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pain in early stages of arthritis
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Abstract

Background: Rheumatoid arthritis (RA) patients frequently show weak correlations between the magnitude of pain
and inflammation suggesting that mechanisms other than overt peripheral inflammation contribute to pain in RA.
We assessed changes in microglial reactivity and spinal excitability and their contribution to pain-like behaviour in
the early stages of collagen-induced arthritis (CIA) model.

Methods: Mechanically evoked hypersensitivity, spinal nociceptive withdrawal reflexes (NWRs) and hind paw
swelling were evaluated in female Lewis rats before and until 13 days following collagen immunization. In the
spinal dorsal horn, microgliosis was assayed using immunohistochemistry (Iba-1/p-p38) and cyto(chemo)kine
levels in the cerebrospinal fluid (CSF). Intrathecal administration of microglia-targeting drugs A-438079 (P2X7

cyto(chemo)kine levels in the early phase of CIA.

provide pain relief in RA patients.

antagonist) and LHVS (cathepsin S inhibitor) were examined upon hypersensitivity, NWRs, microgliosis and

Results: The early phase of CIA was associated with mechanical allodynia and exaggerated mechanically evoked
spinal NWRs, evident before hind paw swelling, and exacerbated with the development of swelling. Concomitant with
the development of hypersensitivity was the presence of reactive spinal microgliosis and an increase of IL-13
levels in CSF (just detectable in plasma). Prolonged intrathecal administration of microglial inhibitors attenuated
the development of mechanical allodynia, reduced microgliosis and attenuated IL-13 increments. Acute spinal
application of either microglial inhibitor significantly diminished the sensitization of the spinal NWRs.

Conclusions: Mechanical hypersensitivity in the early phase of CIA is associated with central sensitization that is
dependent upon microglial-mediated release of IL-1(3 in the spinal cord. Blockade of these spinal events may
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Background

Rheumatoid arthritis (RA) is a frequent autoimmune
disease characterized by synovial inflammation and joint
damage [1]. Pain is the most dominant and disabling
symptom reported by patients in both preclinical and
clinical phases of this disease [2]. For instance, in the
preclinical phase, symmetrical joint pain and morning
stiffness correlate significantly with progression to arth-
ritis [3]. Clinically induced remission in RA aims to
control peripheral inflammatory processes in order to
limit structural damage and functional impairment [4, 5].
However, RA patients may report pain before inflammation
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and pain may persist despite control of inflammation
suggesting that mechanisms other than overt peripheral
inflammation contribute to pain in RA. Consistent with
this clinical observation, we and others have reported
the presence of pain behaviours before the onset of clin-
ical signs of RA as well as after resolution of joint in-
flammation in models of RA [6-11]. Thus, the clear
disconnect between overt joint inflammation and pain
symptoms presented by RA patients is replicated in the
animal models.

For example, in the rat collagen-induced arthritis (CIA)
model of RA, the onset of the clinical signs of arthritis is
between 11 and 14 days after collagen immunization;
however, pain-like behaviours are observed 7 days after
immunization (early-stage CIA) and are then further
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exacerbated with increasing clinical scores (peak stage
CIA) [9, 11]. CIA in rodents is a widely studied model
of RA, largely on the basis of pathological similarities
between the model and human disease; thus, rats dis-
play a severe polyarthritic phenotype consisting of swollen
extremities, cartilage degradation, bone erosions and
eventual loss of joint function, which is, in some aspects,
similar to RA [12, 13]. CIA primarily affects ankle joints,
with a significantly less proportion of animals with an in-
volvement of knee joints [14], and based on macroscopic
and microscopic patterns, CIA progression can be divided
into three stages (always observed first in the hind paws):
(1) preclinical (from collagen injection to clinically evident
disease onset); (2) acute clinical (where hind paw swelling,
body weight loss, inflammation and hind paw bone ero-
sion were steadily progressing and macroscopic signs of
CIA appeared on the fore paws); and (3) chronic clinical,
where clinical (hind and fore paw swelling) and structural
(inflammation and articular erosions in hind paws) evi-
dence of joint involvement plateau [15].

In the early-stage CIA, there is a mild infiltration of
inflammatory cells into the joint and significant upregu-
lation in the expression of key receptors and channels in
the cell bodies of nociceptive fibres innervating the ankle
joints that are indicative of sensory hypersensitivity [11].
No swelling of the fore paws or knee joints is observed,
just ankle joint inflammation that starts to spread down
to the paw [11, 15, 16].

