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Our hypothesis is that changes in gene and protein expression are crucial to the development of late-onset Alzheimer’s disease.

Previously we examined how DNA alleles control downstream expression of RNA transcripts and how those relationships are

changed in late-onset Alzheimer’s disease. We have now examined how proteins are incorporated into networks in two separate

series and evaluated our outputs in two different cell lines. Our pipeline included the following steps: (i) predicting expression

quantitative trait loci; (ii) determining differential expression; (iii) analysing networks of transcript and peptide relationships; and

(iv) validating effects in two separate cell lines. We performed all our analysis in two separate brain series to validate effects. Our

two series included 345 samples in the first set (177 controls, 168 cases; age range 65–105; 58% female; KRONOSII cohort) and

409 samples in the replicate set (153 controls, 141 cases, 115 mild cognitive impairment; age range 66–107; 63% female; RUSH

cohort). Our top target is heat shock protein family A member 2 (HSPA2), which was identified as a key driver in our two

datasets. HSPA2 was validated in two cell lines, with overexpression driving further elevation of amyloid-b40 and amyloid-b42

levels in APP mutant cells, as well as significant elevation of microtubule associated protein tau and phosphorylated-tau in a

modified neuroglioma line. This work further demonstrates that studying changes in gene and protein expression is crucial to

understanding late onset disease and further nominates HSPA2 as a specific key regulator of late-onset Alzheimer’s disease

processes.
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Introduction
Along with other groups, we have proposed that systems

approaches to finding novel genes involved in disease path-

ways can be more powerful than DNA-only approaches

(Myers, 2012, 2013, 2014). We have previously examined

genotype–transcript relationships via expression quantita-

tive trait loci analysis and constructed regulatory networks

(Myers et al., 2007a; Webster et al., 2009; Zhang et al.,

2013). In this report, we extend the original work using

two independent datasets and integrated mass spectrometry

proteomics (Piehowski et al., 2013). In addition, by experi-

mentally validating the top replicated key drivers using two

independent cell-based models, we directly tested predic-

tions from the network models regarding their impact on

late-onset Alzheimer’s disease pathology.

Proteins are the primary effectors of human phenotypes,

so it is crucial to understand protein expression in the con-

text of gene variation and transcript expression. Prior work

to integrate proteomic data into the analysis of biological

networks has been successfully performed in humans

(Garge et al., 2010; Portelli et al., 2014; Stark et al.,

2014), yeast (Foss et al., 2007; Wu et al., 2008) and ro-

dents (Fei et al., 2011; Ghazalpour et al., 2011). Most of

the human data to date have been collected from lympho-

blasts (Garge et al., 2010; Stark et al., 2014), which are

highly subject to de novo mutation. Such cell-based systems

are not ideal for constructing models of human disease,

especially as many targets found in lymphoblast screens

do not replicate in brain tissues (Hong et al., 2008).

In this report, we present the first replication ‘omics screen

that includes DNA variation, RNA expression, and tandem

mass spectrometry proteome profiles in two series of human

brains, �50% of which are pathologically confirmed late-

onset Alzheimer’s disease tissues and one of which includes

samples collected worldwide (Supplementary Fig. 1). These

two sets were analysed independently to determine relation-

ships between DNA, RNA and protein. Our pipeline (Fig. 1)

involved testing for single effects, such as differential expres-

sion of both transcripts and peptides as well as expression

quantitative trait loci to examine single relationships be-

tween transcript and peptide abundances and allele content.
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Network analyses were used to capture more complex rela-

tionships between groups of data. We performed both ana-

lysis mapping how expression profiles were related between

multiple transcript and peptide targets (co-expression net-

work analysis) as well as mapping the causal structures

within the data (causal network analysis). Causal network

analysis is an expansion of co-expression analysis, in that the

relationships between transcript and or peptide targets are

given an order and direction in these predictions. For ex-

ample, in co-expression analysis, relationships are mapped

such that target A contacts targets B and C. In causal ana-

lysis, target A could be mapped upstream of targets B and C

and could contact B before C. For the causal network ana-

lyses, we used a novel expansion of standard Bayesian net-

work approaches, which allows for the analysis of opposite

causality (i.e. both negative and positive correlations). This

causal predictive network type of analysis is more compre-

hensive than testing single transcripts or proteins against

single nucleotide polymorphisms (SNPs), which is the

common procedure in expression quantitative trait loci stu-

dies and is the procedure carried out in many prior reports

including the human proteome (Garge et al., 2010; Stark

et al., 2014). Additionally, the multiple layers of regulation

that can occur between DNA and protein make the protein-

SNP relationships more complex and multivariate network

approaches are capable of capturing relationships among all

targets. Our final step is to narrow down our list of targets

from the causal predictions by performing a key driver ana-

lysis. Key driver analysis involves looking for targets

(formally, nodes within the causal structure) that have a

higher number of connections than would be expected

given a background.

While it was important to identify targets in brain, the

causal consequences of changing levels of targets are stat-

istically inferred; therefore, validating the predictions is crit-

ical. We used several different cell lines to validate targets

outside the context of human brain tissue, measuring levels

of amyloid-b40, amyloid-b42, total tau and phosphorylated

(p)-tau to examine the downstream consequences of chan-

ging predicted target transcript and protein expression. Our

hypothesis is that novel findings will be acting on a back-

ground of pathological expression of both amyloid-b and

tau, i.e. our effects would act as modifiers of known

pathology.

We present an integrated, multi-level analysis of how the

analysis of DNA, RNA, and protein data can facilitate the

study of the relationships among genes and proteins and

their impact on the human brain in the context of late-

onset Alzheimer’s disease. These targets are vetted through

a multi-pass validation procedure including multiple types

of analysis, replication across multiple datasets, in silico

predictions and in vitro validations.

Materials and methods
All procedures are extensively detailed in the Supplementary
material.

Figure 1 Analysis pipeline. A summary of the steps that were taken on the processed data is shown. Round rectangles indicate input data,

green round rectangles indicate input data from external sources, and orange squares indicate processes and outputs from those processes. Steps

are numbered on the figure. See main text for further detail. BN = Bayesaian network; DBs = databases; DE = differential expression;

eQTL = expression quantitative trait loci; GO = Gene Ontology database; mSig = Molecular Signatures Database; WGCNA = weighted corre-

lation network analysis.
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Samples

KRONOSII is a subset of data already presented (Corneveaux
et al., 2010) and contains samples from Alzheimer’s Disease
Research Center-funded US brain banks as well as six
European and British brain banks. KRONOSII is a conveni-
ence cohort with low secondary pathology (i.e. Lewy body
disease) and high pathology load in the late-onset
Alzheimer’s disease affected samples and low pathology load
for controls. The second set (RUSH) includes subjects from
two large, prospectively followed cohorts maintained by inves-
tigators at Rush University Medical Center in Chicago, IL: The
Religious Orders Study and the Memory and Aging Project.
The RUSH set is an epidemiologically based cohort with a
greater mix of pathologies and pathological staging. There
are 168 late onset Alzheimer’s disease-affected samples and
177 unaffected samples with all datasets collected for the
KRONOSII cohort. From the RUSH cohort 141 late-onset
Alzheimer’s disease affected samples and 153 unaffected sam-
ples with all datasets were collected. The average age for the
KRONOSII cohort is 81, with 59% female subjects. The aver-
age age of the RUSH cohort is 88 and 63% of the subjects are
female. Tissue sections were taken from frontal (82% of the
sample) and temporal (18% of the sample) cortical regions.

