g−1)

White 8.6 ± 1.0 a B 5.6 ± 0.5 b B
Red 8.5 ± 0.8 a B 8.7 ± 0.9 a A

Black 12.6 ± 2.0 a A 11.1 ± 1.3 a A

TE, Trolox equivalent; For each parameter assessed means labeled with the same lower case letter within the same
row and same capital letters within the same column are not significantly different (General Linear Hypothesis test
p < 0.05).

Although no significant main effects of production system on individual anthocyanins were
detected, 3-factor ANOVA identified 3-way interactions between production system, year and grape
type (red vs. black) (Table 7). When these interactions were further investigated, contrasting effects
of the production system were detected in different years (2015 and 2016) especially for black grapes
(Table 12). In 2015 concentrations of delphinidin 3-O-glucoside, penunidin 3-O-gluciside, peonidin
3-O-glucoside were higher in organic, while in 2016 they were higher in conventional black grapes, but
differences were only significant in 2016. In contrast, conventional red grapes had higher peonidin
3-O-glucoside concentrations than organic red grapes in both 2015 and 2016, but the difference was
only significant in 2015 (Table 12).
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Table 12. Interactions means± SE for the effects of year, production system and grape type (red vs. black)
on the concentrations of individual anthocyanin compounds in grapes produced in the Mediterranean.

Parameter
Factor 3

Factor 1 Factor 2 Grape Type

Year Production
System Black Red

delphinidin
3-O-glucoside
(mg FW kg−1)

2015
Organic 74 ± 27 a B 15.7 ± 7.0 b A

Conventional 32 ± 8 a B 5.3 ± 2.0 b A

2016
Organic 69 ± 25 a B 0.2 ± 0.1 b A

Conventional 193 ± 136 a A 0.8 ± 0.6 b A

petunidin
3-O-glucoside
(mg FW kg−1)

2015
Organic 132 ± 392 a B C 12.6 ± 5.6 b A

Conventional 72 ± 15 a C 6.2 ± 1.7 b A

2016
Organic 163 ± 50 a B 0.5 ± 0.2 b A

Conventional 314 ± 198 a A 1.6 ± 0.9 b A

peonidin
3-O-glucoside
(mg FW kg−1)

2015
Organic 325 ± 105 a BA 122 ± 20 a A

Conventional 173 ± 50 a B 355 ± 98 a B

2016
Organic 217 ± 29 a B 184 ± 24 a A B

Conventional 670 ± 570 a A 238 ± 69 b A B

For each parameter assessed means labeled with the same lower case letter within the same row and same capital
letters within the same column are not significantly different (General Linear Hypothesis test p < 0.05).

3.4. Effects of Variety Choice on Grape Composition

Supplementary ANOVA was carried out to identify the effects of variety and interactions between
variety and production system. The available data allowed separate 2-factor ANOVAs to be carried for
(a) white grapes from South Africa (varieties EarlySweet, Prime, Sugraone and Thompson) collected in
2015, (b) red grapes from South Africa (varieties Allison, Crimson, Flame and Sweet Celebration) and
the Mediterranean (varieties Allison, Crimson, Flame and Scarlotta) collected in 2015, (c) black grapes
from the Mediterranean (varieties Autumn Royal and Midnight Beauty) collected in 2015 and (d) red
grapes from the Mediterranean (varieties Allison and Crimson) collected in 2016. It should be pointed
out that the number of samples available for this supplementary 2-factor ANOVA was low for many
varieties (Tables S1–S9).

Significant main effects of variety were detected for the (a) dry matter and sugar content, TPC and
TAADPPH of white grape produced in South Africa in 2015 (Table S1), (b) sugar content, TPC, TAADPPH

and TAATEAC of red grapes produced in the Mediterranean and South Africa in 2015 (Tables S2 and S3)
and (c) sugar content, TAADPPH and TAATEAC and TAC in black grapes produced in the Mediterranean
in 2015 (Table S4). However, for red grapes from the Mediterranean collected in 2016 no significant
main effects of variety were detected (Table S5).