There is a growing consensus that in some RA pa-
tients persistent pain results from sensitization of the
central pain pathways which is not correlated with syn-
ovial inflammation [17]. This concept is so well accepted
that a prognostic tool that predicts the possible outcome
of pain treatment with anti-inflammatory drugs has
become available for rheumatologists [17]. Understand-
ing the mechanism by which synovial inflammation in-
duces central sensitisation is essential for effective pain
management [2]. Like in other forms of chronic pain,
central sensitization in RA is likely to arise from in-
creased activation of primary sensory fibres (peripheral
sensitization) [18]. For instance, nociceptor afferents in-
nervating muscles or joints produce a longer-lasting
central sensitization than those that innervate skin [18].
The same cytokines that drive early immune activation
in preclinical stages of RA [19] sensitise primary afferent
fibres in the joint [20]. In the dorsal horn of the spinal
cord, increased excitation and reduced inhibition of pain
signalling induces plastic changes in both neurons and
non-neuronal cells [9, 11, 21]. In particular, spinal glial
cells, especially microglia, contribute to chronic pain
associated with arthritis by releasing proteases and cyto-
kines that facilitate neuronal excitability [6-9, 22, 23]. In
this scenario, peripheral inflammation in the joints is
mirrored by an as-yet undefined central inflammation in
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the spinal cord. Intriguingly, existing clinical evidence
indicate that pro-inflammatory cytokine levels, including
IL-1pB, are elevated in cerebrospinal fluid (CSF) of RA
patients [24, 25].

In this study, we evaluated whether pain-like behaviour
in early-stage CIA correlated with changes in microglial
reactivity and spinal excitability in the spinal cord.

Methods

Animals

Experiments were performed in 152 female adult Lewis
rats weighing 180-200 g (Charles River Laboratories,
UK). Experimental study groups were randomized and
blinded. All experiments were undertaken with approval
of the UK Home Office and conformed to the ARRIVE
Guidelines [26].

Induction of arthritis

Induction of arthritis was performed as described previ-
ously [9, 11]. Briefly, bovine type II collagen (4 mg/ml;
MD Bioproducts) was dissolved in acetic acid (0.1 M) and
then emulsified with Freunds complete adjuvant (CFA)
1 mg/ml (BD Biosciences). Rats were anaesthetized with
isoflurane (Abbott) and injected intradermally at the base
of the tail with 200 pl of collagen/CFA emulsion (400 pg
of collagen per rat) or CFA emulsion (control rats).

Macroscopic assessment of arthritis

Rats were scored on a scale of 0-3 per hind paw, 0-6 per
rat [9, 11]. The emergence of ankle swelling, the earliest
visible sign of arthritis, was scored as 1. Thereafter, foot-
pad swelling occurred and was scored as 2. Subsequent
swelling of one or more digits resulted in a score of 3. The
thickness of each hind paw was measured using a thick-
ness gauge (Mitutoyo) and expressed in millimetres. Body
weight were monitored prior to immunization and then
on throughout the disease process.

Pain behaviour

Mechanical hypersensitivity of the hind paws was
assessed as a measure of secondary hyperalgesia.
Changes in hind paw mechanical withdrawal thresholds
were assessed by applying a series of calibrated von Frey
filaments (0.4—15.0 g, North Coast Medical) to the plan-
tar surface of the hind paw according to the ‘up-down’
method [11]. On each day of testing, rats were habitu-
ated for 15 min in individual transparent plexiglass
boxes with a wire mesh bottom, in a temperature-
controlled room (22 °C). Calibrated von Frey filaments
were applied to the plantar surface of the hind paw for
4-5 s or until the paw was withdrawn. Mechanical
thresholds of the left and right paws were assessed alter-
nately. Each test started with application of the 2-g fila-
ment. Once a withdrawal response to a von Frey hair
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was established, the paw was re-tested, starting with the
filament below the one that produced a withdrawal, and
subsequently with the remaining filaments in descending
sequence until no withdrawal occurred and then as-
cending order until a response was observed once again.
This up-down method was continued until the ‘4’ value
could be calculated (between 4 and 9 applications of the
von Frey hairs). From this, 50 % withdrawal thresholds
were calculated.