Data collection

Genomic DNA samples were analysed on the Genome-Wide
Human SNP 6.0 Array (Affymetrix) according to the manufac-
turer’s protocols. Birdsuite (Korn et al., 2008) was used to call
SNP genotypes from CEL files. The DNA quality control pipe-
line was similar to that described in Anderson et al. (2010).
cRNA was hybridized to Illumina HumanRefseq-HT-12 v2
Expression BeadChip. Expression profiles were extracted, back-
ground was subtracted and missing bead types imputed using
the BeadStudio software. Normalization for the RNA profiles
was performed using lumi (Du et al., 2008) and limma
(Ritchie et al., 2015). Sample data were adjusted for several
biological covariates (gender, age at death and cortical region)
and several methodological covariates (institute source of
sample, post-mortem interval, detection and hybridization
date). Tandem mass spectrometry analysis was performed
using an Exactive Orbitrap mass spectrometer (Thermo
Scientific) outfitted with a custom electrospray ionization (ESI)
interface. Identification and quantification of peptides was per-
formed using the accurate mass and time tag approach (Zimmer
et al., 2006). Decon2LS was used for peak-picking and for
determining isotopic distributions and charge states (Jaitly
et al., 2009). De-isotoped spectral information was loaded into
VIPER to find and match features to the peptide identifications
in the accurate mass and time tag database (Monroe et al.,
2007). Relative peptide quantitation was based on ratios
between intensities of natural 16O isotope containing peptides
and reference peptides labeled with stable 18O isotope at the
carbonyl group at the C-terminus of the peptide.

Data analysis

Our data analysis pipeline is shown in Fig. 1. This was a
multi-pass selection procedure to both uncover late-onset
Alzheimer’s disease risk targets and place them in the context
of upstream regulation (allelic information) and downstream

outputs (transcripts and peptides). Our goal was to identify a
minimal set of high-confidence targets for validation. Our
pipeline was performed in KRONOSII and RUSH separately
after normalization to ensure independent replication.

Differential expression

Differential expression analysis was performed using limma
(Ritchie et al., 2015) comparing late-onset Alzheimer’s disease
and pathologically confirmed controls. Each dataset
(KRONOSII, RUSH) was run independently. Multiple testing
adjustment was performed using Benjamini-Hochberg correc-
tion [5% false discovery rate (FDR)]. Results were used to
define seeding sets for downstream analysis.

Expression quantitative trait loci

MatrixeQTL (Shabalin, 2012) was used to predict allele-tran-
script relationships. Each dataset (KRONOSII, RUSH) was run
independently. Permutations were used to correct for both the
dependence between individual tests and for multiple testing
(Supplementary material).

Network analysis

We carried out network analyses that took as input genomic,
transcriptomic and proteomic profiles from the two datasets
(KRONOSII and RUSH), in addition to external data derived
from the literature, pathway databases (Molecular Signatures
Database, Gene Ontology Database), and the Roadmap initia-
tives (Roadmap Epigenomics Consortium et al., 2015). Our
goal was to produce an output list of the main biological pro-
cesses that are dysregulated in late-onset Alzheimer’s disease, as
well as a small list of the top key drivers impacting late-onset
Alzheimer’s disease associated processes. KRONOSII and RUSH
were treated as independent datasets and the effects were com-
pared across sets to determine replicated targets. Our pipeline
included the following procedures (Fig. 1, Steps 3–6, dark
orange squares): (i) constructing co-expression networks to iden-
tify sets of co-regulated genes associated with late-onset
Alzheimer’s disease pathology (Step 3) and determining path-
ways enriched in each network module (Step 4b); (ii) determin-
ing seeding gene sets associated with late-onset Alzheimer’s
disease pathology (Step 4a, Module Selection and Module
Enrichment); (iii) building multiscale causal predictive networks
(Step 5); and (iv) determining the key drivers that modulate
states of the causal predictive network subnetworks (Step 6).

Co-expression networks

We constructed co-expression networks separately in controls
and late-onset Alzheimer’s disease samples. Additionally, co-ex-
pression networks were constructed separately in KRONOSII
and RUSH. Single-scale networks consisted of transcripts only
or proteins only. Multi-scale networks included transcripts plus
proteins, with reduction of the transcript set to modules that
were most enriched for differentially expressed genes. Our tran-
script co-expression networks consisted of all 15 297 transcripts
(Supplementary material: Ancillary Dataset 4, KRONOSII
Transcript co-expression networks; and Ancillary Dataset 5,
RUSH Transcript co-expression networks), the protein-only co-
expression networks consisted of 1931 peptides (Supplementary
material: Ancillary Dataset 6, KRONOSII Peptide co-expression
networks; and Ancillary Dataset 7, RUSH Peptide co-expression
networks), and the multiscale co-expression networks consisted
of 15 297 transcripts and 1931 peptides (Supplementary material:
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Ancillary Dataset 8, KRONOSII multiscale co-expression net-
works; and Ancillary Dataset 9, RUSH multiscale co-expression
networks). Prior to building our networks, we hypothesized that
using peptide information may be more informative than using
protein aggregate information in the context of networks (i.e.
collapsing all peptides mapping to a single gene to one target).
This hypothesis was based on data indicating that the four pep-
tides mapping to MAPT showed quite different signals, with
two peptides differentially expressed and two peptides not-
significantly different. As network analysis is based on correlative
structures and not genomic locations, we hypothesized that pep-
tides that had functions implicated in late-onset Alzheimer’s
disease pathogenesis (i.e. the two differentially expressed MAPT
peptides), might cluster separately from peptides that were
unchanged in late-onset Alzheimer’s disease (i.e. the two non-
significant MAPT peptides). To test this, we constructed a co-
expression network with only peptide data. For both KRONOSII
and RUSH, peptides of the same protein did not always cluster in
the same modules (Fig. 3A–D), supporting that using individual
peptide level data may capture more diverse biology, since indi-
vidual peptides may track completely different transcript modifi-
cations that may not have correlated levels of expression due
to alterations in function. Examining the specific test case of
MAPT peptides, in both KRONOSII and RUSH [which were
quality controlled together, but predictions were run independ-
ently (Supplementary material)], the two differentially expressed
peptides clustered together, and one of the non-significant pep-
tides was consistently in another module. The last peptide
(MAPT_HLSNVSSTGSIDMVDSPQLATLADEVSASLAK) was
somewhat noisy, mapping outside of the differential expres-
sion peptide module in RUSH, but within that module in
KRONOSII.

Causal predictive networks

While co-expression networks allow for descriptive character-
izations of gene-protein relationships, causal relationships pre-
diction is necessary for ordering of the network data into a
hierarchy of relationships that in turn enables key driver ana-
lyses. While co-expression networks reflect only associative re-
lationships, Bayesian networks infer directed edges that
represent the direction of information flow. Bayesian network
analysis can capture non-linear and combinatorial interactions.
One limitation to standard Bayesian network analysis is that
sometimes substructures within a Bayesian network are contra-
dictory, which results in many directed edges having low con-
fidence. To address this inherent limitation, we developed a
novel causal predictive network approach, integrating a top-
down Bayesian network approach with bottom-up causal in-
ference that takes into account known causal relationships,
which breaks the symmetry among contradictory causal struc-
tures and thus leads to higher confidence in edge directions.

The complexity of network building is a function of the
number of nodes considered and sample size. We used all pep-
tides in the network constructions; however, given the large
number of probes used to query gene expression levels, we
reduced the number of transcript probes to use in the causal
predictive network reconstruction without losing important
late-onset Alzheimer’s disease gene and pathway information.
We built gene-only co-expression networks and identified
those modules enriched for differentially expressed genes,
and then restricted causal predictive network construction to

this subset of coherent late-onset Alzheimer’s disease focused
gene sets.

