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Psoriasis is a common immune-mediated, chronic inflammatory genetic-related disease that affects patients’ quality of life.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of progenitor and immature myeloid cells which are
expanded in psoriatic skin lesions and peripheral blood. However, the role of MDSCs in the pathogenesis of psoriasis remains
unclear. Here, we confirmed that the accumulation of human MDSCs is remarkably increased in skin lesions of psoriasis
patients by flow cytometry. Depleting MDSCs by Gemcitabine significantly suppresses IMQ-induced psoriatic inflammation and
epidermal thickening as well as Th17 and Treg cell accumulation. Moreover, through the RNA-Seq technique, we validated
some differentially expressed genes on CD4+ T-cells of IMQ-induced-MDSC-depleted mice such as IL-21 and Timd2, which are
involved in Th17-cell differentiation or T-cell activation. Interestingly, neutralizing IL-21R by antibody reduces IMQ-induced
epidermal thickening through downregulating the infiltration of MDSCs and Th17 cells. Our data suggest that targeting
myeloid-derived suppressor cells is a novel strategy for antipsoriasis therapy. IL-21 may be a potential therapeutic target in
psoriasis.

1. Introduction

Psoriasis is a common immune-mediated, chronic inflam-
matory skin disease, which has been characterized by epider-
mal acanthosis, hyperkeratosis, parakeratosis, and extensive
inflammatory cell infiltration including T-lymphocytes, mac-
rophages, mast cells, and neutrophils [1]. Accumulating evi-
dence showed that the psoriatic keratinocytes (KCs) not only
have been shown uncontrolled proliferation but also respond
to cytokines such as IL-22 or IL-17A/IL-17F released from
Th17 or Th22 cells, which facilitate the secretion of proin-
flammatory factors such as AMP activating dendritic cells
to initiate specific T-cell-related immune responses [1, 2].
More importantly, psoriatic KCs recruit immune cells into

psoriatic skin lesions through the production of chemokines
or cytokines including myeloid-derived suppressor cells
(MDSCs) [3–6].

MDSCs (myeloid-derived suppressor cells) are a hetero-
geneous population of progenitor and immature myeloid
cells, which have been generated during a variety of patho-
logic conditions such as cancer, infectious diseases, and auto-
immune disorders [7–9]. Murine MDSCs are characterized
by coexpression of CD11b and Gr-1, whereas humanMDSCs
are most commonly identified by CD11b+ and CD33+ with
low levels of HLA-DR, the major histocompatibility complex
(MHC) class II molecule [7, 10]. MDSCs consist of two large
groups of cells: granulocytic or polymorphonuclear MDSCs
(PMN-MDSCs, CD11b+CD14−CD15+CD33+HLA-DR−/lo)
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and monocytic MDSCs (M-MDSCs, CD11b+CD14+-

CD15−CD33+HLA-DR−/lo) [9]. Moreover, it was reported
that CD14+HLA-DR−/lo monocytic MDSCs are more sup-
pressive than PMN-MDSCs and have emerged as important
mediators of tumor-induced immunosuppression [9, 11].

In normal conditions, MDSCs have differentiated into
mature granulocytes, macrophages, or dendritic cells (DCs)
in bone marrow [9]. However, under pathological conditions
such as cancer, chronic inflammatory diseases, and immune
diseases, those undifferentiated immature myeloid cells have
been recruited and infiltrated into the specific organ from
bone marrow [7]. Although MDSCs have been shown a
remarkable ability to suppress T-cell responses in cancer, it
becomes more heterogeneous and complicated in autoim-
mune diseases. Recent studies revealed that expanded
MDSCs induce immune responses in systemic lupus erythe-
matosus (SLE), autoimmune arthritis (RA), and autoimmune
encephalomyelitis [12–15]. Interestingly, studies showed that
the population of MDSCs has been expanded in psoriasis
patients, which produce cytokines including IL-23, IL-1β,
and CCL4 [16–18]. Moreover, MDSCs isolated from psoria-
sis patients fail to suppress T-cell activation and express
reduced programmed cell death protein-1 (PD-1), as a conse-
quence of losing the ability to induce regulatory T-cell con-
version compared with those cells from healthy controls or
melanoma patients [16, 19], indicating MDSCs showed great
heterogeneity under different pathogenesis.