In vivo electrophysiology

The experimental setup for electromyographic (EMG)
recordings have been previously described [27]. Briefly,
naive, CIA and control rats at 4, 7 and 13 days post-
immunization were anaesthetized (2.5 % isoflurane)
(Abbot) in oxygen, and an endotracheal cannula was
inserted for controlled ventilation with a small animal
ventilator (Harvard Apparatus). Rats were placed in a
stereotaxic frame (Kopf Instruments). Body temperature
was maintained at 37 + 0.5 °C via a rectal probe coupled
to a homeothermic heating blanket. Bipolar concentric
needle EMG electrodes (Ainsworks) were placed through
a small skin incision into the belly of the biceps femoris
muscle of the right hind leg. Isoflurane anaesthesia was re-
duced to 1.5 % for 30—40 min prior to recording (at a level
at which animals were moderately responsive to brushing
of the cornea). The isoflurane concentration was main-
tained at the same level throughout the whole recording
period. EMG (full-wave rectified) activity was recorded
following sequential (lowest to highest) von Frey hair
(15-180 g) stimulation of the plantar surface of the
right foot. Raw EMG signals were conventionally amp-
lified and displayed and fed to an analogue-to-digital
converter for further analysis using a CED Micro1401
interface and Spike2 software (Cambridge Electronic
Design). Each hair was applied three times, and the
mean EMG response for each of the three presentations
was calculated. Resting activity was subtracted from re-
sponses. Mechanical thresholds for each animal were de-
termined as the lowest von Frey hair that produced an
EMG response that was 10 % greater than the resting ac-
tivity. A stimulus-response curve was plotted, and the area
under the curve (AUC) was calculated to provide an over-
all measure of the spinal ‘reflex excitability’.

In experiments studying the effects of the spinally
administered drugs, a small laminectomy [28] was per-
formed to expose segments L4 and L5 of the spinal cord
from CIA or control rats at day 7 post-immunization prior
to insertion of the EMG electrode (see above). Following
the laminectomy, isoflurane concentration was reduced to
15 % for 30—40 min prior to recording. Baseline EMG
mechanical threshold and the baseline reflex excitability
were established, and the effects of direct spinal adminis-
tration of the P2X7 receptor antagonist A-438079 (50 ug/
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25 pl; Tocris Biosciences) or vehicle (saline) on mechanic-
ally evoked EMG responses (as described above) were
recorded for 90 min. In a separate group of rats,
morpholinurea-leucine-homophenylalaninevinyl phenyl
sulfone (LHVS; 50 nmol/25 ul; NeoMPS Inc.), an irre-
versible, synthetic inhibitor of cathepsin S (CatS) or
vehicle (20 % Cremophor EL/saline, Sigma-Aldrich),
were applied to the spinal cord and effects on mech-
anically evoked EMG responses were recorded for
90 min. Doses of A-438079 and LHVS were based on
previous studies ([29, 30], respectively).

Intrathecal delivery of compounds in freely behaving rats
Under anaesthesia (a mixture medetomidine 0.25 mg/kg
[Pfizer] and ketamine 60 mg/kg [Boehringer-Ingelheim]),
a small laminectomy was performed at the sixth thoracic
vertebra and a flexible cannula was inserted under the
dura mater and glued in place, such that the tip is rested
at the lumbar enlargement of the spinal cord. The
opposite end of the cannula was placed subcutaneously,
and an osmotic minipump (ALZET, Charles River La-
boratories) was connected to the cannula [9, 11]. For the
first pharmacological experiment, the P2X7 receptor
antagonist A-438079 (50 pg/12 uL/day) or saline was de-
livered for 8 days (from 1 day before to 7 days post-
immunization). For the second experiment, rats received
the irreversible CatS inhibitor LHVS (30 nmol/12 pL/day)
or vehicle (20 % Cremophor EL/saline) for 14 days begin-
ning 1 day before and until day 13 post-immunization.
Doses of A-438079 and LHVS were based on previous
studies ([29, 30], respectively).