We focused our search on the identification of key drivers of
network states associated with late-onset Alzheimer’s disease,
and thus used only late-onset Alzheimer’s disease datasets. The
seeding gene sets for both the KRONOSII and RUSH late-
onset Alzheimer’s disease datasets included modules enriched
for differentially expressed transcript targets; therefore, path-
ways of relevance for late-onset Alzheimer’s disease pathology
were selected. We expanded these sets to include more than
just differentially-expressed transcripts by including priors
from a literature-based brain-specific network. Given the
modest number of peptides measured, all peptides were used
in the network models. Transcript data were reduced to the
most crucial targets (Module Selection) and then expanded by
including additional targets from the same pathways in curated
databases (Module Enrichment). To ensure robust replication,
KRONOSII and RUSH were pipelined as separate sets.

Key driver analysis

After the causal predictive network analysis was performed,
the resulting predictive network models were examined using
a key driver analysis algorithm. Key drivers are targets that
have a significant impact on the regulatory states of other
targets. Key drivers were predicted separately for KRONOSII
and RUSH and overlaps determined. The late-onset
Alzheimer’s disease-associated subnetworks to which key
driver analysis was applied were generated by projecting mul-
tiple different datasets onto the networks. First, we projected
the module enrichment set only including differentially ex-
pressed transcripts from KRONOSII or RUSH. Second, we
projected each module in its entirety including transcripts
from KRONOSII or RUSH. Next, we projected the full differ-
entially expressed transcript set from either KRONOSII or
RUSH. For the peptide data, we first projected sets including
both transcripts and peptides, performing the analysis separ-
ately on KRONOSII and RUSH. Finally, the entire peptide set
was projected onto the transcript-peptide causal network, per-
forming the analysis separately on KRONOSII and RUSH.

Data validation

While the identification of key drivers using the above ap-
proach is completely data-driven, the inferences are statistical
in nature and our results need to be verified experimentally.
We used two different human cell lines which model the ca-
nonical amyloid-b and tau late-onset Alzheimer’s disease path-
ways to validate hits outside the context of human brain
tissue. Amyloid-b accumulation in plaques is thought to be
the primary event in Alzheimer’s disease pathogenesis (Hardy
and Selkoe, 2002) and tau accumulation is one of the hallmark
early features of Alzheimer’s disease (Serrano-Pozo et al.,
2011); therefore, our hypothesis was that targets of interest
should affect amyloid-b and tau levels further in the context
of ongoing pathology. It is crucial for these studies to prove
specificity of our effects to the specific single targets involved in
late-onset Alzheimer’s disease. While we and others have
found general pathways such as inflammation that are
involved in the pathogenic late-onset Alzheimer’s disease pro-
cess (Zhang et al., 2013); those pathways have also been
found in several other diseases (Miller and Raison, 2016;
Miller et al., 2017); and thus, while interesting, are
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inappropriate for validating that our targets are specific to late-
onset Alzheimer’s disease declines and not neurodegeneration
in general.

We used two different lines. First, all targets were transduced
into the APPswe HEK293 line. This is a human embryonal
kidney cell line expressing amyloid-b complementary DNA
bearing a double mutation [K595N and M596L; HEK293sw;
gift from D. Selkoe, Boston, MA (Citron et al., 1992)]. These
cells produce 89-fold more APP mRNA than cells without the
mutations (t-test P-value = 0.006). Levels of total tau protein
and hyperphosphorylated tau were assessed in an H4 neuro-
glioma cell line engineered to overexpress four repeat tau [H4–
4R0N, gift from T. Dunkley, Phoenix, AZ (Azorsa et al.,
2010)]. The H4–4R0N line produces �5-fold more tau protein
than cells without the construct. Using these lines demon-
strated both specificity of effects to late-onset Alzheimer’s dis-
ease, as amyloid-b processing in particular is a hallmark sign
of disease, and replicated causality, since targets were modelled
individually via overexpression or knockdown. Showing effects
of the expression of single targets on amyloid-b and tau in
external cell systems alleviates any concerns that computation-
ally predicted brain tissue effects were merely the result of
tissue degradation or age-related degeneration in general.

Data availability

All data are available through links at the Laboratory of
Functional Genomics website (http://labs.med.miami.edu/
myers/LFuN/LFuN.html). Further information and requests
for resources and reagents should be directed to the corres-
ponding author.

Results

APP and MAPT

It is possible that since both amyloid-b and tau proteins are

deposited in late-onset Alzheimer’s disease brains, they

might be difficult to detect via tandem mass spectrometry

techniques because of inefficient digestion; therefore, we

first examined our data for known targets to make sure

that corresponding peptides could be detected. To increase

power, this analysis was performed across both series at

once (n = 320 late-onset Alzheimer’s disease, 338 pathology

free controls, 115 mild cognitive impairment). The

Consortium to Establish a Registry for Alzheimer’s

Disease (CERAD) (Mirra et al., 1991) and Braak (Braak

and Braak, 1995) staging were performed in each series.

One peptide mapping to amino acids 17–28 of the amyl-

oid-b peptide (LVFFAEDVGSNK, detected in 47% of the

series) and four tau peptides (HLSNVSSTGSIDMVDS

PQLATLADEVSASLAK, detected in 76% of the series;

HVPGGGSVQIVYKPVDLSK, detected in 96% of the

series; SGYSSPGSPGTPGSR, detected in 60% of the

series; and IGSLDNITHVPGGGNK, detected in 98% of

the series) were detected, thus demonstrating that our

protocol was able to detect known late-onset Alzheimer’s

disease peptides. These peptides were examined to see if

they were at increased levels in late-onset Alzheimer’s dis-

ease as would be expected based on the amyloid hypothesis

and our own work on microtubule associated protein tau

(Myers et al., 2005, 2007b). There were significant in-

creases with the APP peptide and with two out of the

four tau peptides detected (APP_LVFFAEDVGSNK:

F = 33.23, P-value = 5.783 � 10�14; MAPT_HVP

GGGSVQIVYKPVDLSK: F = 44.77, P-value5 2.2 � 10�16;

MAPT_IGSLDNITHVPGGGNK: F = 90.137, P-value5 2.2

� 10�16; MAPT_HLSNVSSTGSIDMVDSPQLATLADEV

SASLAK: F = 0.4054, P-value = 0.667; MAPT_SGYSSPGS

PGTPGSR: F = 1.4254, P-value = 0.242).

Peptide profiles were also examined to determine consist-

ency with respect to late-onset Alzheimer’s disease pathology.

CERAD scores are a measure of neuritic plaque density cor-

rected for age [see Table 1 in Mirra et al. (1991)]. The series

mostly contains the oldest CERAD age group (age 475)

where CERAD scores reflect neuritic plaque density and

thus, this staging reflects amyloid-b levels. A consistent ele-

vation in levels of APP_LVFFAEDVGSNK peptide was seen

as CERAD scores progressed from 0 (no plaques) to C (mod-

erate to frequent plaques depending on the age bracket).

