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Abstract: Noniridescent and nonfading structural colors generated from metallic and dielectric
nanoparticles with extraordinary optical properties hold great promise in applications such as image
display, color printing, and information security. Yet, due to the strong wavelength dependence of
optical constants and the radiation pattern, it is difficult and time-consuming to design nanoparti-
cles with the desired hue, saturation, and brightness. Herein, we combined the Monte Carlo and
Mie scattering simulations and a bidirectional neural network (BNN) to improve the design of
gold nanoparticles’ structural colors. The optical simulations provided a dataset including color
properties and geometric parameters of gold nanoparticle systems, while the BNN was proposed
to accurately predict the structural colors of gold nanoparticle systems and inversely design the
geometric parameters for the desired colors. Taking the human chromatic discrimination ability as a
criterion, our proposed approach achieved a high accuracy of 99.83% on the predicted colors and
98.5% on the designed geometric parameters. This work provides a general method to accurately and
efficiently design the structural colors of nanoparticle systems, which can be exploited in a variety of
applications and contribute to the development of advanced optical materials.

Keywords: neural network; optical properties; nanoparticles; Mie scattering; Monte Carlo

1. Introduction

Color generation from the assembly of nanometer- or submicron-sized structures
has been of great interest for various fields including chromatic displaying [1–3], color
printing [4,5], and biomedical imaging [6]. By exploiting the light–matter interaction in the
designed structures, the generated colors are superior to the traditional pigmentary colors in
many ways, due to their large tunability, resistance to bleaching, and reduced dependence
on toxic materials. Much recent research has demonstrated the use of ordered and disor-
dered photonic structures to generate colors across the visible spectrum [7–9]. Periodically
ordered photonic structures generate colors with the iridescent feature due to Bragg diffrac-
tion [10,11]. However, their colors are strongly dependent on the angle of view because
of the periodic structure. In contrast, the structures consisting of metallic and dielectric
nanoparticles can generate nonfading and noniridescent colors with high resolution, and
have been most widely studied as a component to realize structural coloration [12–17].

The structural colors of nanoparticle systems depend on the material, size, shape, and
volume fraction of nanoparticles, and the dielectric properties of the surrounding envi-
ronment. Therefore, by adjusting the parameters as mentioned above, the corresponding
spectra, either scattering, transmission, or reflection modified by nanoparticles, can be
manipulated to obtain a variety of colors. However, the design of specific properties of
nanoparticle systems is usually based on a trial-and-error method [18], which requires
prior experiences and scientific intuitions but also a lot of time and labor costs. Many
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attempts have been made to improve the design efficiency via various optimization strate-
gies such as using a particle swarm algorithm, topology optimization, and combining
with GPU-acceleration [19–21]. However, traditional design and optimization methods
are still facing challenges with the increasing complexity of system functionality and in-
tegration. Fortunately, machine learning methods based on artificial neural networks
have emerged as a powerful tool in solving complex computation and inverse design
problems. Machine learning is a statistics technology that trains a machine by telling it
what to do, and has proven to be particularly good at solving the problems of classification
and regression [22,23]. In the field of nanophotonics, machine learning has made great
progress in many applications such as pattern recognition, optical imaging, and structure
design [24–27]. Most recently, machine learning techniques have been utilized to inversely
design the structure and material to achieve the desired optical and color properties [28–33].
Baxter et al. [28] proposed a deep learning method to predict the colors of silver surfaces
doped with silver nanoparticles and to inversely design the geometric parameters for
the desired colors. Gao et al. [29] trained a bidirectional deep neural network model to
inversely design the structural color of silicon nanostructures. The model consists of a
forward network and an inverse network, which can accurately predict the color gener-
ation of silicon nanostructures, as well as inversely design the structural parameters for
the desired colors. Huang et al. [30] proposed an inverse design strategy for the structural
color of dielectric ring arrays using a machine learning model that combines the supervised
learning with reinforcement learning. Dai et al. [31] reported a bidirectional neural network
to inversely design the geometric structures of Fabry–Perot cavity color filters, which
enables a gamut coverage that is 215% of the sRGB color space.