In this study, we aim to investigate the proinflammatory
roles of MDSCs in the pathogenesis of psoriasis. We found it
is a novel strategy to target myeloid-derived suppressor cells
for antipsoriasis therapy.

2. Materials and Methods

2.1. Human Skin Samples. This study was reviewed and
approved by the local ethics Institutional Review Board
(IRB) (Xiangya Hospital, Central South University, IRB-
201512526). All experiments were conducted in accordance
with the Declaration of Helsinki Principles. We performed
a cross-sectional study of 27 patients with psoriasis and 17
healthy control subjects without inflammatory skin disease.
Inclusion criteria included psoriasis patients or healthy con-
trol subjects older than 18 years of age, able to give written
informed consent, and able to give skin samples. Exclusion
criteria included patients on subcutaneous and intravenous
systemic immunosuppressant medications. Patients were
clinically evaluated for psoriasis subtype and PASI score.

2.2. IMQ-Induced Psoriasis-Like Skin Inflammation. Six- to
eight-week-old mice were treated with daily topical doses of
62.5mg of IMQ cream (5%, 3.125mg of the active com-
pound; Aldara, 3M Pharmaceuticals), which was applied to
their shaved backs for 6 consecutive days. A scoring system
based on the clinical Psoriasis Area and Severity Index
(PASI) was used to evaluate the skin inflammation on the
skin lesions of mice. Briefly, erythema, scale, and infiltration
were graded on a scale from 0 to 4 as follows: 0, none; 1,
slight; 2, moderate; 3, marked; and 4, very marked. The level
of erythema was scored using a table with red taints. The

cumulative score served as a measure of inflammation
severity (scale: 0–12) [20]. The animal study protocol was
approved by the Ethics Committee of Xiangya Hospital
(Central South University, China, #2015110134).

2.3. In Vivo Treatments. Gemcitabine treatment: BALB/c
mice were injected intraperitoneally with Gemcitabine
(Selleckchem, Houston, TX, USA) on days -1, 1, and 3
at the dose of 40mg/kg; IMQ was applied from day 1 to
their shaved backs for 5 consecutive days topically. The
mice were photographed and sacrificed for skin lesion
analysis on day 8 (mice divided into 3 groups: vehicle
(IMQ+vehicle), Gemcitabine (IMQ+GEM), and untreated
(normal)). Anti-IL-21R antibody treatment: BALB/c mice
were injected intraperitoneally with anti-mouse IL-21R anti-
body (4A9) (BioXCell, West Lebanon, NH, USA) on days -2,
0, 1, 3, and 5 by i.p. injection of 140μg anti-IL-21R antibody;
IMQ was applied from day 1 to their shaved backs for 6 con-
secutive days topically. The mice were photographed and
sacrificed for skin lesion analysis on day 8 (mice divided
into 3 groups: vehicle (IMQ+vehicle), anti-IL-21R antibody
(IMQ+Anti-IL-21R), and untreated (normal)).

2.4. Tissue Processing. Skin lesions of psoriasis patient or mice
were cut into small pieces and digested in 5ml PBS contain-
ing 2mg/ml collagenase type IV and 1mg/ml dispase II (both
Sigma-Aldrich, USA) while shaking at 37°C for 150 minutes.
Enzyme activity was stopped using 10% FBS medium. The
tissue was further homogenized with a syringe and filtered
through a 40μm cell strainer. The cell strainer was washed
with 20ml PBS followed by centrifugation (500 x g at 4°C
for 10min). Single-cell suspensions from the spleens were
obtained by mashing the spleens through 40μm cell
strainers. The cell strainer was washed with 20ml PBS
followed by centrifugation (500 x g at 4°C for 5min) and then
split red blood cells by means of lysing solution (BD Pharm
Lyse™, USA). Single cells were then stained with fluorescence
antibodies for flow cytometry.