Braak staging quantifies the amount and cortical distribution

of neurofibrillary tangles. Neurofibrillary tangles are com-

posed of paired helical filaments of hyper-phosphorylated

tau, and therefore, we hypothesized that as neurofibrillary

tangle pathology was more widespread, tau peptides would

show increased expression. This occurred for two of the tau

peptides (MAPT_HVPGGGSVQIVYKPVDLSK and MAPT_

IGSLDNITHVPGGGNK), which were the same peptides that

were differentially expressed. Examining the alignment of

these two peptides within the MAPT gene, the two peptides

that were differentially expressed and correlated with Braak

staging (MAPT_HVPGGGSVQIVYKPVDLSK and MAPT_

IGSLDNITHVPGGGNK) aligned to the microtubule binding

repeat regions of MAPT, whereas the two peptides that were

not differentially expressed or correlated with Braak score

aligned just outside the binding repeat regions.

Thus, our peptide data captured the known key targets

involved in late-onset Alzheimer’s disease pathogenesis.

Peptides aligning to these targets were differentially distrib-

uted both with late-onset Alzheimer’s disease diagnosis and

post-mortem pathological measures. This finding gave us

further confidence to proceed with an analysis of all data-

sets in both cohorts.

All targets

Differential expression

There were 8044 significantly differentially expressed tran-

scripts in the KRONOSII set (Supplementary material:

Ancillary Dataset 1, Differentially Expressed Transcripts)

and 347 transcripts in the RUSH series (Supplementary

material: Ancillary Dataset 1, Differentially Expressed

Transcripts). These transcripts were used to seed the con-

struction of the network models. For the peptide data, there
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were 176 significant differentially expressed peptides com-

paring late-onset Alzheimer’s disease and controls in the

KRONOSII data (Supplementary material: Ancillary

Dataset 2, Differentially Expressed Peptides) and 29 in

the RUSH series (Supplementary material: Ancillary

Dataset 2, Differentially Expressed Peptides). In comparing

mild cognitive impairment tissue profiles to pathologically

confirmed controls, no significant differences were

observed; therefore, mild cognitive impairment data were

only used to confirm levels from key targets and not for

network construction.

Expression quantitative trait loci

We analysed allelic-transcript correlations and allelic-peptide

correlations; however, only allelic-transcript relationships

had significant expression quantitative trait loci. This is

not surprising given that there is a direct relationship be-

tween DNA alleles and downstream RNA expression and

furthermore, the path between DNA alleles to peptide pro-

files is considerably more convoluted. Additionally, peptide

datasets are sparse, which can complicate analysis; therefore,

the analysis of peptide data in the context of allelic drivers

requires a more complex approach than standard protein

quantitative trait loci single target metrics. For our data,

peptides were incorporated at the multiscale network ana-

lysis level, which will allow for RNA to act as an intermedi-

ary signal (see the following section).

In a prior analysis (Webster et al., 2009), we found that

�9% of transcripts we tested showed a genome-wide signifi-

cant correlation with SNP genotype using a bootstrapping

procedure for correction. In our current datasets, for

KRONOSII �12% of transcript probes tested were signifi-

cantly correlated with allele dosage in cis (5% FDR), and

for RUSH �18% of transcript probes tested were significantly

correlated with allele dosage in cis (5% FDR). Of these cis

expression quantitative trait loci detected in each cohort, 1975

expression quantitative trait loci were overlapping between the

sets (Supplementary material: Ancillary Dataset 3, Cis

Overlapping expression quantitative trait loci), a 1.6-fold en-

richment over what would have been expected by chance

(Fisher’s exact P5 2.23 � 10�191). Additionally, we replicated

�50% of the cis expression quantitative trait loci detected in

our first report (Webster et al., 2009), even though these stu-

dies comprised different sample sets and profiled using differ-

ent microarrays. We also detected 113 trans expression

quantitative trait loci in the KRONOSII set and 246 trans

expression quantitative trait loci in the RUSH set. Of the

trans expression quantitative trait loci identified, 40 were over-

lapping between the KRONOSII and RUSH sets, a 21-fold

enriched over what would be expected by chance (Fisher’s

exact P5 10�16). All cis hits are mapped in Fig. 2A and B.

Networks

Multiscale co-expression network

Examining the multiscale aggregate transcript-peptide net-

works, most modules were either predominantly comprised

transcripts or peptides, demonstrating that these datasets are

quantitatively independent (Supplementary Fig. 2). This result

was not unexpected given previous correlation coefficient es-

timates of 0.27 between gene and corresponding peptide ex-

pression traits (Ghazalpour et al., 2011). There are technical

differences in collecting oligonucleotide profiles versus amino

acid profiles, which may result in low levels of correlation.

There are also biological differences in the way that oligo-

nucleotides and amino acids are handled within a cell.

Cleavage, sorting, and the timing of degradation can all act

to vary amino acid profiles away from oligonucleotide pro-

files in biologically meaningful ways. APP represents a good

example of this effect in late-onset Alzheimer’s disease; tran-

script profiles are unchanged, but through differential cleav-

age, peptide profiles are altered. This further emphasizes the

importance of analysing both RNA and peptide. Since multi-

scale co-expression network analysis is rooted in correlations,

this method was not appropriate for discovery of connections

between transcripts and peptides. Thus, we developed causal

predictive networks, conditionally testing relationships and

facilitating the identification of non-linear relationships be-

tween transcripts and peptides.

In these multiscale co-expression networks (transcript

plus protein), there were 26 modules in KRONOSII late-

onset Alzheimer’s disease and 32 modules in RUSH late-

onset Alzheimer’s disease (Supplementary material:

Ancillary Dataset 8, KRONOSII multiscale co-expression

networks; and Ancillary Dataset 9, RUSH multiscale co-

expression networks). For the control data, there were 25

and 32 modules for KRONOSII and RUSH, respectively

(Supplementary material: Ancillary Dataset 8, KRONOSII

multiscale co-expression networks; and Ancillary Dataset 9,

RUSH multiscale co-expression networks). Figure 3E–H

gives the functional enrichments for each module for the

aggregate multivariate co-expression network predictions.

The five most significantly enriched biological processes

that replicated across the late-onset Alzheimer’s disease

KRONOSII and RUSH datasets were: (i) generation of pre-

cursor metabolites and energy; (ii) tissue development; (iii)

response to unfolded protein; (iv) defence response; and (v)

hydrogen peroxide catabolic process. In the control modules,

the four most enriched biological processes that replicated

across the KRONOSII and RUSH datasets were: (i) response

to virus; (ii) response to unfolded protein; (iii) regulation of

action potential in neuron; and (iv) RNA metabolic process.

While comparing the molecular signatures database and

gene ontology processes gives a general idea of the overlap

between KRONOSII and RUSH, this is not a direct com-

parison of module membership. Membership of all

KRONOSII late-onset Alzheimer’s disease modules was

compared to RUSH late-onset Alzheimer’s disease modules

and KRONOSII control modules to RUSH control modules

(Fig. 3I and J). In no case was there perfect overlap be-

tween KRONOSII and RUSH structure; however, there

were several modules that had some degree of overlap,

showing similarities between the two datasets.
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Multi-scale causal predictive network

There were six modules that were enriched for differentially

expressed genes in the KRONOSII set and five modules in

the RUSH set. The final directed networks consisted of

1931 peptides and 2465 interactions for KRONOSII pep-

tides only network, and 1931 peptides and 2524 inter-

actions for RUSH peptides only network; 8153 genes and

10 848 interactions for KRONOSII transcript only net-

work, and 7357 genes and 9962 interactions for RUSH

transcript only network; 10 160 genes, 1931 peptides, and

14 103 interactions for KRONOSII multiscale network, and

9338 genes, 1931 peptides, and 13 478 interactions for

RUSH multiscale network.