Significant interactions between the production system and variety choice were also detected
for a range of composition parameters in white, red and black grapes collected in 2015 (Table S1–S4).
Further examination of these interactions showed that significant effects of production were limited to
specific varieties. In white grapes from South Africa the TPC was significantly higher in organic grapes
of the variety “Sugaraone”, but conventional grapes of the variety “Prime”, while no significant effect
of production system was detected for the varieties “Early Sweet” and “Tompson” (Table S1). In red
grapes from South Africa the pulp sugar content was significantly higher in conventional than organic
grapes of the variety “Crimson”, while no significant effect of production system was detected for the
varieties “Allison”, “Flame” and “Scarlotta” (Table S2). In black grapes produced in the Mediterranean
the juice sugar content, and TAC was significantly higher in organic than conventional grapes of the
variety Midnight Beauty, while no significant effect of production system was detected for the variety
“Autumn Royal” (Table S4).

The range of grape varieties available in UK supermarkets during the winter (from South African
production) and summer (from the Mediterranean) different considerably and for most varieties it
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was not possible to obtain samples from both organic and conventional production in both seasons.
The season could therefore not be included as a factor in the supplementary ANOVA carried out to
identify potential effects of variety except for red grapes where samples of two varieties (“Crimson”
and “Flame”) were available from both production regions in 2015 (Table 6).

Three-factor ANOVA of data for the red varieties “Crimson” and “Flame” identified significant
main effects of production region for all composition parameters. Specifically, grapes from the
Mediterranean had a higher TPC, TAA and TAC content, while grapes from South Africa had a higher
dry matter and sugar content (Table S6).

Significant interactions between variety, production region, and/or production system were also
detected for most composition parameters studied (Table S6). Further examination of the two-way
interactions showed that (a) the juice sugar content was higher in organic than conventional grapes
from South Africa, while there was no significant effect of the production system in grapes produced in
the Mediterranean (Table S6), (b) “Crimson” grapes produced in South Africa had a significantly higher
pulp and juice sugar content than grapes of the same variety produced in the Mediterranean, while
the was no significant effect of production region for the variety “Flame” (Table S6), (c) TAADPPH and
TAATEAC were significantly higher in “Flame” than “Crimson” grapes produced in the Mediterranean,
but higher in “Crimson” than “Flame” grapes produced in South Africa (Table S6), (d) TAC was
significantly higher in conventional than organic grapes of the variety Crimson, while there was no
significant effect of production system for the variety Flame (Table S6). Further examination of the
three-way interaction between production region, grape variety and production system showed that
a significantly higher juice sugar content in conventional compared to organic grapes could only be
detected for red grapes of the variety “Crimson” produced in the Mediterranean (Table 6).

The data available allowed anthocyanin profiles to be compared in samples from (a) the red
varieties Crimson and Flame from Mediterranean countries collected in 2015 (Table S7), (b) the red
varieties Crimson and Allison from South Africa collected in 2015 (Table S8) and (c) the black varieties
Autumn royal and Midnight Beauty from Mediterranean countries in 2015 (Table S9).

When two red variety produced in the Mediterranean were compared the variety Flame had
substantially (more than 15 times) higher delphinidin 3-O-glucoside, cyanindin 3-O-glucoside and
petunidin 3-O-glucoside concentrations compared to the variety Crimson, while no significant
main effect of variety could be detected for the other four anthocyanins assessed (Table S7).
However, there were also significant interactions between variety and production system for six
of the seven anthocyanins monitored (Table S7). When these interactions were further investigated
significantly higher concentrations of peonidin 3-O-glucoside, peonidin 3-O-p-coumaroyl and malvidin
3-O-p-coumaroyl were detected in conventional compared to organic grapes of the variety Crimpson.
In contrast, organic grapes of the variety Flame had higher concentrations of delphinidin 3-O-glucoside,
petunidin 3-O-glucoside, malvidin 3-O-glucoside and malvidin 3-O-glucoside than their conventional
comparators (Table S7).

When two red varieties produced in South Africa were compared, no significant main effects
of variety were detected, but significant interactions between variety and production system were
found for four of the seven anthocyanins monitored (Table S8). When these interactions were
further investigated, organic grapes of the variety Allison were found to have significantly lower
concentrations of cyanindin 3-O-glucoside and peonidin 3-O-glucoside, but significantly higher
peonidin 3-O-p-coumaroyl glucoside and malvidin 3-O-p-coumaroyl glucoside concentrations than
conventional Allison grapes (Table S8). In contrast, no significant differences were detected between
organic and conventional grapes of the variety Allison (Table S8).

When two black varieties produced in South Africa were compared, no significant main effects
of variety were detected and a significant interaction between variety and production system was
only found for peonidin 3-O-glucoside (Table S9). When the interactions were further investigated,
peonidin 3-O-glucoside concentrations were significantly higher in organic compared to conventional
grapes of the variety Midnight Beauty (Table S9). In contrast, the production system had no significant
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effect of the production system was detected in the variety Autumn royal and peonidin 3-O-glucoside
concentrations were numerically higher in conventional grape samples (Table S9).