2.5. Flow Cytometry. All utilized antibodies are summarized
in Supplementary Table S2. Firstly, Zombie Aqua™ Fixable
Viability Dye was used for selecting living cells. Then,
TruStain fcX anti-mouse CD16/32 was used to block Fc
receptor on the immune cells of mice. For surface staining,
single cells isolated from the skin or the spleens were
incubated with antibodies at 4°C for 30min, followed by
washing and centrifugation (500 x g at 4°C for 5min).
For intracellular cytokine staining (Th17), cells were
restimulated in 100μl RPMI supplemented with GolgiPlug
(1 : 1000, BD), PMA (50 ng/ml, AppliChem), and
ionomycin (750 ng/ml, Invitrogen) for 4 to 6 hours at 37°C.
After surface staining, cells were permeabilized and fixed
in 250μl BD Cytofix/Cytoperm™ according to the
manufacturer’s instructions. Then, the cells were washed with
permeabilization buffer and stained intracellularly at 4°C for
30min in the permeabilization buffer. For intranuclear
staining (Tregs), after surface staining, cells were fixed and
permeabilized using the eBioscience Foxp3/transcription
factor fixation/permeabilization concentrate and diluent
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from ThermoFisher followed by incubation with anti-
mouse/rat Foxp3 antibodies at room temperature for
40min according to the manufacturer’s instructions. To
better distinguish the border between positive and negative
subsets, we set FMO-controls for markers including
IL-17A, IFN-γ, CD25, and Foxp3. The acquisition was
performed with FACS Canto II (BD Biosciences). Flow
cytometric analysis on live, single cells was performed using
FlowJo (Tree Star) software.

2.6. Quantitative RT-PCR (qRT-PCR). Total RNA was
extracted with Trizol (Invitrogen), and cDNA was synthe-
sized via reverse transcription using a HiScript Q RT Kit
(Vazyme) (R123-01). qRT-PCR was performed using an
UltraSYBR Mixture with ROX (CWBio, Beijing, China)
according to the manufacturer’s instructions on a Quant-
Studio 3 RT-PCR instrument (ThermoFisher, USA). The
reaction mixture contained 0.5ml of forward and reverse
mouse primers, as described in Supplementary Table S1.
Values were normalized to Gapdh. All reactions were
conducted in triplicate across. Relative quantification was
performed using the ΔΔCT method, and the results were
expressed in a linear form using the formula 2−ΔΔCT.

2.7. Cell Sorting for RNA Sequencing. Splenic cells were
isolated from the freshly obtained spleen of mice. CD4+

T-cells were positively selected from splenic cells using mag-
netic CD4 microbeads (Miltenyi Biotech, San Diego, CA)

with a magnet according to the manufacturer’s instructions.
The purity of the CD4+ T-cells after sorting was >95%. The
cDNA library construction, library purification, and tran-
scriptome sequencing were implemented according to the
Shanghai Genergy Biotechnology Sequencing Company’s
instructions.

2.8. Statistical Analysis. All statistical analyses were per-
formed using GraphPad Prism 6 (GraphPad Software, San
Diego, CA, USA). The statistical significance between values
was determined by 2-tailed unpaired Student’s t-test or
one-way ANOVA with Dunnett’s post hoc test when
samples were not distributed normally. All data represent
the mean ± SEM. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and
∗∗∗∗P < 0:0001, ns: not significant.

3. Results

3.1. The Accumulation of Human MDSCs Is Remarkably
Increased in Skin Lesions of Psoriasis Patients. Recently, the
accumulation of MDSCs has been observed in the peripheral
blood or spleen of murine models in autoimmune disorders
such as SLE and RA, which are positively related to disease
severity [12, 13, 15] and the number of MDSCs has been
found expanded in psoriasis patients [16, 19, 21]. To study
the relationship between psoriasis and MDSCs, we analyzed
the population of MDSCs in skin lesions of psoriasis patients

Table 1: Demographics of psoriasis patients and healthy control subjects.