Key driver analysis

The key driver results are shown in Fig. 4A and B. In total,

there were 100 transcripts appearing in at least two

networks and 105 peptides identified as key drivers. Of

these key drivers, 80 transcript key drivers and 53 peptide

key drivers were replicated between KRONOSII and

RUSH. We selected three transcript hits and four peptide

hits for experimental validation. Targets were prioritized

that were differentially expressed and/or if they were an

expression quantitative trait loci in the transcript dataset.

Data validation

Of the seven targets, one target (ST18) was not followed

due to construct size and cost. The other six constructs

were tested in the HEK293 and H4 lines. Of the other

targets, three (HSPA2, GNA12, COMT) were overex-

pressed in at least one late-onset Alzheimer’s disease

cohort, and two were under expressed in late-onset

Alzheimer’s disease (PDHB and RGS4) (Table 1). For

these constructs we replicated the late-onset Alzheimer’s

Figure 2 Cis expression quantitative trait loci. All cis expression quantitative trait loci hits are plotted for (A) KRONOSII and (B) RUSH.

Results from each chromosome (x-axis) are highlighted in a different colour. Each point denotes one cis SNP–probe relationship. Prior genome-

wide association studies and key driver hits are marked by dashed grey lines.
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Figure 3 Networks. Shown are the fraction of peptides mapping to their corresponding gene target in each module used in the analysis for the

(A) KRONOSII late-onset Alzheimer’s disease set, (B) RUSH late-onset Alzheimer’s disease set, (C) KRONOSII Control set, and (D) RUSH

Control Set. Darker colours indicate all peptides for a given target mapped to both the same module as well as to the same gene target. As can be

seen on the figure, there is an imperfect correlation between module membership, gene mapping and peptide identity. Testing for whether

counts of peptides for a particular protein mapped to the same or different modules was significant in both the KRONOSII (Fisher’s exact

P-value = 0.0002, alpha = 0.05), and RUSH sets (Fisher’s exact P-value = 0.05, alpha = 0.05). In E–H, Gene ontology pathways are shown for

modules from multiscale co-expression predictions that are enriched for differentially expressed targets from the (E) KRONOSII late-onset

Alzheimer’s disease dataset, (F) RUSH late-onset Alzheimer’s disease dataset, (G) KRONOSII pathology-free dataset and (H) RUSH pathology-

free dataset. The x-axis plots each module and y-axis is the �log10 P-value of the enrichment analysis. Modules and processes to the left of the line
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disease state, overexpressing HSPA2, GNA12, COMT and

knocking down PDHB and RGS4. CCT5 was not differ-

entially expressed, but was followed as a key driver pep-

tide. CCT5 was overexpressed as a first pass of replication.

Our goal was to obtain consistent measures of changes of

amyloid-b and/or tau at multiple time points (48, 72 and

96 h) after transduction.

For RGS4, there was a significant downregulation of

amyloid-b40 at all time points measured, but no effect on

amyloid-b42 (Supplementary Fig. 3E). This drop in amyloid-

b levels is counter to the effects seen in brain tissue. In the

brain tissue having less RGS4 was toxic and therefore, amyl-

oid-b should be increased with less RGS4. Alternatively, the

lower levels of RGS4 could be reflecting end-stage protective

compensatory mechanisms, and in that context the results

make sense. The amyloid-b results for PDHB were for the

most part non-significant, with only one time-point showing

a difference in amyloid-b40 (Supplementary Fig. 4E). For tau,

there were no significant results with RGS4 nor was there

any trend in the data (Supplementary Fig. 4E). For PDHB,

there was no change in total tau and p-tau was significant at

two out of three time points measured (Supplementary Fig.

4E). These effects are consistent with the brain tissue data,

since there was less expression of PDHB in late-onset

Alzheimer’s disease brains therefore, tau should be increased

with knockdown.

Several of the key driver overexpressed targets (CCT5,

COMT and GNA12) significantly changed either levels of

tau and p-tau (CCT5 and COMT) or amyloid-b40 and amyl-

oid-b42 (GNA12), but not both consistently (Supplementary

Figs 5–7). Most of these results matched to what would be

expected from the profiles in brain tissue, i.e. increases in the

canonical pathological proteins with target overexpression.

CCT5 was the exception and showed consistent decreases in

amyloid-b42, counter to the expected overexpression. It is

notable that there is less total RNA present with CCT5

transduction (Supplementary Fig. 5); thus, this effect may

be secondary to HEK cell death. Additionally, as with

RGS4, CCT5 overproduction could be protective and com-

pensatory to pathogenic processes. Finally, CCT5 is not sig-

nificantly changed in terms of differential expression

(Supplementary Fig. 5A); therefore, more complex modelling

rather than just overexpression may be required.

Our best validated target from the key driver prediction

using the transcript dataset was HSPA2. This target signifi-

cantly elevated amyloid-b40 and amyloid-b42 at all time

Figure 3 Continued

are replicated across sets. Colours are kept consistent to arbitrary assignments by Weighted Gene Co-expression Network Analysis. Processes

are as follows. (E) (KRONOSII AD): 1, Generation of precursor metabolites and energy; 2, Tissue development; 3, Response to unfolded protein;

4, Defence response; 5, Hydrogen peroxide catabolic process_1; 6, Hydrogen peroxide catabolic process_2; 7, Translational elongation; 8,

Gluconeogenesis; 9, Neurological system process; 10, Response to stress; 11, Glial cell differentiation; 12, Blood vessel development; 13, Cellular

catabolic process; 14, Respiratory electron transport chain_1; 15, Respiratory electron transport chain_2; 16, Axon guidance; 17, Response to

electrical stimulus; 18, Response to chemical stimulus; 19, Negative regulation of cellular biosynthesis; 20, DNA recombination; 21, Regulation of

microtubule-based process; 22, Ether metabolic process; 23, Negative regulation of transcription from RNA polymerase II promoter; 24,

Intracellular protein transmembrane import; 25, Telomere maintenance. (F) (RUSH AD): 1, Generation of precursor metabolites and energy; 2,

Tissue development; 3, Response to unfolded protein; 4, Defence response; 5, Hydrogen peroxide catabolic process_1; 6, Hydrogen peroxide

catabolic process_2; 7, Nuclear-transcribed mRNA catabolic process; 8,Type I interferon signalling pathway; 9, Cellular respiration_1; 10, Ion

transport; 11, Ensheathment of neurons; 12, Cellular respiration_2; 13, Protein polymerization; 14, Regulation of protein complex disassembly; 15,

Negative regulation of gene expression; 16, Cellular macromolecule metabolic process; 17, Neuron development; 18, Positive regulation of MAPK

cascade; 19, Microtubule bundle formation; 20, RNA Methylation; 21, Single-organism behaviour; 22, Carboxylic acid metabolic process; 23,

Glycosphingolipid metabolic process; 24, Regulation of mRNA catabolic process; 25, Cell volume homeostasis; 26, Oxidation-reduction process;

27, Mitotic Spindle assembly checkpoint 28, G2 DNA damage checkpoint; 29, Regulation of defence response to virus by virus; 30, RNA

processing; 31, Positive regulation of signalling. (G) (KRONOSII control): 1, Response to virus; 2, Response to unfolded protein; 3, Regulation of

action potential in neuron; 4, RNA metabolic process; 5, Organic substance catabolic process; 6, Regulation of immune system process; 7, Cellular

respiration; 8, Monosaccharide biosynthetic process; 9, Single-organism transport; 10, Extracellular matrix organization; 11, Generation of

precursor metabolites and energy; 12, Hydrogen transport; 13, Hydrogen peroxide catabolic process; 14, Single-multicellular organism process;