The above studies have mainly focused on the periodic systems whose optical re-
sponse is obtained using the time-consuming electromagnetic simulations; yet, disperse
nanoparticle systems have received little attention. In this work, a multilayered BNN
model was built to accurately predict the color generation of gold nanoparticle systems
and to inversely design the geometric parameters for the desired colors. The single scat-
tering properties of nanoparticles were calculated by using the Lorenz–Mie theory, the
multiple scattering problems between nanoparticles were considered by solving the ra-
diative transfer equation, and the spectrum-to-color conversion was obtained based on
the International Commission on Illumination (CIE) color spaces. Our approach captures
the complex relationships between the geometric parameters and structural colors with
high reliability and accuracy, and can be used for the analysis and optimization design of
structural color in nanoparticle systems.

2. Model and Methods
2.1. Model and Dataset Generation

Our data generation process and machine learning strategy for structural colors of
nanoparticle systems are schematically illustrated in Figure 1. A thin layer composed
of randomly distributed, monodisperse spherical gold nanoparticles embedded in water
was investigated, because of its strong plasmon resonances in the visible spectrum and
wide application in nanophotonics [7,34–36]. The external medium was set to air. The
dispersed layer can be considered as a typical model of colloidal suspensions, nanoparti-
cles composite coatings, and thin-film materials. We selected three geometric parameters:
particle radius r, particle volume fraction f v, and layer thickness h, and three color property
parameters: (L, a, b) in the CIE 1976-Lab color space, as key features to establish the dataset
for the prediction and inverse design of structural colors. The color property parame-
ters of nanoparticle systems were obtained from a series of simulations, which include
Mie scattering calculation, Monte Carlo simulation, and spectrum-to-color conversion.
Then, a multilayered BNN was developed and trained to predict the structural colors of
nanoparticle systems and inversely design the geometric parameters for the desired colors.
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Figure 1. Schematic of the model and methods for the prediction and inverse design of structural colors of nanoparticle systems.

The range of r was set to 5–100 nm in 5 nm intervals, the range of f v was set to
1 × 10−6–3 × 10−5 in 1× 10−6 intervals, and the range of h was set to 0.5–10 mm in 0.5 mm
intervals. A total of 12,000 parameter combinations were generated and the corresponding
transmission spectra from 360 to 830 nm (in 1 nm intervals) were obtained by combining the
Mie scattering and Monte Carlo calculation. Then, the color property parameters (L, a, b)
were obtained by conducting the spectrum-to-color conversion. This dataset was divided
into three groups for training (9600), validation (1200), and testing purposes (1200). All
colors generated in the training and validation dataset are plotted in the CIE 1931-XYZ
chromaticity diagram in Figure 2. More detailed information for the model and methods is
provided in the following sections.

Figure 2. The 12,000 colors generated by gold nanoparticle systems plotted in a CIE 1931-XYZ
chromaticity diagram. The boundary of the sRGB color space is marked with blue lines.

2.2. Optical Properties of Nanoparticle Systems

For dilute gold nanoparticles embedded in water, the total optical properties of
nanoparticle systems, which include the extinction coefficients µext, scattering coefficients
µsca, and scattering phase functions Φ, are calculated as [37]:

µext = µext,p + µext,m (1)

µsca = µsca,p (2)

Φ = Φp (3)
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where µext,m = 4πκ/λ is the extinction coefficient of water, κ is the imaginary part of the
refractive index of water, λ is the incident light wavelength, and µext,p, µsca,p, and Φp
are the extinction coefficient, scattering coefficient, and scattering phase function of gold
nanoparticles, respectively. In the framework of the independent scattering approximation,
the optical properties of dilute monodisperse gold nanoparticles can be calculated as [37]:

µext,p =
3
4

Qext,p
fv

r
(4)

µsca,p =
3
4

Qsca,p
fv

r
(5)

Φp = Φp,s (6)

where Qext,p, Qsca,p, and Φp,s are the extinction efficiency factor, scattering efficiency factor,
and scattering phase function of single gold spheres, respectively, and can be calculated using
Lorenz–Mie theory [38]. The dielectric function of gold nanoparticles was taken from Johnson
and Christy’s [39] dataset, and the complex refractive index of pure water [40] was used.