4. Discussion

The UK retail survey described here was conducted to investigate the effect of production
season/supply chain (winter vs. summer), grape type (white vs. red vs. black) and production
systems (organic vs. conventional) on the nutritional composition of table grape products available to
consumers in UK supermarkets. Retail surveys are the most accurate approach to assess differences in
composition/quality between different food products at the point of purchase by consumers (14,59).

However, one of the main limitations of retail surveys is that information on the exact
production protocols and pedo-climatic conditions on the farms supplying supermarkets is usually not
available (14,59). In the study reported here it was, therefore, possible to identify effects of specific
agronomic/management protocols (e.g., fertilization, crop protection, tillage, irrigation, ripening stage
at harvest), environmental drivers and post-harvest conditions (e.g., storage, cooling, packaging) on
the grape composition parameters assessed in this study. Results are therefore discussed in the context
of existing published information on the effects of pedoclimatic, agronomic and supply chain-related
parameters on phenolic and anthocyanin concentrations, and antioxidant activity in table grapes.

4.1. Effect of Year and Production Region on the Nutritional Composition of Table Grapes

Effects of contrasting climatic conditions between years on grape quality are well
documented [16–28], but this is to our knowledge the first study in which the composition of
grapes from the two main production regions (Mediterranean vs. South Africa) that supply the UK
and other European countries were investigated. The lower TPC and TAA found in grapes sampled
during the winter season (when grapes were from South Africa) may have been due to a range of
factors including differences in pedoclimatic conditions and agronomic/cultural practices used in the
Mediterranean and South African grape production areas, including transport distance/time [45–47].

Winter season grapes produced in the southern hemisphere spend longer (15–40 days) in transport
than summer season grapes (2–5 days) produced in the Mediterranean [45]. They may also be harvested
at a slightly earlier ripening stage, to compensate for longer transport times [47]. Both sugar and total
phenolic concentrations (and in red/black grapes anthocyanin) are known to increase until physiological
ripeness of grapes [35,48–50]. However, grape berries are non-climacteric fruit and postharvest, the
sugar content of grapes remains very stable under commercial cold storage conditions [45,51]. This
allows sugar content to be used as a marker for the ripening stage at harvest. The finding of similar
sugar contents (BRIX) in grapes from both production regions in this study, therefore, suggests that
there were no substantial differences in ripening stage at harvest between grapes imported from the
Mediterranean and South Africa. In addition, there is evidence that the antioxidant activity of grapes
and other fruit and vegetables, remains relatively stable during cold storage until they visibly spoil [52].

Differences in the (a) postharvest treatment (e.g., use of sulfur dioxide, heat, antimicrobial and
ozone treatments or anti-browning agents) protocols [53] and (b) range of varieties sources produced
or sourced from South Africa and the Mediterranean may also have contributed to the observed effects
of production region. The latter is supported by the findings of this study that (a) the range of red
and white varieties available in the winter (when grapes were from South Africa) and summer season
(when grapes were from Mediterranean countries) was different and (b) there are significant differences
in sugar content, phenolic concentrations and/or antioxidant activity (TEAC) between varieties of the
same grape type.

4.2. Effect of Grape Type and Variety on the Nutritional Composition of Table Grapes

Both PCA and ANOVA clearly identified grape type as the main explanatory variable/driver for
differences in nutritionally desirable total phenolic and anthocyanin concentrations and antioxidant
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activity in grapes. In contrast year, production season and production system explained less of the
variation in the nutritional composition of table grapes at the point of retail.

Our findings that (a) total phenolic and anthocyanin concentrations and antioxidant activity were
highest in black, intermediate in red and lowest in white red grapes and (b) magnitude of difference in
anthocyanin concentrations (five-times higher in black than red and more than seven times higher in
red than white grapes) is consistent with the results of previous studies [54–56].

The profile of grape varieties produced is known to differ between countries/regions [2,46] and
results from this survey suggest that there are also differences in the range of varieties available
as organic and conventional products in the UK market. This is consistent with previous studies
in other crops (e.g., cereals, potato) that reported (a) differences in variety choice between organic
and conventional production and/or (b) that organic farmers tend to select more resistant, robust
and/or traditional varieties [57,58]. For cereals, there is evidence from long-term field experiments
that differences in variety choice between organic and conventional systems partially explain the
significantly higher phenolic and mineral micronutrient concentrations found in organic compared to
conventional wheat flour in recent retail surveys in the UK and Germany [58,59].