Characteristics Psoriasis patients Healthy controls

Number of analyzed patients 27 17

Age in years, mean ± SD 35 ± 11
Gender 66% males, 34% females

Race/ethnicity 100% Chinese

PASI score, mean rangeð Þ ± SD 4:4 0 – 10:5ð Þ ± 2 N/A

Abbreviations: N/A: not applicable; PASI: Psoriasis Area and Severity Index. 1Some patients were treated with multiple therapies. 2One patient (out of 27) had
concurrent palmoplantar psoriasis. And one patient (out of 27) had concurrent arthropathic psoriasis.
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Figure 1: The accumulation of human MDSCs is remarkably increased in skin lesions of psoriasis patients. Representative flow cytometry
panels for quantification of the accumulation of human MDSCs (CD11b+ CD33+ HLA-DR-) in skin lesions of patients with psoriasis
(PSO, n = 27) and healthy control subjects (Normal, n = 17). Statistical analysis data is shown in (b). ∗∗∗∗P < 0:0001, 2-tailed unpaired
Student’s t-test was used.
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Figure 2: Continued.
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by flow cytometry. The human MDSCs have been identified
with CD11b+ CD33+ HLA-DR- [7, 10]. The details of
patients for subjects participating in this study are shown in
Table 1. We found that the accumulation of human MDSCs
(CD11b+ CD33+ HLA-DR-) is remarkably increased in psori-
atic skin lesions compared with healthy controls (Figure 1),
indicating there is a correlation between psoriasis and the
accumulation of MDSCs, to some extent.

3.2. MDSC Inhibitor (Gemcitabine) Significantly Attenuates
IMQ-Induced Psoriasis-Like Skin Inflammation through
Downregulating Th17 and Treg Cells. Although the number
of MDSCs has been found elevated in both skin lesions and
peripheral blood, the effect of MDSCs on the pathogenesis
of psoriasis remains to be elucidated. Gemcitabine (GEM)
is well known to be an inhibitor of MDSCs, which reduces
the accumulation of MDSCs with no significant influence
on other immune cells such as T, B cells, NK cells, and mac-
rophages [22]. Therefore, we treated mice with GEM to study
the relationship between MDSCs and psoriasis. The specific
drug use scheme is shown in Figure 2(a). The murineMDSCs
have been characterized by CD11b+ and Gr-1+ [7, 10], and
we found that IMQ treatment significantly induces
psoriasis-like skin inflammation as well as the accumulation
of MDSCs in spleen and skin lesions (Figures 2(b) and
3(a)). As expected, GEM treatment significantly reduces
IMQ-induced accumulation of MDSCs in skin lesions and
spleen (Figure 3(a)), therefore alleviating the phenotype of
IMQ-induced psoriasis-like skin inflammation (Figure 2(b))
based on the Psoriasis Area and Severity Index (PASI) score
(Figure 2(c)). In addition, GEM treatment markedly
decreases IMQ-induced epidermal thickening and inhibited
splenomegaly compared with the vehicle on day 6 after
IMQ application for 5 consecutive days topically
(Figures 2(b) and 2(d)). Moreover, GEM treatment remark-
ably decreases IMQ-mediated infiltration of Th17 and Treg

cells in the spleen (Figures 3(b) and 3(c)), indicating deple-
tion of MDSCs by GEM abrogates IMQ-induced psoriasis-
like skin inflammation such as erythema, skin thickening,
scaling, and the infiltration of Th17 and Treg cells.

3.3. The Effect of Depletion of MDSCs on Gene Expression
Profiles of CD4+ T-Cells. To further investigate the detailed
effect of MDSCs on CD4+ T-cells, we performed the RNA-
seq technique to analyze transcriptional alteration of CD4+

T-cells after depletion of MDSCs by GEM. We found that
40 genes were upregulated, and 198 genes were downregu-
lated after GEM treatment (Figure 4(a)). KEGG pathway
analysis exhibited that the top significant differential expres-
sion of enriched pathways include the MAPK signaling
pathway, PI3K-Akt signaling pathway, ECM-receptor inter-
action, and HIF-1 signaling pathway (Figure 4(b)). Next, we
also performed gene-set-enrichment analysis (GSEA), which
showed those differentially expressed genes are enriched
in LY6C_HIGH_VS_LOW_MONOCYTE_DN and RIG_I_
LIKE_RECEPTOR_SIGNALING_PATHWAY
(Figure 4(c)). Thus, the results of GSEA based on transcrip-
tional profiling of those splenic CD4+ T-cells revealed
enriched genes downregulated in Ly6C monocytes and the
RIG-I-like receptor signaling pathway was more activated
in CD4+ T-cells after depleting MDSCs by GEM. Further-
more, we validated the expression of IL-21, Dsp, Cd109,
Ackr2, Timd2, and Adamts9 in GEM-treated mice through
qRT-PCR (Figure 4(d)), which have been documented to
regulate Th17-cell differentiation (IL-21) [23, 24], Th1/Th17
immune skewing (Dsp) [25], T-cell activation (CD109,
Timd2) [26–28], inflammatory T-cell chemotaxis (Ackr2)
[29], and immune suppression (Adamts9) [30].