2.3. Calculation of Transmission Spectra

Given the optical properties of the nanoparticle systems, the radiative transfer prob-
lems (e.g., transmission and reflection spectra) can be accounted for by solving the radiative
transfer equation (RTE) [37,41]:

dIλ(s)
ds

= −µext Iλ(s) + (µext − µsca)Ibλ(s) +
µsca

4π

∫
4π

Iλ

(
s,
→
Ω ′
)

Φ
( →

Ω ′,
→
Ω ′
)

dΩ′ (7)

where Iλ is the spectral radiative intensity in the direction of
→
Ω along path s, Ibλ is the

spectral blackbody intensity, and Ω′ is the solid angle. The RTE is solved using the Monte
Carlo method [37,42,43]. An infinitely thin light beam is perpendicularly incident on the
upper boundary of the layer from air, as shown in Figure 1. The reflection and refraction
at the boundaries are considered using the Snell’s law and Fresnel’s relation [37]. After
interacting with the layer, the reflected and transmitted photons are collected, and the
spectral directional-hemispherical transmittance T(λ) of the layer can be calculated as:

T(λ) = ∑2π Nt(Ωt)

N0
(8)

where N0 is the total number of the photons that are incident on the layer, and Nt(Ωt)
is the number of photons that are collected with the use of detectors positioned in the
hemispherical space outside the lower surface in the solid angle Ωt. In this study, 106 pho-
tons were used for each wavelength to obtain accurate results without using too much
computation time.

2.4. Spectrum to Color Calculation

The colors perceived by the human eye result from the interplay between the sensitiv-
ity of the eye’s three cone cells, the spectral intensity of the light source, and the spectral
reflection or transmission from the object. The CIE-1931-XYZ and CIE 1976-Lab color
spaces were used to assess the generated colors of nanoparticle systems [44–46]. As the
transmitted light has a wider coverage of color space compared to the reflected light, we
only focused on the transmission spectra and colors of the gold nanoparticle systems for
simplicity. In accordance with the proposals of the CIE-1931-XYZ, the tristimulus values X,
Y, and Z are defined by [44,45,47]:

X = 100

∫ 830nm
360nm ID65(λ)T(λ)x(λ)dλ∫ 830nm

360nm ID65(λ)y(λ)dλ
(9)
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Y = 100

∫ 830nm
360nm ID65(λ)T(λ)y(λ)dλ∫ 830nm

360nm ID65(λ)y(λ)dλ
(10)

Z = 100

∫ 830nm
360nm ID65(λ)T(λ)z(λ)dλ∫ 830nm

360nm ID65(λ)y(λ)dλ
(11)

where ID65(λ) is the spectral power distribution of the standard D65 illumination. x(λ),
y(λ), and z(λ) are the spectral tristimulus values, which contain information about the
used light source [44]. The chromaticity of the color is obtained by the normalized values:

x =
X

X + Y + Z
(12)

y =
Y

X + Y + Z
(13)

z =
Z

X + Y + Z
(14)

The normalized values x and y are used to determine the corresponding chromaticity in
CIE-1931-XYZ color space. In addition, the CIE 1976-Lab has a one-to-one correspondence
to the CIE-1931-XYZ but with much better uniformity, rendering it a more suitable color
space for accurate color difference identification [31,46]. The CIE 1976-Lab color space is
defined in terms of the tristimulus values L, a, and b, where L represents the lightness,
a represents the redness (+) and greenness (−), and b represents the yellowness (+) and
blueness (−). The conversion relation between (X, Y, Z) and (L, a, b) is stated as [46]:

L = 116 f (Y/Yn)− 16 (15)

a = 500[ f (X/Xn)− f (Y/Yn)] (16)

b = 200[ f (Y/Yn)− f (Z/Zn)] (17)

with Xn, Yn, and Zn being the tristimulus values of a reference white object, and:

f (s) = s1/3 if s > (24/116)3 (18)

f (s) = (841/108)s + 16/116 if s < (24/116)3 (19)

For the standard illuminant D65 and a 2
◦

standard colorimetric observer, they amount
to Xn = 95.049, Yn = 100, and Zn = 108.891. In contrast to X, Y, and Z, the tristimulus
values L, a, and b allow the quantitative comparison of colors. The CIE color difference
function ∆E can be defined as the Euclidean distance between two vectors (L, a, b) and
(L′, a′, b′) [46,48].