Immunohistochemistry

Naive rats, CIA and control rats on days 4, 7 and 13
post-immunization were anaesthetised (pentobarbital)
and transcardially perfused with 0.9 % saline solution
followed by 4 % paraformaldehyde with 1.5 % picric acid
in 0.1 M phosphate buffer (pH 7.4). Lumbar spinal cords
were dissected, post-fixed for 4 h in the perfusion fixa-
tive (4 °C), cryoprotected in 20 % sucrose in phosphate
buffer (0.1 M, 4 °C) for 48 h and frozen in OCT embed-
ding compound (VWR). Spinal cord (20 pm) sections
were cryostat cut and thaw mounted onto Superfrost Plus
Microscope Slides (VWR). Slides containing every sixth
section of the lumbar (L4, L5) spinal cord were incubated
overnight with rabbit anti-phospho-p38 mitogen-activated
protein kinases (MAPK) (1:100; Cell Signaling) and then
with the appropriate secondary biotinylated antibody
for 90 min, followed by two stages of signal amplifica-
tion with avidin-biotin complex (Vector Laboratories Inc.)
and biotinyl tyramide (PerkinElmer) and finally visualized
with ExtrAvidin-FITC as previously described [9]. Sections
were then incubated overnight with the second primary
antibody, rabbit anti-ionized calcium-binding adapter
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molecule 1 (Iba-1; 1:1000; Wako), followed by the appro-
priate secondary antibody (Alexa Fluor-546, Invitrogen).
In separate experiments, slides of the lumbar spinal cord
were incubated overnight with the primary antibody rabbit
anti-glial fibrillary acidic protein (anti-GFAP; 1:1,000;
DakoCytomation), followed by the appropriate secondary
antibody (Alexa Fluor 488, Invitrogen). In control experi-
ments, primary antibody was omitted whereby staining
was completely abolished. All antibodies were prepared in
PBS with 0.1 % Triton X-100. Slides were coverslipped
with VECTASHIELD mounting medium with 2-(4-amidi-
nophenyl)-1H-indole-6-carboxamidine (DAPI) (Vector),
and images were captured using a Zeiss Axioplan-2
fluorescence microscope. Quantitative assessment of
Iba-1 immunostaining in the spinal cord sections was per-
formed by counting the positive profiles (Iba-1 indicative
of microglial proliferation and p-p38 as an indication of
microglia reactivity) within a fixed area of the superficial
dorsal horn (boxes measuring 20* um? were placed onto
areas of the lateral, central and medial dorsal horns) (three
sections/rat) as previously described [9, 11]. Quantitative
assessment of GFAP immunostaining in the spinal cord
sections was performed by measuring the intensity of the
GFAP immunoreactivity within a fixed area of the superfi-
cial dorsal horn (boxes measuring 20* pm? were placed
onto areas of the lateral, central and medial dorsal horns)
(three sections/rat) as previously described [9].

Cytokine and chemokine measurement assays
Cerebrospinal fluid (CSF) and blood samples were collected
from naive, CIA and control rats at 4, 7 and 13 days post-
immunization. Following cardiac puncture under pentobar-
bital anaesthesia, plasma aliquots were obtained from blood
samples. Then, the skin covering the occipital bone and the
cervical dorsum was incised, and the occipital bone and
upper cervical vertebral arc were exposed. The atlanto-
occipital membrane was identified and carefully cleared of
surrounding tissues. The needle of a 29-gauge insulin syr-
inge was inserted horizontally through the lateral atlanto-
occipital membrane, and 50-100 ul of CSF was withdrawn
and immediately flash frozen in liquid nitrogen [31].

IL-1pB, IL-6, TNF-a, IL-10 and MCP-1 concentrations
in plasma and CSF samples were measured using a
Luminex-based multiplex immunoassay following the
manufacturer’s instructions (eBioscience Inc.). Fractalk-
ine (FKN) (CX3CL1) levels in CSF were quantified with
enzyme-linked immunosorbent assay (ELISA) following
the manufacturer’s instructions (RayBiotech Inc.).

Data analysis

Differences between values in the behavioural tests
were analysed with two-way repeated measures analysis
of variance (RM-ANOVA) followed by Tukey’s test.
EMG, immunohistochemistry, multiplex immunoassay
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and ELISA data were analysed by two-way ANOVA
followed by Tukey’s test, by one-way ANOVA followed
by Tukey’s test, or t test, respectively, as appropriate.
Analyses of correlations were performed with the mean
values of each parameter, and the number of animals
were not the same in the different parameters analysed
as specified in the figure legends. Analyses of correlations
were determined with a Pearson correlation test. Data are
shown as mean + SEM. The differences between means
were considered statistically significant when P < 0.05.

Results

CIA is associated with a reactive spinal microgliosis that
correlates with the time course of mechanical
hypersensitivity (allodynia)

We previously reported that hind paw swelling, clinical
signs and mechanical hypersensitivity in CIA rats at
the peak of disease (day 18 post-immunization) are as-
sociated with significant microglial reactivity in the
dorsal horn of the spinal cord which contributes to
pain hypersensitivity, but not to joint swelling and clin-
ical scores [9].

At 7 and 13 days following collagen immunization, Iba-
1" profiles in the lumbar dorsal horn were significantly
increased compared to control rats [CIA F(1,26) = 6.62,
P =0.016; Fig. 1a]; in addition, there was a significant
increase in Iba-1" phosphorylated p38 MAPK coexpres-
sion [CIA F(1,26) =14.7, P<0.001; Fig. 1b)]. We did
not find evidence of microgliosis in the ventral horn of
the spinal cord of CIA rats (data not shown). The number
of Iba-1" profiles in the dorsal horn correlated significantly
with mechanical hind paw withdrawal thresholds (Fig. 1c),
but not paw swelling (Fig. 1d). In fact, the onset of mech-
anical hypersensitivity and microgliosis occurred on day 7
after collagen immunization in the absence of noticeable
paw swelling (Fig. 1c, d). In contrast to spinal microgliosis,
GFAP immunoreactivity, a marker of astrocytes, in the
dorsal horn of the spinal cord in CIA rats was not different
to control rats throughout the period of study (Fig. 2).