3.4. Neutralizing IL-21R In Vivo Inhibits IMQ-Induced
Epidermal Thickening, Cutaneous MDSC Infiltration, and
Splenic Th17 Infiltration. Evidence revealed that IL-21 is
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Figure 2: Gemcitabine significantly attenuates IMQ-induced psoriasis-like skin inflammation. (a) The specific drug use scheme. (b) The skin
lesions and H&E staining of the back skin derived from mice injected intraperitoneally with vehicle (IMQ+vehicle) or Gemcitabine (IMQ
+GEM) or untreated (Normal) (one representative mouse from each group is presented, n = 5 – 6 mice per group). Scale bars: 100 μm.
Statistical analysis data is shown in (B). (c) The PASI score of mice in 3 groups. (d) The spleens and statistical analysis of the spleen index
(mg/g) of mice among 3 groups. All results are representative of at least 3 independent experiments. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001,
and ∗∗∗∗P < 0:0001; ns: not significant. One-way ANOVA with Dunnett’s post hoc test was used.
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Figure 3: MDSC inhibitor (Gemcitabine) attenuates IMQ-induced psoriasis-like skin inflammation through downregulating Th17 and Treg
cells. (a) Representative flow cytometry panels for quantification of MDSCs in spleen and skin lesions of BALB/c mice (n = 3 – 6 mice per
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highly expressed in the psoriatic skin lesions, which
stimulates the proliferation of keratinocytes [31]. Moreover,
IL-21 is well known to be related to immune diseases and reg-
ulates the differentiation of CD4+ T-cells [32]. IL-21R, a
receptor for IL-21, is a class I cytokine heterodimeric recep-
tor, which mainly expressed on lymphoid cells such as circu-
lating T-cells, B cells, NK cells, and nonlymphocytic cells and

tissues including keratinocytes [31]. To verify the role of
IL-21 in the progression of psoriasis, we administrated
the anti-IL-21R antibody to neutralize the IL-21 signaling
pathway through IMQ-induced psoriasis-like BALB/c mouse
models. The experimental design scheme is shown in
Figure 5(a). The result of H&E staining and quantification
showed that neutralizing IL-21R in vivo inhibits IMQ-
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Figure 4: The effect of depletion of MDSCs on gene expression profiles of CD4+ T-cells. (a) Heatmap illustrates the expression levels of
differentially expressed genes among the three groups. (b) The KEGG pathway showed the top significant function enriched pathway
among differentially expressed genes. (c) GSEA enrichment plots for the immunologic signatures and KEGG pathways between IMQ
+GEM versus IMQ+vehicle. Results were calculated from three subjects analyzed in the same batch. Normalized enrichment score (NES)
and nominal P value are shown below each plot. (d) Identification of the differentially screened genes by qRT-PCR (n = 4 – 6 mice per
group). The results were normalized to Gapdh. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001; ns, not significant. One-way
ANOVA with Dunnett’s post hoc test was used.
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induced epidermal thickening (Figure 5(b)). Moreover,
neutralizing IL-21R with anti-mouse IL-21R antibody signif-
icantly reduces IMQ-mediated accumulation of MDSCs in
skin lesions and splenic Th17 cells (Figure 5(c)), indicating
targeting IL-21 is a therapeutic approach for psoriasis.

4. Discussion

Psoriasis has been documented to be a T-cell-mediated
chronic inflammatory disease [2, 33]. The IL-23/IL-17A-
Th17 axis has a crucial role in the development of psoriasis
[2, 34, 35]. IL-23, secreted by DCs or KCs, facilitates Th17
differentiation which produces proinflammatory cytokines
including IL-17A, IL-17F, IL-6, IL-21, and IL-22, resulting
in the infiltration of Th17 and high levels of Th17-mediated
proinflammatory cytokines in skin lesions and peripheral
blood of psoriasis patients [2, 36, 37]. The Treg cells, consti-
tutively expressing Foxp3 (the master transcriptional factor
of Treg cells), are believed to maintain immune homeostasis
through suppressing the function of other lymphocytes such
as Th1, Th2, and Th17, resulting in inhibition of immune
and inflammatory responses [38–40].