15, RNA splicing via transesterification reactions with bulged adenosine as nucleophile; 16, Protein dephosphorylation; 17, Synapse organization;

18, Retrograde vesicle-mediated transport Golgi to ER; 19, Negative regulation of cellular carbohydrate metabolic process; 20, Synaptic trans-

mission; 21, Amyloid precursor protein metabolic process; 22, Centrosome duplication; 23, Cellular response to growth factor stimulus; 24,

Cilium assembly. (H) (RUSH control): 1, Response to virus; 2, Response to unfolded protein; 3, Regulation of action potential in neuron; 4, RNA

metabolic process; 5, Defence response_2; 6, Cellular membrane organization; 7, Generation of precursor metabolites and energy_1; 8,

Generation of precursor metabolites and energy_3; 9, Translational termination; 10, Cellular response to zinc ion; 11, Ion transport; 12, Defence

response_1; 13, Protein folding; 14, Angiogenesis; 15, Skeletal muscle cell differentiation; 16, Proton transport; 17, Hydrogen peroxide metabolic

process; 18, Generation of precursor metabolites and energy_2; 19, Regulation of synaptic plasticity_2; 20, Glutamate receptor signalling pathway;

21, Peptidyl-glutamic acid modification; 22, Regulation of RNA metabolic process; 23, Androgen receptor signalling pathway; 24, Nuclear-

transcribed mRNA catabolic process exonucleoytic; 25, Synapse maturation,; 26, Regulation of synaptic plasticity_1; 27, Cerebral cortex de-

velopment; 28, Dephosphorylation; 29, RNA stabilization; 30, Phagocytosis; 31, Response to copper ion. (I and J) Heatmaps of the overlap

between KRONOSII and RUSH for the (I) late onset Alzheimer’s disease datasets and (J) control datasets. Again, seeding datasets and module

prediction were performed completely independently for each dataset; therefore, this is a true replication. As can be seen, many modules had low

overlap between sets; however, there were several modules where membership was highly overlapping (dark red) indicating that module

prediction can replicate from series to series.

2730 | BRAIN 2018: 141; 2721–2739 V. A. Petyuk et al.

https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy215#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy215#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy215#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy215#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy215#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy215#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy215#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy215#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy215#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy215#supplementary-data


Figure 4 Key driver analysis. (A) Transcripts. Shown is the graph counting the significant over-representation of particular key drivers in the

networks using the transcript dataset as the projection series. Four separate networks were examined: (i) KRONOSII causal predictive transcript

network; (ii) RUSH causal predictive transcript network; (iii) KRONOSII causal predictive transcript and peptide network; and (iv) RUSH causal

predictive transcript and peptide network. The colour of the boxes represents which dataset the key driver originates from, and the shade

represents which seeding gene list it belongs to. There were six seeding gene lists used: (i) the intersection of each module transcripts with

differentially expressed transcripts from KRONOSII (KRONOS_DE_Gene_GenModule); (ii) the module transcripts from KRONOSII

(KRONOS_GeneModule); (iii) the full differentially expressed transcript set from KRONOSII (KRONOS_PURE_DE); (iv) the intersection of each

module transcripts with differentially expressed transcripts from RUSH (RUSH_DE_Gene_GenModule); (v) the module transcripts from RUSH

(RUSH_GeneModule); and (vi) the full differentially expressed transcript set from RUSH (RUSH_PURE_DE). The x-axis includes the top key

drivers, the y-axis counts the number of times the target is a key driver in any of the modules. Targets can be counted greater than four times if

they appear in multiple replicated modules. Green highlights TYROBP. (B) Peptides. Shown is the graph counting the significant over-representation
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points measured (Fig. 5B and E). Tau and p-tau were also

elevated, with every time point significant except for the

first collection of p-tau (Fig. 6C and D). Correcting for

cell densities, HSPA2 gave a 1.8-fold increase in patho-

logically processed amyloid-b40, a 1.6-fold increase in

amyloid-b42, a 2.2-fold increase in total tau and a 3.4-

fold increase in p-tau (Table 2). While these changes are

modest, given that in our cells amyloid-b and tau protein

are already overexpressed �20-fold and �5-fold, it is

encouraging that further consistent increases can be

obtained.

Discussion
Through our analysis of pathologically confirmed brain tis-

sues, we have shown the following: (i) DNA–RNA–protein

networks are robust and replicable; (ii) protein profiling

uncovered novel key drivers and was crucial to understand-

ing data outputs; (iii) inclusion of mild cognitive impair-

ment subjects added modest value to the screen, since

there were no significant differentially expressed genes;

(iv) having two distinct datasets was crucial, since not all

mapped processes replicated; (v) the defence response is a

major driver of late-onset Alzheimer’s disease differences,

which replicates prior findings (Zhang et al., 2013); (vi)

there are other replicated major processes beyond defence

response, indicating the potential for further hits; (vii) repli-

cated key drivers have downstream effects on the amyloid-b
and tau canonical pathways; and (viii) by examining each

target in isolation in systems that mimic late-onset

Alzheimer’s disease pathology, we have firmly demon-

strated that the effects we have reported are both specific

to late-onset Alzheimer’s disease and are not the result of

secondary declines due to technical artefacts, agonal state

or neurodegeneration in general. There are some limitations

to the work. First, while our sample sizes are appropriate

for ‘omics work given the hypothesis-free nature of net-

work analysis, our sample is smaller than most genome-

wide association studies screens. Second, given the nature

of brain tissue and the extensive data collection involved in

this work, there is the potential for noise additions at each

step. We accounted for this by performing replications with

two independent series and cell culture work on each single

target to validate effects, but it is still a possible factor.

Finally, much more extensive phenotyping needs to be

performed to determine the exact nature of the relation-

ships between targets and APP or tau response. The work

presented is an initial step of many to dissect the true

nature of this pathology.

Single target effects

Single targets were assessed using differential expression

and expression quantitative trait loci analysis. It is notable

that there was a considerable difference in differential ex-

pression outcomes whereby the RUSH cohort had fewer

differences. Since data were normalized at the same time,

using the same procedures, this is likely to not be quality

control variability. It is possible that this is because of the

differences in the nature of the collections. KRONOSII is

an extremely selected cohort, with little secondary path-

ology. This is not the case with RUSH where there is a

greater mixture of pathologies. We had significant overlap

between sets for expression quantitative trait loci predic-

tions, both in the cis sets and in the trans set as well as

our original report.

Major network effects

There were five main processes that were significantly en-

riched in the late-onset Alzheimer’s disease modules and

replicated across the KRONOSII and RUSH datasets: gen-

eration of precursor metabolites and energy, tissue develop-

ment, response to unfolded protein, defence response, and

hydrogen peroxide catabolic process. Generation of precur-

sor metabolites and energy are processes involved in the

mitochondrial electron transport chain or glycolysis. This

is consistent with existing data in that mitochondrial dys-

function in late-onset Alzheimer’s disease has been mapped

in many studies (Hong et al., 2008; Moreira et al., 2010).