CIA produces an exaggerated mechanically evoked spinal
nociceptive withdrawal reflexes (NWRs) with a time
course similar to that of mechanical allodynia

In order to evaluate whether pain hypersensitivity in
early-stage CIA was associated with changes in spinal ex-
citability, EMG responses were recorded in anesthetised
rats. Mechanical stimulation of hind paw resulted in a sig-
nificantly larger bicep femoris muscle EMG response in
CIA rats, compared to control groups at days 7 and 13 fol-
lowing collagen immunization (Fig. 3a—c) [CIA F(1,49) =
6.27, P = 0.016; Fig. 2¢]. In addition, mechanical thresholds
needed to evoke reflex responses were significantly
lower in the CIA rats, compared to control groups
[CIA F(1,49) =6.78, P=0.012; Fig. 3d)]. The decrease
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in EMG mechanical thresholds correlated significantly
with decreased freely behaving paw withdrawal thresholds
(Fig. 3e), but not with hind paw swelling (Fig. 3f).

IL-1B levels increase on days 7 and 13 in CSF whereas
they are just detectable in plasma of CIA rats

Next, we tested the hypothesis that reactive microglia
contribute to neuronal sensitization in the spinal cord
by releasing pro-nociceptive mediators. To achieve this,

we determined cyto(chemo)kine levels in the CSF and
plasma of rats in the early stages of CIA. Plasma cyto(-
chemo)kine concentrations (IL-13, TNF«, IL-6, IL-10,
MCP-1; Fig. 4a—e) in CIA rats remained stable and were
not significantly different to those in control rats on days
4, 7 and 13 post-immunization; plasma IL-6 concentra-
tions were below the detection limit of the assay that we
employed (Fig. 4c). In contrast, IL-1p levels in the CSF
were significantly increased on days 7 and 13 after collagen
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immunization, compared to controls [CIA F(1,32) =7.16,
P=0.012; Fig. 4a]. CSF TNF-a (Fig. 4b) and IL-6
(Fig. 4c) levels were below detection limits, and IL-10
(Fig.4d) and MCP-1 (Fig. 4e) levels did not change sig-
nificantly in CIA rats.

Inhibition of spinal cathepsin S or P2X7 receptor prevents
mechanical hypersensitivity, microglial reactivity and IL-13
increase associated to the early stages of CIA
In the spinal cord, microglia release IL-1f following activa-
tion of the P2X7 receptor and extracellular IL-1[ exerts
pro-nociceptive effects [29, 32]. Microglial P2X7 receptors
also mediate the release of the lysosomal protease CatS [33]
which is pro-nociceptive in the dorsal horn via cleavage of
the neuronal fractalkine into a soluble chemokine domain
that activates microglial CX3CR1 receptors [31]. In order
to examine whether reactive microglia played a role in cen-
tral mechanisms of early-stage CIA pain hypersensitivity,
we evaluated whether continuous intrathecal administra-
tion of a P2X7 receptor antagonist or a CatS inhibitor in
the lumbar spinal cord for several days after collagen
immunization prevented (i) IL-1p concentration in-
creases in CSF, (ii) microglial reactivity in the spinal
cord and (iii) hind paw mechanical hypersensitivity.
Continuous intrathecal administration of A-438079
(P2X7 receptor antagonist) for 8 days significantly reduced
the magnitude of mechanical allodynia compared to vehicle
administration in CIA rats [A-438079 F(1,60) = 4.50,
P =0.044; Fig. 5a], attenuated spinal cord microglio-
sis and microglial reactivity (Fig. 5b) and prevented
the increase of IL-1p which were all detected in the ve-
hicle group [A-438079 F(2,23) = 5.51, P = 0.011; Fig. 5¢)].
Similarly, intrathecal administration of LHVS (CatS
inhibitor) resulted in less hind paw mechanical hypersen-
sitivity compared to vehicle administration in CIA rats

[LHVS F(1,108) =7.99, P = 0.011; Fig. 6a]. However, LHVS
did not alter the onset of clinical scores (Fig. 6b) and paw
swelling (Fig. 6¢) which occurred 11 and 13 days post-
immunization similar to vehicle-treated rats. LHVS ad-
ministration also reduced microgliosis and microglial
reactivity in the dorsal horn of the spinal cord in CIA
rats, compared to vehicle (Fig. 6d). In addition, IL-1B
and FKN levels in the CSF remained at basal control levels
in the LHVS-treated group whilst they were significantly
increased in vehicle-treated group of collagen-immunised
rats [one-way ANOVA, F(2,24) =5.82, P=0.009, Fig. 6e;
F(2,11) =10.81, P = 0.003, Fig. 6f, respectively)].