Although the role of Treg cells in psoriasis has not been
fully elucidated, studies showed that numbers of Treg cells
are upregulated in psoriatic skin lesions [41–44] or periph-
eral blood [39, 43, 44] of psoriasis patients or murine models
[45]. In addition, evidence has indicated that Foxp3+ Treg
cells can converse into inflammation-associated Th17 cells
under proinflammatory conditions both in psoriasis [18, 46,
47] and in rheumatoid arthritis (RA) [48]. And there is a pos-
itive correlation between Treg cells and Th17 cells in psoria-
sis [43]. Moreover, accumulating studies demonstrated that
the polarization of Th17 cells has been related to the induc-
tion of Foxp3+ Treg cells [18, 46, 49].

MDSCs are known to be a heterogeneous population of
progenitor and immature myeloid cells derived from differ-
ent stages and have essential roles for regulating the function
of Th17 and Treg cells. The expanded MDSCs enhance the
differentiation of naive CD4+ T-cell precursors into Th17
cells and are positively correlated with disease severity of
SLE and RA patients as well as their murine models
[12–15]. Our results showed that GEM, an MDSC inhibitor,
inhibits IMQ-induced epidermal thickening and the
accumulation of Th17, Treg cells, and MDSCs (Figure 3).
Furthermore, we investigated the effect of depleting MDSCs
by GEM treatment on gene expression profiles of CD4+ T-
cells and the results exhibited that IMQ-induced IL-21
expression has been dramatically suppressed by GEM treat-
ment (Figures 4(a) and 4(d)). IL-21 is highly expressed in
skin lesions and peripheral blood of psoriasis patients, which
is required for epidermal hyperplasia and Th17-cell polariza-
tion [23, 24, 31, 50]. And it was reported that IL-21 promotes
psoriatic inflammation by inducing an imbalance of Th17
and Treg cells [47]. Consistent with those results, neutraliz-
ing IL-21R by its antibody abrogates IMQ-induced epider-
mal thickening, MDSC migration, and Th17 infiltration
(Figure 5), indicating IL-21 may be a potential therapeutic
target for psoriasis treatment.

Still, there are limitations in the present study which
merit consideration. For example, our intervention to deplete
MDSCs by GEMwas at the animal level; thus, our hypothesis
needs further investigations to verify. In addition, we have
noticed the numerous side effects of GEM during application
in humans, such as the dose-limiting toxicity (myelosuppres-
sion, thrombocytopenia, and anemia) and the minimal
nonhematologic toxicity (nausea, shortness of breath, mouth
sores, diarrhea, neuropathy, hair loss, etc.) [51], which
may limit the chance of GEM being a useful therapy in
psoriasis patients. However, we verified the significant
anti-inflammatory effects by depleting MDSCs. Despite the
severe side effects of Gemcitabine, we still can conclude that
targeting MDSCs is a potential strategy for antipsoriasis
therapy.

In summary, our study provided evidence that MDSCs
play a proinflammatory role in IMQ-induced psoriasis-like
skin inflammation and regulating the infiltration of CD4+

T-cells (Figure 5(d)). Depleting MDSC by its inhibitor
(Gemcitabine) significantly suppresses the IMQ-mediated
psoriatic phenotype as well as the accumulation of Th17
and Treg cells. Furthermore, we identified and validated the
transcriptional expression changes of genes including IL-21
and Timd2 on CD4+ T-cells of GEM-treated mouse models,
which are involved in Th17-cell differentiation or T-cell
activation. Neutralizing IL-21R by antibody reduces IMQ-
induced epidermal thickening through downregulating the
infiltration of MDSCs and Th17 cells (Figure 5(d)), suggest-
ing the accumulation of MDSCs exerts important function
for the pathogenesis of psoriasis and IL-21 may be a potential
therapeutic target in psoriasis.

5. Conclusions

Targeting myeloid-derived suppressor cells is a novel strategy
for antipsoriasis therapy. IL-21 may be a potential therapeu-
tic target in psoriasis.
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