Additionally, changing glycolytic pathways might change

susceptibility to amyloid-b late-onset Alzheimer’s disease

pathology (Fu et al., 2015) and cell mis-metabolism is

likely a general process in neurodegeneration (Ngo and

Steyn, 2015). Tissue development is a broad term with

�30 subprocesses, including tissue regeneration as a sub-

class. This module likely reflects processes involved in tissue

repair and maintenance. The unfolded protein response

(UPR) is a mechanism for cells to compensate for accumu-

lation of unfolded proteins within the endoplasmic reticu-

lum. This response involves an upregulation of resident

Figure 4 Continued

of particular key drivers in the networks using the peptide dataset as the projection series. Four separate networks were examined: (i) KRONOSII

causal predictive peptide network; (ii) RUSH causal predictive peptide network; (iii) KRONOSII causal predictive transcript and peptide network;

and (iv) RUSH causal predictive transcript and peptide network. The colour of the boxes represents which dataset the key driver originates from

and the shade represents which seeding gene list it belongs to. There were four seeding gene lists used: (i) the full set of transcripts and peptides

from KRONOSII (KRONOS_multi); (ii) the entire peptide set from KRONOSII (KRONOS_protein); (iii) the full set of transcripts and peptides

from RUSH (RUSH_multi); and (iv) the entire peptide set from RUSH (RUSH_protein). The x-axis includes the top key drivers, the y-axis counts

the number of times the target is a key driver in any of the modules from the module enrichment set. Targets can be counted greater than two

times if they appear in multiple replicated modules.
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chaperone genes to facilitate folding. Specific to late-onset

Alzheimer’s disease, the UPR has been implicated in famil-

ial Alzheimer’s presenilin 1 (PSEN1) toxicity (Katayama

et al., 1999) as well as more generally in the earliest

stages of late-onset Alzheimer’s disease neuropathology

(Hoozemans et al., 2009). Our finding that defence re-

sponse is a replicated process is in line with our prior

report (Zhang et al., 2013), where TYROBP was mapped

as a major effect and generally immune and inflammatory

processes are overrepresented. TYROBP was a key driver

of effects in both series. Finally, both KRONOSII and

RUSH were enriched for targets that are involved in path-

ways resulting in the breakdown of hydrogen peroxide.

Due to high oxygen consumption, brain tissue generates

hydrogen peroxide along with other reactive oxygen spe-

cies. Amyloid-b can bind catalase and specifically inhibit

the breakdown of hydrogen peroxide (Milton, 1999) and

this may contribute to neuropathology.

Specific network targets

Of the selected targets, we obtained results for six of them:

one target from the transcript set, two from the peptide set

and three targets based on differential expression or eQTL

significance. In the transcript key driver dataset, HSPA2

gave the most robust results through our pipelines. The

transcript was a key driver in both datasets, appearing

four times in the KRONOSII predictions and four times

in the RUSH predictions. It was also differentially ex-

pressed in the KRONOSII dataset. Examining HSPA2 in

the context of overexpressed amyloid-b and tau gave sig-

nificant results in all cases; HSPA2 overexpression further

drove production including the more toxic amyloid-b42 and

p-tau subspecies.

HSPA2 is a member of the larger Hsp70 group of heat

shock protein genes. Heat shock proteins were first identi-

fied for their role in protein folding and the chaperone

system; however, further data now indicate a wider in-

volvement in a vast array of cell processes such as synaptic

transmission, autophagy, endoplasmic reticulum stress re-

sponse, protein kinase and cell death signalling (Stetler

et al., 2010). Hsp70 has been extensively studied in

Alzheimer’s disease and Down syndrome. Counter-intui-

tively, elevations in Hsp70 levels are thought to be neuro-

protective (Muchowski and Wacker, 2005; Leak, 2014);

however, to date, most of the studies have been focused

on the stress induced forms (Hsp70-A1 and Hsp70-A2),

which are encoded by the HSPA1A and HSPA1B genes

and not HSPA2 (Leak, 2014). In mammalian systems

there are 13 separate Hsp70 genes and HSPA2 encodes

the minor form of the constitutively active species of

Hsc70, with the major Hsc70 form being encoded by

HSPA8. Besides differences in activity and response, there

are differences in expression between Hsp70 and Hsc70

with Hsc70 being the major form in brain (Daugaard

et al., 2007). Thus, our finding that HSPA2 elevations act

to proliferate late-onset Alzheimer’s disease pathologyT
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might not be counter to the previous results, but instead

represent a separate related pathway.

Our finding that HSPA2 acts to specifically increase

levels of amyloid-b40, amyloid-b42, total tau and p-tau sug-

gests that changes in HSPA2 are not merely due to second-

ary or technical effects such as agonal state, but are specific

to late onset Alzheimer’s disease processes. Additionally,

performing an unbiased hypothesis-free screen was crucial

to detect HSPA2 since it is neither the most studied indu-

cible Hsp70 form, nor even the major component of the

constitutive form.

Interestingly, HSPA2 maps within a non-significant link-

age peak found on chromosome 14 using a series of sibling

pairs collected from late-onset Alzheimer’s disease families

(Myers et al., 2002). HSPA2 was originally suggested as an

early-onset Alzheimer’s disease gene due to its location

close to markers thought to map near the AD3 locus

(Cruts et al., 1995) as well as its known significant associ-

ation with Alzheimer’s disease pathology (Hamos et al.,

1991). After a reassessment of the linkage maps, the AD3

locus was eventually mapped as PSEN1 (Sherrington et al.,

1995). The late-onset Alzheimer’s disease chromosome 14

locus has yet to be mapped. It is notable that this is not a

significant linkage peak, but it is intriguing that HSPA2

maps within the region.

RGS4 was under-expressed in late-onset Alzheimer’s dis-

ease and decreased amyloid-b40 at all time points, with no

effects on amyloid-b42, tau and p-tau; thus, it was one of the

weakest of all of our validations. RGS proteins activate GTP

hydrolysis by the alpha subunit of heterotrimeric G proteins

and by this means inhibit G-protein coupled receptor

(GPCR) signalling. RGS4 has been associated with the de-

velopment of schizophrenia (Chowdari et al., 2002). GPCR

signalling is generally implicated in amyloid-b processing

(Thathiah et al., 2009) and targeting GPCRs has been sug-

gested as a possible therapeutic pathway; however, Rgs4

knockout mice did not have any deficits in associative learn-

ing or working memory (Grillet et al., 2005), so it may be

that knockdown of RGS4 is not the best GPCR pathway

target and GNA12 may be a more viable alternative.

Figure 5 HSPA2 APP measures. (A) Shows the level of transcript expression for HSPA2 for the two detected probes in both KRONOSII

(top) and RUSH (bottom). Only KRONOSII showed significant differential expression. The levels of total RNA (C, 96 h shown, measured as a

surrogate of the level of cell death), transcript overexpression both for target and APP (D, 96 h shown, boxplot of three replicates), amyloid-b40

peptide levels (B) and amyloid-b42 peptide levels (E) for three repeat measures of conditioned media at three different time points of the top key

driver target in the HEK293sw cell line are plotted. Measurements are taken at 48, 72 and 96 h post transduction. Control = measurements from

cells transduced with an empty vector; HSPA2 = measurements from cells transduced with target. + limma P-value; *t-test P-value.
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In the peptide dataset, CCT5 was counted in two

KRONOSII modules and COMT was counted in five

RUSH modules. Both of these targets significantly elevated

tau and p-tau at most time points; however, for COMT

there was no effect on amyloid-b40 or amyloid-b42 levels.

CCT5 only had a significant effect on amyloid-b42 in that

there were decreased levels of amyloid-b42 released at mul-

tiple time points, but it is possible this change is a second-

ary effect due to cell death, since total RNA levels were

decreased over the course of the experiment.

CCT5 is a member of the same chaperonin complex as

HSPA2 (Neef et al., 2014). Specifically, CCT5 is a member

of the TCP1 complex, also known as TRiC. This complex

folds various proteins including actin (Gao et al., 1992)

and tubulin (Yaffe et al., 1992). Hsp70 co-purifies with

CCT and it’s possible that they directly interact (Lewis

et al., 1992; Kubota et al., 1994); however, it is unclear

whether those results are specific to the forms we have

mapped.