Inhibition of spinal cathepsin S or P2X7 receptor both
reversed enhanced EMG activity associated to CIA

In the final set of experiments, we evaluated whether
spinal application of A-438079 and LHVS altered spinal
excitability as measured by the EMG response in the
CIA rats. A-438079 significantly inhibited the enhanced
mechanically evoked spinal nociceptive EMG activity in
CIA rats from 10 to 90 min after spinal application
[Fig. 7a, c, ; Fig. 7c A-438079 F(1,104) = 6.64, P =0.023;
Fig. 6e A-438079 F(1,104)=12.82, P=0.003)] whilst
LHVS was significantly effective from 30 to 50-
60 min after spinal application [Fig. 7b, d, e; Fig. 7d
F(1,104) =2.25, P=0.157; Fig. 7e LHVS F(1,104) =
4.73, P =0.049]. Altogether, these data indicate that in
early CIA, mechanical hypersensitivity is associated
with microglial reactivity and spinal excitability that
are attenuated by inhibition of P2X7 receptor and
CatS enzyme in microglia.

Discussion
In this study, we show that the early phase of the CIA
model in the rat is associated with mechanical allodynia
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Fig. 3 Enhanced mechanically evoked spinal nociceptive withdrawal reflexes (NWRs) in CIA rats. The plantar surface of hind paws were mechanically
stimulated with von Frey hairs, and evoked biceps femoris (BF) EMG responses were recorded. a Representative raw EMG traces recordings BF muscle
in CIA and control rats stimulated with different von Frey hairs. b Stimulus-response curve of EMG response versus mechanical stimulus intensity at
different time points post CIA immunization. ¢ AUC analysis of the time course of the overall reflex response to von Frey hairs of increasing intensity in
control and CIA rats (d). Time course of the BF mechanical thresholds in control and CIA rats. Time course of ClA-associated mechanical hypersensitivity
(panel e feft) significantly correlated with the time course of the change in BF mechanical thresholds (panel e right). Time course of ClA-induced hind
paw swelling (panel e left) did not correlate with the time course of the BF mechanical thresholds (panel e right). Values are the mean + SEM of 6 (day
0), 7 (day 4), 9 (day 7) and 8 (day 13) rats per group. ***p < 0.001, *p < 0.01, *p < 0.05 versus controls, two-way RM-ANOVA, post hoc Tukey's test. In b,
statistical analysis performed with AUC analysis and t test. In correlations studies in e and f, data were analysed with a Pearson correlation

and spinal hyperexcitability in parallel with enhanced
microgliosis response and an increase of IL-1 levels in
CSF, prior to clinical signs of CIA being evident. With
the establishment of hind paw swelling, mechanical
allodynia and spinal hyperexcitability intensify whereas
spinal microgliosis and IL-1B remain at similar level.
These central changes are probably mediated by microglia-
driven mechanisms in which the P2X7-CatS/CX3CR1
pathway in the spinal cord exerts a central role. In fact, the
inhibition of this pathway attenuated both mechanical allo-
dynia and the hyperexcitability of the spinal cord without
affecting the progression of the inflammation of the hind
paws induced by CIA. Thus, these data suggest that mech-
anical hypersensitivity linked to CIA is likely mediated by a
sensitization of spinal nociceptive networks, like other
forms of chronic pain [34].

Pain reported by people suffering with RA arises from
multiple mechanisms and are dependent not only upon
peripheral inflammation with patients often presenting
symptoms that are typical of an involvement of the cen-
tral nervous system (CNS) [2]. Thus, people with RA
present reductions in mechanical and thermal pain
thresholds, not only over inflamed joints but also at non-
inflamed regions adjacent to or even remote from the
inflamed joints, and RA patients continue to have wide-
spread pain, despite low levels of inflammation [4, 35]. In
the present study, we also observed a poor correlation be-
tween pain and inflammation, since CIA rats develop a
robust mechanical allodynia before the onset of hind paw
swelling, which is in agreement with previous studies by
our group [9, 11] and with other studies in mice [7, 10].