∆E =

√
(L′ − L)2 + (a′ − a)2 + (b′ − b)2 (20)

and a value of ∆E ≤ 1.0 usually represents identical colors [14,48].

2.5. Machine Learning Method

A multilayered BNN model, first proposed by Liu [49], was utilized to predict the color
generation of the gold nanoparticle systems and inverse design of geometric parameters
for the desired colors. The model consists of a fully connected inverse neural network
(INN) that directly connects to a pre-trained forward neural network (FNN), as shown in
Figure 3. The major advantage of this model is the excellent ability to solve the so-called
“one-to-many” problem, which describes the fact that most inverse design problems are
ambiguous, and hence several non-unique solutions exist for the same design target [21,49].
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Figure 3. Simplified schematic of the multilayered BNN model that consists of a fully connected INN that directly connects
to a pre-trained FNN.

Prior to training, the geometric properties of nanoparticle systems and the correspond-
ing color properties are normalized to improve the convergence rate and reduce the training
error. In the training process, the FNN is first trained to achieve accurate prediction of the
structural colors (L, a, b) based on the input geometric parameters (r, f v, h). The number of
layers and neurons in the hidden layer are determined by neural network training and con-
struction, and the training is performed by minimizing the loss function, which is defined
as the mean square error (MSE) between the predicted values (L′predicted, a′predicted, b′predicted)
and true values (Ltrue, atrue, btrue):

MSELab =
1
N

N

∑
i=1

[(
L′predicted − Ltrue

)2
+
(

a′predicted − atrue

)2
+
(

b′predicted − btrue

)2
]

(21)

where N is the number of the entries of color data. The training of the INN subsequently
uses the fixed pre-trained FNN model as a color predictor to evaluate the inverse design
output. Note that the loss function of INN compares the output color properties (L, a, b)
rather than the designed geometric parameters (r, f v, h), as shown in Figure 3. In this
way, different geometric parameters that lead to a similar color response no longer confuse
the neural network, and all correct solutions to a given design problem yield a positive
training feedback.

3. Results and Discussion
3.1. Structural Colors of Gold Nanoparticle Systems

Due to the particle scattering and absorption, the colors of the dispersed layer are
determined by various factors such as the size, shape, volume fraction, and refractive
index of nanoparticles, and the thickness and surface condition of the layer. In this study,
we focused on the influence of particle size, volume fraction, and layer thickness on the
structural colors of gold nanoparticle systems. As shown in Figure 2, a relatively wide
coverage of the CIE color space is observed, and the transmission light mainly appears as
purple and red colors, some of which are even out of the range of the sRGB color space.
These results confirm that a wide range of structural colors can be achieved by using only
one type of nanoparticle through controlling the specific geometric parameters.

The influences of different geometric parameters on the generated colors and transmis-
sion spectra of gold nanoparticle systems are presented in Figure 4. Figure 4a–c shows the
generated colors for different particle radii, particle volume fractions, and layer thicknesses.
Figure 4d–f shows the simulated transmittance spectra of gold nanoparticle systems. To bet-
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ter illustrate the change in color chromaticity, Table S1 lists the corresponding color property
parameters L, a, and b of the generated colors in Figure 4d–f. For the sake of comparing and
analyzing, the scattering and absorption efficiency factors of single particles for different
particle radii are also illustrated in Figure 4g,h. As shown, the particle radius, particle
volume fraction, and layer thickness have different degrees of influence on the generated
colors and transmission spectra. Compared with the impacts of particle volume fraction
and layer thickness, the particle radius shows a greater impact on the color chromaticity.
With increasing particle radius, the values of a and b decrease first and then increase,
resulting in the colors of the gold nanoparticle system changing from red to purple, then
grey, and then light-grey, as shown in Figure 4a,b,d and Table S1. For small-size particles
with particle radii smaller than 30 nm, the transmitted light mainly appears as red and
pink colors. This is mainly due to the strong absorption and weak scattering of light in the
blue and green region, which results in the red light passing through the layers with high
transmittance, as illustrated in Figure 4d,g,h. As the particle radius increases, the shifts in
the resonance peaks and enhanced scattering effect result in different distribution patterns
of transmittance spectra, and further lead to obvious changes in the generated colors.