COMT is the major catecholamine degrading enzyme,

acting in neurons and microglia after uptake from the syn-

aptic cleft. It was originally mapped as a gene of interest

for schizophrenia (Mier et al., 2010). There have been some

studies of COMT variation and Alzheimer’s disease risk;

Figure 6 HSPA2 tau measures. Shown in the figure are the levels of total RNA (A, 96 h shown, measured as a surrogate of the level of cell

death), transcript overexpression both for target and MAPT (C, 96 h shown, boxplot of three replicates), total tau peptide levels (B) and p-tau

peptide levels (D) for three repeat measures of conditioned media at three different time points of the top key driver target in the H4–4R0N cell

line. Measurements are taken at 48, 72 and 96 h post transduction. Control = measurements from cells transduced with an empty vector;

HSPA2 = measurements from cells transduced with target. *t-test P-value.

Table 2 HSPA2 fold-change

Cell line Peptide Empty vector HSPA2 OE Fold

change

HEK293sw Amyloid-b40, pg/ml 30 656 54 523 1.8

Amyloid-b42, pg/ml 4826 7533 1.6

H4–4R0N Tau[Total], pg/ml 10 190 22 055 2.2

Tau[pT181], pg/ml 1141 3918 3.4

Fold-change calculations for HSPA2 in the HEK293sw line and H4–4R0N lines. OE = overexpression.
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however, none of the large genome-wide association studies

meta-analyses (Lambert et al., 2013) have replicated

COMT as a gene for late-onset Alzheimer’s disease. Our

own work did not show a direct relationship between DNA

alleles and COMT mRNA or peptide expression.

In our cohorts, COMT was seen to be overexpressed in

late-onset Alzheimer’s disease brains, which would be con-

sistent with findings of reduced dopamine in Alzheimer’s

brain tissues (Storga et al., 1996). COMT overexpression

increased levels of tau and p-tau, but not amyloid-b. This

result appears to be at odds with the known synergies be-

tween tau and COMT. Activation of dopamine D1 recep-

tors causes protein kinase A (PKA) activation and results in

a downstream chain of events leading to tau hyperpho-

sphorylation (Lebel et al., 2009); therefore, higher levels

of synaptic dopamine and lower COMT activity in late-

onset Alzheimer’s disease would be expected. However,

imaging data have shown that low dopamine tone is asso-

ciated with an upregulation of binding at D1 receptors

(Guo et al., 2003), and the higher activity Val allele (similar

to an increase in COMT expression) shows increases in D1

receptor binding (Slifstein et al., 2008). Thus, our results

would indicate a model whereby there is mis-regulation of

the dopamine-COMT systems and insufficient brain com-

pensatory mechanisms result in tau changes.

Two targets were followed because they were expression

quantitative trait loci in both sets and differentially ex-

pressed in KRONOSII. GNA12 was upregulated in late-

onset Alzheimer’s disease and PDHB was downregulated

in late-onset Alzheimer’s disease in the KRONOSII data.

Like RGS4, GNA12 is a part of the GPCR system. It is a

member of the alpha class of heterotrimeric G proteins,

which typically upon exchange of GDP to GTP, activates

downstream intercellular signalling pathways. GNA12

along with GNA13 represents a fourth class of alpha sub-

units (Strathmann and Simon, 1991). GNA12 can regulate

actin cytoskeleton remodelling and along with its GPCR

partners is a known activator of Rho (Riobo and

Manning, 2005). Upstream coupling can occur through

direct interactions with Rho guanine nucleotide exchange

factors (RhoGEFs) (Hart et al., 1998), ARHGEF11

(Jackson et al., 2001), cell adhesion molecules (Meigs

et al., 2001) and other effectors. HSP90 was shown to

directly bind GNA12 (Vaiskunaite et al., 2001), thus impli-

cating GNA12 in heat shock protein signalling. Hsc70 and

Hsp90 have shown to demonstrate cooperative binding in

other systems (Rajapandi et al., 2000; Iwasaki et al., 2010)

and are linked together through Hsp70-Hsp90 organizing

protein (Hop) (Johnson et al., 1998). It has also been

shown that the N-terminus of GNA12 contains a mito-

chondrial targeting sequence and is involved in the regula-

tion of mitochondrial motility, morphology and membrane

permeability (Andreeva et al., 2008).

GPCRs are known to affect APP processing via actions

on cleavage enzymes. Through direct coupling to beta and

gamma secretase, GPR3 has been shown to potentiate

gamma secretase APP cleavage in a screen for modulators

of amyloid-b production (Thathiah et al., 2009). GPR3 as-

sociates with the G(s) G protein subunit; therefore, it is

unlikely that there is a direct interaction between GNA12

and GPR3. It remains to be seen whether there is a direct

interaction between APP processing enzymes and GNA12,

as with GPR3, but our data suggest there is some modifi-

cation of APP processing by GNA12.

PDHB is a part of the PDH complex, which is a nuclear-

encoded mitochondrial multi-enzyme complex that cata-

lyses the overall conversion of pyruvate to acetyl-CoA

and carbon dioxide and provides the primary link between

glycolysis and the tricarboxylic acid (TCA) cycle.

Mitochondrial dysfunction has been repeatedly mapped to

late-onset Alzheimer’s disease, and some studies have re-

ported oxidative damage preceding plaque formation, indi-

cating putative causation (Nunomura et al., 2001).

Knockdown of PDHB increased levels of p-tau in our

validation cell lines, but had no effect on total tau. PDH

has been shown to directly bind GSK3B, which results in

PDH phosphorylation and lowers PH activity. GSK3B also

phosphorylates tau, thus the link between PDHB and tau

effects in our data is probably via GSK3B (Hoshi et al.,

1996). In primary rat hippocampal culture, amyloid-b ex-

posure inactivated PDH and resulted in mitochondrial dys-

function, lowered acetylcholine levels in cholinergic

neurons and neuronal cell death (Hoshi et al., 1996); there-

fore, amyloid-b could be upstream of PDHB, which would

explain why we see no changes in amyloid-b. Our human

data fit in nicely with effects mapped in animal models and

through our analysis we can specifically target the toxic

sub-component of PDH.

In summary, this study has mapped and validated six

novel targets via a hypothesis-free approach to uncovering

misregulation in DNA, RNA and protein relationships in

late-onset Alzheimer’s disease. Many of these targets repli-

cated between two distinct neuropathological datasets that

were collected in different manners (convenience and epi-

demiological) from different sources. Nominated targets

had some effect on amyloid-b40, amyloid-b42, tau or p-tau

in separate experiments using two different cell lines and

individual transduction of each target, demonstrating both

specificity to known late-onset Alzheimer’s disease path-

ways as well as causality. It is notable that our selection

pipeline was hypothesis-free; therefore, we did not enrich

for hits that would yield positive results, and indeed some

targets like RGS4 were not as consistent in our assays.

While our main targets mapped to pathways already impli-

cated in late-onset Alzheimer’s disease including the chap-

eronin complex, mitochondrial changes or the GPCR

signalling pathway, many of our targets have not been

studied in the context of late-onset Alzheimer’s disease.

Of all of our effects, HSPA2 gave the most consistent re-

sults in that this target was a key driver in both datasets,

differentially expressed and had the largest effects on levels

of amyloid-b and tau in already overexpressed model

systems.
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