Here, we demonstrated that spinal nociceptive reflex
pathways are sensitized as mechanically evoked EMG
responses increase in rats immunised with collagen be-
fore the development of hind paw swelling with a fur-
ther increase with the progress of the inflammation. The
study of reflexes in humans and animal models is a
neurophysiological tool used to measure changes in the
excitability of spinal pain networks and its modulation
during chronic pain [36-38]. To our knowledge, this is
the first report which studies electrophysiological prop-
erties in a model of RA showing spinal hyperexcitability
in parallel with the development of mechanical allodynia

and spinal microgliosis, supporting the presence of cen-
tral sensitization in the rat CIA model.

Microglia activation in the spinal cord is known to be
a critical component of chronic pain conditions [39].
We and others previously described an enhanced micro-
glia response associated with chronic pain in different
RA models, focusing on later phases, and associated
with the peak of inflammation [7-9], or when the in-
flammatory activity had stopped [6—8]. Mild infiltration
of inflammatory cells into the ankle joints at day 7 after
collagen immunization leads to the activation of sensory
neurons innervating the joint and adjacent areas [11].
Such sensitized sensory neurons release pro-nociceptive
transmitters from their central terminals in the superfi-
cial dorsal horn of the spinal cord. Here, such transmit-
ters promote activation of microglia with a further
release of pro-inflammatory mediators that act to en-
hance neuronal central sensitization and induce persist-
ent pain. In summary, the immunization with collagen
can produce a peripheral sensitization (activation of
sensory neurons) that leads to a central sensitization in
the spinal cord and altogether contribute to the pain
states associated to CIA.

In the present study, we focussed on the early phase of
CIA and observed a significant microgliosis (increase in
Iba-1 and phospho-p38 expression) which is evident in
the dorsal horn of the spinal cord at 7 days from collagen
immunization (1 week before the onset of clinical signs),
with a time course similar to that of mechanical allodynia.
An increase in activation (phosphorylation) of p38 in the
spinal microglia as reported here has been shown previ-
ously to be involved in the development of neuropathic
[40, 41] and inflammatory [42, 43] pain. The processes by
which microglia mediate increases in neuronal sensitivity
are thought to involve the synthesis of proinflammatory
cytokines that are released by microglia either in response
to inflammation, injury or following C-fibre strength acti-
vation of primary afferent fibres [44, 45]. Accordingly, we
studied the protein levels of several cyto(chemo)kines and
report an increase of IL-1B in the CSF of CIA rats. In
agreement with our results, Lampa et al. [24] reported an
increase in levels of IL-1p mRNA in the spinal cord tissue
in the K/BxN serum transfer RA model. As cytokines can
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cross the blood-brain barrier [46], and increments of
cytokines in blood have been reported in the CIA model
[47, 48], the source of increased concentrations of IL-1[3
in the CSF following immunization with collagen could be
in the blood and/or from changes in the release of these
inflammatory mediators from CNS resident cells (e.g.
microglia and astrocytes; see above). Our investigations
show that at the early time points of the CIA model,

plasma levels of cytokines did not change, with IL-1B
levels being significantly lower than those found in the
CSF at the same time point. Interestingly, it has been re-
cently reported that RA patients have elevated CSF concen-
trations of IL-1pB, which are higher than the corresponding
serum concentration which mirrors our investigations [25].
IL-1pB in the spinal cord contributes to inflammatory pain
hypersensitivity as an inducer of spinal COX-2 upregulation
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Fig. 6 Spinal inhibition of cathepsin S (CatS) in the early phase of CIA reduced mechanical hypersensitivity, microgliosis and the increased levels of pro-
inflammatory cyto(chemo)kines in CSF, without affecting paw swelling. Intrathecal (it.) administration of the CatS inhibitor (LHVS, 30 nmol/day) from 1 day
before until day 13 post-immunization significantly prevented mechanical hypersensitivity in CIA rats (@) and did not modify the clinical score (b) or paw
swelling (c). LHVS reduced spinal microgliosis (Iba-1/p-p38 (d) and the increased levels of fractalkine (e) and IL-13 (f) associated with CIA. Values are the
mean + SEM of 10 rats/group (@-c) and 4-6 rats/group (d-f). **p < 0,001, **p < 0.01, *p < 0.05 compared to vehicle group; #p < 0.05 compared to control
group (a—c two-way RM ANOVA post hoc Tukey's test; d ¢ test; e, f one-way ANOVA post hoc Tukey's test)
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Fig. 7 Acute spinal blockade of P2X7 receptors (A-437089) or inhibition of cathepsin S (CatS) (LHVS) attenuated the enhanced mechanically evoked biceps
femoris (BF) EMG responses in CIA rats at day 7. Representative mechanical stimulus-EMG response curve at 60 and 30 min after spinal treatment with A-
437089 (a) or LHVS (b) in CIA rats. Time courses of the effects of a single spinal dose of the A-438079 (50 g per rat) or saline on the magnitude of evoked
BF EMG responses (c) or BF mechanical thresholds (e) in CIA rats 7 days post CIA immunization. Time courses of the effects of a single spinal administration
of LHVS (50 nmol per rat) or vehicle (20 % Cremophor EL/saline) on the magnitude of evoked BF EMG responses (d) or BF mechanical thresholds (f) in CIA
rats 7 days post-immunization. Values are mean + SEM of 7-8 rats per group. **p < 0.001, **p < 0.01, *p < 0.05 compared to control group (two-way RM
ANOVA, post hoc Tukey's test). In a and b, statistical analysis performed with AUC analysis and t test