In addition, we can observe that the particle volume fraction and layer thickness
mainly impact the lightness L of the nanoparticle systems, as shown in Figure 4a–c and
Table S1. For nanoparticle systems with low particle volume fraction and layer thickness,
due to the weak extinction of gold nanoparticles, different wavelengths of transmitted
light are mixed together and exhibit the white and pink colors with high lightness. As
the particle volume fraction and layer thickness increase, the multiple scattering effects
between gold nanoparticles obviously increase, which not only result in the enhancement
of particle extinction and the decrease in transmittance and lightness, but also impact the
generated colors in different degrees.

On the whole, by adjusting the geometric parameters of nanoparticle systems and
controlling the multiple scattering between nanoparticles, a wide range of structural colors
can be obtained. Meanwhile, it should be noted that the effects of particle size distribution,
particle shape, and particle aggregation were not considered in this study, which also have
important influences on the structural colors of nanoparticle systems [14,15,43]. These
influence factors will be investigated in future work.

3.2. Forward Neural Networks to Predict the Color Generation

A fully connected FNN, which consists of one input layer, several hidden layers, and
one output layer, was trained to accurately predict the structural colors of nanoparticle
systems. Notably, 9600 groups of geometric parameters in the training set were fed to the
FNN, which predicts the color properties, calculates the loss function, and updates the
parameters such as weights and biases according to the back-propagation of loss function.
In addition, 1200 groups of validation data were used to adjust the hyper-parameters and
check the performance of the neural network during training. By minimizing the training
and validation loss, and through continuously optimizing the structure parameters, a FNN
structure with 3 hidden layers and 200 nodes per layer shows excellent performance with
high accuracy, as shown in Figure 5a. The loss functions of training and validation sets
over epochs are plotted in Figure 5b. As shown, the loss function decreases rapidly at
the beginning of the training process due to a large gradient, and then the downward
trend slows gradually. After 5000 epochs, the values of training and validation loss are
4.35 × 10−6 and 6.31 × 10−3, respectively. The color difference ∆E corresponding to the
validation loss 6.31 × 10−3 is 0.079, which is difficult to recognize by the human eye. The
smooth downward trend and the small loss values show that the FNN performs well in
the training process.



Nanomaterials 2021, 11, 3339 8 of 15Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 4. The generated colors of gold nanoparticle systems for different geometric parameters with (a) h = 3.0 mm, (b) fv 

= 1 × 10−5, and (c) r = 30 nm. The simulated transmittance spectra of gold nanoparticle systems with (d) h = 3.0 mm, fv = 1 × 

10−5, and different particle radii; (e) fv = 1 × 10−5, r = 30 nm, and different layer thicknesses; and (f) r = 30 nm, h = 3.0 mm, 

and different particle volume fractions. Note that the curves in Figure 4d–f with different geometric parameters are suc-

cessively displaced upward by 1 for better visibility and comparison. (g) The scattering and (h) absorption efficiency fac-

tors of single particles for different particle radii. 

3.2. Forward Neural Networks to Predict the Color Generation 

A fully connected FNN, which consists of one input layer, several hidden layers, and 

one output layer, was trained to accurately predict the structural colors of nanoparticle 

systems. Notably, 9600 groups of geometric parameters in the training set were fed to the 

FNN, which predicts the color properties, calculates the loss function, and updates the 

parameters such as weights and biases according to the back-propagation of loss function. 