Supplementary analysis of composition differences between varieties of the same grape type
identified in this study suggests that differences in the profile of varieties available as organic and
conventional table grapes may also have contributed to overall effects of production systems detected
(higher TPC, TAATEAC in organic and higher TAC in conventional table grapes) in this study.

The finding that there were no significant differences in phenolic and/or antioxidant levels between
organic and conventional grapes for the majority of varieties, while significantly higher levels were
found in grapes from organic or conventional production for some varieties is consistent with the
overall trend of previous studies [16,18–22,60].

4.3. Effect of Production System on the Nutritional Composition of Table Grapes

The finding of overall higher total phenolic concentrations and antioxidant activity in organic
than conventional white and red table grapes in this study is consistent with the results of a recent
meta-analysis of comparative (organic vs. conventional) crop composition data which reported 20%
higher antioxidant activity in organic crops [14]. However, in the meta-analysis data from different
crops or crop groups were pooled, and it, therefore, remained unclear for which individual crop species,
organic management practices result in significant differences in antioxidant levels.

Overall higher (~15%) TAATEAC in organic than conventional white and red grapes was also
reported in a recent farm survey-based study in Crete, which compared the effect of organic and
conventional production system on the nutritional composition of traditional local grape varieties (2
white and 1 red) used as table grapes and for wine-making [60].

However, this study also demonstrated that the effect of the production system differs between
varieties for a range of composition parameters assessed (see Section 4.2 above). For white grapes,
the interactions between variety and production system were similar to that reported in a recent farm
survey-based study in Crete. The study found significantly higher (~50%) antioxidant activity (TEAC)
in organic compared to conventional white grapes but the effect of the production system was only
significant for one of the two white varieties included in the survey [60].

This study also suggests that the effect of the production system can be confounded by both
(a) production year or season (and associated pedo-climatic and supply chain differences) and (b)
grape type and/or variety. The confounding effects of year/season (and associated pedoclimatic
differences) and grape type/varieties identified in this study, may also explain the contrasting results
of previous studies that compared antioxidant activity and/or concentrations in grapes from organic
and conventional grapes. For example, in two studies carried out in Brazil, Toaldo, et al. [37] reported
higher TAATEAC and TAADPPH in red grapes, while da Silva Haas, et al. [38] found no significant
effect of production system on TAA in red grapes. In two studies carried out in Italy, Tassoni, et
al. [22,23] reported TAADPPH is higher in organic than conventional red Lambrusco grapes, but higher
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in conventional white Albana and red Sangioves grapes, while no effect of production system was
found in white Pignoletto grapes.

These interactions should be considered in the design of future retail and farm surveys, and
experimental studies.

4.4. Potential Nutritional/Health Impacts of Consuming Different Table Grape Products

There is increasing epidemiological evidence that the antioxidant/(poly)phenol compounds in
food crops have protective effects against a range of chronic diseases [18,60–62]. Grape types/varieties,
grape production systems and supply chains that deliver higher TPC, TAA and/or TAC concentrations
would therefore be expected to provide “added nutritional value” since they allow an increase in
dietary antioxidant intake without a simultaneous increase in energy intake. However, there is still
considerable uncertainty on whether there are linear dose-response relationships between dietary
intake of plant phenolics/antioxidants and their physiological effects in humans. This is mainly because
there is still relatively limited information about the rates of uptake, bioavailability/metabolism and
physiological effects of different phenolics/antioxidants in the gut environment, and their mode(s) of
action (e.g., as an antioxidant, anti-inflammatory and/or signaling molecules) following uptake into
the body [18,62].

However, this study has identified changes in the grape type and to a lesser extent variety choice
as the most important strategy to increase dietary intakes of phenolic compounds and the antioxidant
activity associated with them. Specifically, the study suggests that switching from white to red and
especially black grape consumption will increase TPC, TAA and TAC intakes (and associated potential
health benefits) at the same level of consumption, as reported previously [18,19,22,23].

The relatively small differences in TPC and TAA levels between grapes from the two production
regions are unlikely to be nutritionallyrelevant. However, results suggest that targeted changes to
variety choice and/or supply chain-related parameters may allow TPC and TAA levels and associated
potential health benefits to be further increased in grapes imported from South Africa. However,
this would require further studies to identify the parameters responsible for composition differences
between seasons, which may include (a) variety choice, (b) primary production and harvest protocols,
(c) pedo-climatic conditions and/or (d) postharvest treatments, storage and transport conditions.