[49], which itself has been described to be upregulated in
the spinal cord of CIA mice [50]. These data suggest that
IL-1p released from spinal microglia has a significant role
in the mechanisms of chronic pain associated to CIA.

CIA results from the immunization of animals with type
II collagen, which induces an autoimmune disease directed
against the cartilage in the joints. We previously described

that mechanical hypersensitivity in the early phase of CIA
develops in parallel with a mild infiltration of inflammatory
cells into the ankle joint and activation of the sensory neu-
rons innervating the ankle joint and adjacent areas [11].
Such sensitized afferent fibres release from their central ter-
minals a variety of neurotransmitters, including glutamate,
substance P, CGRP and ATP into the superficial dorsal
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horn of the spinal cord which can lead to the activation of
glial cells and the further release of pro-inflammatory medi-
ators like cytokines that act to enhance neuronal central
sensitization and induce persistent pain [51]. In these stud-
ies, we have found a clear spinal microgliosis, we did not
find evidence for spinal reactive astrocytosis in the early
phase of CIA, suggesting that the source of the striking up-
regulation of IL-1f in CSF is mediated by microglia-driven
mechanisms. In the spinal cord, microglia can release IL-1f3
following activation of the P2X7 receptor [29] present
mainly in microglia [52, 53]. Here, we demonstrated that
the spinal P2X7 receptor inhibition prevented mechanical
hypersensitivity in the early phase of CIA in parallel with
an attenuation of microgliosis and the increase of IL-1,
suggesting that spinal microglial cells release IL-1p via a
P2X7-mediated pathway. In addition, we have previously
demonstrated that microglial P2X7 receptor activation
leads to the release of the protease CatS concomitantly to
IL-1p [33]. Extracellular CatS is pro-nociceptive mediating
its effects via cleavage of the chemokine domain of neuron-
ally expressed FKN. This soluble fraction then is able to
diffuse and reach microglial CX3CRI1 receptor and further
activates these cells [30, 31]. In the present study, we ob-
served a significant increase of FKN in the CSF of rat by
day 13 after collagen immunization. The pharmacological
blockade of spinal CatS not only reduced the chemokine
FKN to control levels but also prevented the allodynia
and spinal microglial activation and the increase of IL-
1P in CSF in CIA rat. Therefore, like in other models of
chronic pain, antagonism of these microglial targets
(the P2X7 receptor and the protease CatS) in the spinal
cord reduces pain behaviours [29-31, 52, 53], and our
data suggest this action is mediated through a mechan-
ism involving a reduction in the release of IL-1f in the
spinal cord. Further investigation of the mechanisms of
this regulation in the spinal cord at the protein or
mRNA levels is warranted in future studies.

EMG studies in animals have been employed to study
the modulation of spinal cord nociceptive reflexes by the
systemic or central administration of drugs [54, 55].
Here, we demonstrated that the acute inhibition of the
P2X7 receptor or the protease cathepsin S in the spinal
cord reduced the enhanced EMG responses induced by
the immunization with collagen, indicating that the in-
hibition of these microglia-driven mechanisms is enough
to reduce the spinal nociceptive reflex facilitation during
the CIA model.

Conclusions

In summary, our studies strongly support the involve-
ment of central sensitization processes in the mechanical
hypersensitivity associated with the early phase of the rat
CIA model. This central sensitization is dependent upon
microglial mechanisms, probably through the release of
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IL-1P in the spinal cord, with a key role of the microglial
P2X7 receptor and the protease CatS. Our data suggest
that the inhibition of these microglial targets by CNS-
penetrating drugs could represent a new therapeutic
opportunity for the treatment of pain suffered for RA
patient, especially in those without severe clinical signs
of arthritis.
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