In addition, 1200 groups of validation data were used to adjust the hyper-parameters and 

(a) (b) (c)

400 500 600 700 800
0

1

2

3

4

5

6

7

8

9

10

fv = 3.0´10-6

T
ra

n
sm

it
ta

n
ce

, 
T

 

Wavelength,  (nm)

r = 30 nm

fv = 6.0´10-6

fv = 9.0´10-6

fv = 1.2´10-5

fv = 1.5´10-5

fv = 1.8´10-5

fv = 2.1´10-5

fv = 2.4´10-5

fv = 2.7´10-5

fv = 3.0´10-5

h = 3 mm

400 500 600 700 800
0

1

2

3

4

5

6

7

8

9

10

h = 1 mm

T
ra

n
sm

it
ta

n
ce

, 
T

 

Wavelength,  (nm)

r= 30 nm

h = 2 mm

h = 3 mm

h = 4 mm

h = 5 mm

h = 6 mm

h = 7 mm

h = 8 mm

h = 9 mm

h = 10 mm

fv = 1´10-5

400 500 600 700 800
0

1

2

3

4

5

6

7

8

9

10

r = 10 nm

T
ra

n
sm

it
ta

n
ce

, 
T

 

Wavelength,  (nm)

fv = 1´10-5

r = 20 nm

r = 30 nm

r = 40 nm

r = 50 nm

r = 60 nm

r = 70 nm

r = 80 nm

r = 90 nm

r = 100 nm

h = 3 mm

(d) (e) (f)

400 500 600 700 800
0

1

2

3

4

5

6

S
ca

tt
er

in
g

 e
ff

ic
ie

n
cy

 f
ac

to
rs

, 
Q

sc
a

Wavelength,  (nm)

400 500 600 700 800
0

1

2

3

4

5

 r = 10 nm

 r = 20 nm

 r = 30 nm

 r = 40 nm

 r = 50 nm

 r = 60 nm

 r = 70 nm

 r = 80 nm

 r = 90 nm

 r = 100 nm

A
b
so

rp
ti

o
n

 e
ff

ic
ie

n
cy

 f
ac

to
rs

, 
Q

ab
s

Wavelength,  (nm)

(g) (h)

L
ay

er
 t

h
ic

k
n
es

s,
 h

(m
m

)

P
ar

ti
cl

e 
v
o

lu
m

e 
fr

ac
ti

o
n
, 

f v

Particle radius, r (nm) Particle radius, r (nm) Layer thickness, h (mm)

P
ar

ti
cl

e 
v
o

lu
m

e 
fr

ac
ti

o
n
, 

f v

´10-5 ´10-5

Figure 4. The generated colors of gold nanoparticle systems for different geometric parameters with (a) h = 3.0 mm,
(b) f v = 1 × 10−5, and (c) r = 30 nm. The simulated transmittance spectra of gold nanoparticle systems with (d) h = 3.0 mm,
f v = 1 × 10−5, and different particle radii; (e) f v = 1 × 10−5, r = 30 nm, and different layer thicknesses; and (f) r = 30 nm,
h = 3.0 mm, and different particle volume fractions. Note that the curves in (d–f) with different geometric parameters are
successively displaced upward by 1 for better visibility and comparison. (g) The scattering and (h) absorption efficiency
factors of single particles for different particle radii.
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Figure 5. The forward neural network for predicting the colors of gold nanoparticle systems. (a) Structure of the forward
neural network. (b) The loss functions of the training and validation sets. (c–e) Scatter plot of the true colors (L, a, b) and
predicted colors (L′, a′, b′) for the 1200 groups of test data. (f) The color differences ∆E between the predicted colors and
true colors. (g) Statistical distributions of the testing results divided by different ranges of color differences.

In order to test the accuracy and generalization ability of the FNN, 1200 groups of
completely new test data were used and analyzed. Figure 5c–e shows the comparison
results between the predicted color property parameters (L′, a′, b′) and true values (L, a, b).
The results obtained by the FNN show a high consistency with those obtained by the
theoretical simulations, which demonstrates that the FNN has a good prediction ability for
the sample of the test set. To better evaluate the performance of the FNN, the color differ-
ences ∆E between the predicted colors and true colors and their statistical distributions are
illustrated in Figure 5f,g. In general, the human eye cannot identify the color difference
∆E < 1.0 [14,48]. As shown in the figure, only two of the color difference values (0.17%) are
larger than 1.0, which means that the accuracy of FNN is 99.83% according to the human
chromatic discrimination ability. Meanwhile, most of the color difference values (98.33%)
are below 0.5, proving that the prediction of structural colors of nanoparticle systems based
on the FNN is highly accurate.