This study does not allow the potential overall nutritional/health impact of switching to organic
grape consumption to be assessed. This is mainly, because organic and conventional crops were
previously shown to not only differ in antioxidant activity and phenolic content (which were assessed
in this study), but also concentrations of other nutritionally-relevant compounds (including essential
micro-nutrients, toxic cadmium and pesticide residue) [14,17,63] which were not assessed in the study
reported here.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/12/1874/s1,
Table S1: Effect of, and interaction between, production system and table grape variety on the dry matter content
(DM), sugar content (SC) of pulp/juice, total phenolic content (TPC), total antioxidant activity (TAA; DPPH &
TEAC assays) and total anthocyanin content (TAC) in white table grapes produced in South Africa from a UK
supermarket survey carried out in 2015 (2-factor ANOVA, the values presented are means ± SE), Table S2: Effect of,
and interaction between, production system and table grape variety on the dry matter content (DM), sugar content
(SC) of pulp/juice, total phenolic content (TPC), total antioxidant activity (TAA; DPPH & TEAC assays) and total
anthocyanin content (TAC) in red table grapes produced in South Africa from a UK supermarket survey carried
out in 2015 (2-factor ANOVA, the values presented are means ± SE, Table S3: Effect of, and interaction between,
production system and table grape variety on the dry matter content (DM), sugar content (SC) of pulp/juice, total
phenolic content (TPC), total antioxidant activity (TAA; DPPH & TEAC assays) and total anthocyanin content
(TAC) in red table grapes produced in Mediterranean countries from a UK supermarket survey carried out in 2015
(2-factor ANOVA, the values presented are means ± SE), Table S4: Effect of, and interaction between, production
system and table grape variety on the dry matter content (DM), sugar content (SC) of pulp/juice, total phenolic
content (TPC), total antioxidant activity (TAA; DPPH & TEAC assays) and total anthocyanin content (TAC) in black
table grapes produced in Mediterranean countries from a UK supermarket survey carried out in 2015 (2-factor
ANOVA, the values presented are means ± SE), Table S5: Effect of, and interaction between, production system
and table grape variety on the dry matter content (DM), sugar content (SC) of pulp/juice, total phenolic content
(TPC), total antioxidant activity (TAA; DPPH & TEAC assays) and total anthocyanin content (TAC) in red table
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grapes produced in Mediterranean countries from a UK supermarket survey carried out in 2016 (2-factor ANOVA,
the values presented are means ± SE), Table S6: Effect of, and interaction between, production region, production
system and table grape variety on the dry matter content (DM), sugar content (SC) of pulp/juice, total phenolic
content (TPC), total antioxidant activity (TAA; DPPH & TEAC assays) and total anthocyanin content (TAC) in
red table grapes from a UK supermarket survey carried out in 2015 (2-factor ANOVA, the values presented are
means ± SE), Table S7: Effect of, and interaction between, year, production system and grape type on the content
of individual anthocyanins in red table grapes produced in Mediterranean countries from a UK supermarket
survey 2015 (3-factor ANOVA, the values presented are means ± SE), Table S8: Effect of, and interaction between,
year, production system and grape type on the content of individual anthocyanins in red table grapes produced in
Mediterranean countries from a UK supermarket survey 2016 (3-factor ANOVA, the values presented are means
± SE), Table S9: Effect of, and interaction between, year, production system and grape type on the content of
individual anthocyanins in black table grapes produced in Mediterranean countries from a UK supermarket
survey 2015 (3-factor ANOVA, the values presented are means ± SE). Figure S1: Principle component analyses
of secondary metabolite concentration and antioxidant activity data showing the level of separation/variation
between data from different (a) years (b) production regions and (c) production systems, Figure S2: Principle
component analyses of sugar content data showing the level of separation/variation between data from different
(a) years (b) production regions and (c) production systems, Figure S3: Principle component analyses secondary
metabolite concentration and antioxidant activity data showing the separation/variation between black grape
varieties and/or conventional and organic samples, Figure S4: Principle component analyses secondary metabolite
concentration and antioxidant activity data showing the separation/variation between red grape varieties and/or
conventional and organic samples, Figure S5: Principle component analyses secondary metabolite concentration
and antioxidant activity data showing the separation/variation between black grape varieties and/or conventional
and organic samples.
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