To further investigate the relationship between the geometric parameters and color
properties, a heat map of the Pearson correlation coefficient matrix is illustrated in Figure 6.
The Pearson correlation coefficient is a measure of the linear association between two
features and has a value between −1 and 1. Positive values indicate positive correlations,
while negative values indicate negative correlations. The further away the correlation
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coefficient is from zero, the stronger the relationship between the two features becomes.
As shown in Figure 6, the correlation coefficients between the particle radius r and the
color property parameters L, a, and b are 0.036, −0.75, and −0.701, respectively, which
indicates that the particle radius shows strong negative correlation with the chromaticity
and has weak correlation with the lightness. On the contrary, the layer thickness and
particle volume fraction show strong negative correlation with the lightness and weak
positive correlation with the chromaticity. These results are consistent with the theoretical
analysis in Section 3.1, which are mainly caused by the single scattering and multiple
scattering of gold nanoparticles, and verify that our FNN can accurately capture the
complex relationships between the geometric parameters and structural colors.

Figure 6. The heat map of the Pearson correlation coefficient matrix within the input geometric
parameters (r, f v, h) and output color properties (L, a, b).

Overall, the application of FNN can perform the accurate prediction of structural
colors of nanoparticle systems with high reliability and efficiency. Although the acquisition
of 12,000 groups of training data requires a certain computational cost, after the initial one-
time computation investment, the FNN method has a great advantage in the computational
efficiency and can be easily and flexibly used in the related applications.

3.3. Inverse Neural Networks to Design the Geometric Parameters

Inverse design is much more complicated because different geometric parameters of
nanoparticle systems may yield the same color, and “one-to-many” results may lead to
untrained models. Introducing a bidirectional neural network with a tandem strategy is
an effective way to solve the “one-to-many” problem [18,49]. As shown in Figure 3, the
INN is directly connected to the pre-trained FNN. After completing the training of the
FNN, the weights in the FNN are fixed and then the training of the INN is carried out.
In the training process of the INN, the desired colors (L, a, b) are taken as the input, and
the output is the designed geometric parameters (r, f v, h) denoted as the intermediate
layer. The output of the pre-trained FNN is the predicted colors (L′, a′, b′) obtained based
on the designed geometric parameters (r, f v, h). The weights in the INN are optimized
by minimizing the loss function defined as the mean square error between the output
predicted colors (L′, a′, b′) and the input desired colors (L, a, b). After optimization design,
an INN model, which has 4 hidden layers with 100 neurons each layer, is constructed, as
shown in Figure 7a. The training loss and validation loss curves of the INN are plotted in
Figure 7b.
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Figure 7. The bidirectional neural network for designing the geometric parameters of gold nanoparticle systems. (a) Struc-
ture of the multilayered BNN. (b) The loss functions of the training and validation sets. (c–e) Scatter plot of the desired colors
(L, a, b) and predicted colors (L′, a′, b′) for the 1200 groups of test data. (f) The color differences ∆E between the designed
colors and desired colors. (g) Statistical distributions of the testing results divided by different ranges of color differences.

As shown in Figure 7b, the loss functions decrease rapidly at the beginning of the
training process and then remain stable until about the 200th epoch. After a sudden drop,
the downward trend of the loss function gradually slows, and the values of training and
validation loss are 8.03 × 10−5 and 0.0399, respectively, at the 5000th epoch. Note that the
value of validation loss 0.0399 corresponds to the color difference ∆E = 0.1997, showing that
the INN performs well in the training process. We again use 1200 groups of new data to test
the accuracy and generalization ability of the INN. The desired color properties (L, a, b) are
input into the INN to predict the designed geometric parameters (r, f v, h). Then, the data of
(r, f v, h) are fed to the FNN to obtain the designed color properties (L′, a′, b′). Figure 7c–g
illustrates the comparison results between the desired color properties (L, a, b) and inversely
designed color properties (L′, a′, b′), and the corresponding results of color differences ∆E.
Good consistency between the desired and inversely designed color properties is observed.
Most of the color difference values (90%) are below 0.5, and only 1.5% of the values are
larger than 1.0, indicating that the inverse design of structural colors of nanoparticle
systems based on the INN is highly accurate (with a high accuracy of 98.5%).

Furthermore, we randomly used three groups of data in the test set to evaluate the
performance of the INN. Figure 8a–c shows transmittance spectra of the desired and
designed colors. Note that the geometric parameters for both desired and designed colors
and the corresponding color differences are inserted in the figure. Figure 8d–f shows the
corresponding CIE chromaticity coordinates of the desired and designed colors. Moreover,
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for convenience of contrast, the reflectance and absorptance spectra of the desired and
designed colors are shown in Figure S1. As shown in Figure 8 and Figure S1, the designed
colors and the corresponding transmittance, reflectance, and absorptance spectra show
excellent agreement with the results of desired colors. Moreover, we observe that the
designed geometric parameters obtained based on the INN are different from the input
geometric parameters for all three groups of data, although the color differences ∆E
between the desired and designed colors are very small, as shown in Figure 8a–c. This
result not only verifies that the nanoparticle systems composed of different geometric
parameters can yield the same or similar colors, but also demonstrates the ability of the
INN to discover new solutions outside of the training data. Overall, after the one-time
investment of sufficient simulation data and the training of the BNN model, the prediction
and inverse design of colors take only a few seconds, which can greatly reduce the cost
and time of the colors’ design.

Figure 8. Inversely designing the geometric parameters of gold nanoparticle systems for desired
colors. (a–c) The transmittance spectra of the desired (lines) and designed (points) colors. (d–f) The
corresponding CIE chromaticity coordinates of the desired (circles) and designed (crosses) colors. The
geometric parameters for both desired and designed colors and the corresponding color differences
are inserted in (a–c). The color property parameters are as follows: (a) Desired color: L = 34.09,
a = 63.99, b = 58.25; designed color: L = 34.49, a = 64.04, b = 58.37. (b) Desired color: L = 73.96,
a = 40.44, b = 8.03; designed color: L = 73.88, a = 40.57, b = 8.17. (c) Desired color: L = 87.82, a = 11.78,
b = −4.79; designed color: L = 87.75, a = 11.81, b = −4.84.

To summarize, our inverse design strategy based on a BNN bypasses the complicated
simulations in searching for geometric parameters of nanoparticle systems for the desired
colors, and so greatly accelerates the design of structural colors with high accuracy and
efficiency. Our work provides a general method to accurately and efficiently design the
structural colors of nanoparticle systems. Meanwhile, our model can be further extended
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to more complex nanoparticle systems by using additional information such as particle
type, shape, and size distribution.

4. Conclusions

In summary, we combined the Monte Carlo, Mie scattering simulations, and bidirec-
tional neural network model to successfully improve the design of structural colors in gold
nanoparticle systems. A FNN model with 3 hidden layers including 200 neurons each
layer, and an INN model of 4 hidden layers containing 100 neurons each layer were con-
structed. The proposed neural network could accurately capture the complex relationships
between the geometric parameters and structural colors. Taking the human chromatic
discrimination ability as a criterion, our proposed neural network achieved a high accuracy
of 99.83% on the predicted colors and 98.5% on the designed geometric parameters. Our
work demonstrates the applicability of the deep learning method for the prediction and
inverse design of structural colors in nanoparticle systems, and will open a new way for
the further exploration of the related applications about nanoparticle-based materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11123339/s1, Figure S1. Inversely designing the geometric parameters of gold nanopar-
ticle systems for desired colors. (a–c) The reflectance spectra of the desired (lines) and designed
(points) colors. (d–f) The absorptance spectra of the desired (lines) and designed (points) colors,
Table S1. Color properties of gold nanoparticle systems composed of different geometric parameters.
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