



# Association between the polymorphism (rs17222919, -1316T/G) of 5-lipoxygenaseactivating protein gene (ALOX5AP) and the risk of stroke

## A meta analysis

Hui Ye, MD, Xin Zhang, MD, Zupeng Chen, MD, PhD, Xu Li, MD, Tiehui Zhang, MD, PhD, Chao Yang, MD, Lifa Huang, MD<sup>\*</sup>

#### Abstract

**Background:** The objective of this study was to evalutate the relationship between 5-lipoxygenase-activating protein gene (ALOX5AP) -rs17222919-1316T/G polymorphisms and the risk of stroke.

**Methods:** Relative studies were searched in January 2018. Case–control studies with extractable data were selected. Four gene models were analyzed including, allele genetic model (G vs T), additive genetic model (GG vs TT, GT vs TT), recessive genetic model (GG vs GT + TT), and dominant genetic model (GG + GT vs TT). Effect sizes included odds ratio (OR) and 95% confidence interval (CI). Heterogeneity was assessed by using Q test and  $l^2$  test. Publication bias was evaluated by using Egger method. The reliability of the results was assessed with sensitivity analysis. All the data analysis was performed with R 3.10 software.

**Results:** A total of 5 studies inclusing 8492 patients were included. There were significant relationship between ALOX5AP-rs17222919-1316T/G polymorphisms and stroke under all models (P < .05) except the additive genetic model GT versus TT (P > .05). No publication bias was noted. Sensitivity analysis indicated that the results were not stable.

Conclusion: This meta-analysis indicates that ALOX5AP-rs17222919-1316T/G may be a protective factor aginst stroke.

Abbreviations: ALOX5AP = 5-lipoxygenase-activating protein gene, IS = ischemic stroke.

Keywords: ALOX5AP protein, human, meta-analysis, polymorphism, single nucleotide, stroke

## **Key Points**

- This is meta-analysis of *ALOX5AP* polymorphism -rs17222919-1316T/G and stroke.
- A total of 5 studies inclusing 8492 patients were included.
- Signifiant relationship between ALOX5AP-rs17222919-1316T/G polymorphism was found.
- No publication bias was noted.
- Sensitivity analysis indicated that the results were not stable.

Editor: Fabricio Oliveira.

Funding/support: This work was supported by grants from the Zhejiang Provincial Natural Science Foundation of China (No. LY16C090004).

The authors have no conflicts of interest to disclose.

Department of Neurosurgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.

\* Correspondence: Lifa Huang, Department of Neurosurgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China (e-mail: jazzle@163.com).

Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

Medicine (2018) 97:41(e12682)

Received: 16 March 2018 / Accepted: 7 September 2018 http://dx.doi.org/10.1097/MD.000000000012682

## 1. Introduction

Stroke is an acute cerebrovascular disease that occurs when the blood supply to brain neurons is disrupted by either blockage (ischemic stroke, IS) or a bleeding (hemorrhagic stroke).<sup>[1]</sup> It is the second most common life-threaten disease worldwide.<sup>[2]</sup> The incidence of IS is higher than hemorrhagic stroke, accounting for 80% of the total stroke.<sup>[2]</sup> In recent years, the relationship of stroke susceptibility and genetic tendency gradually attracted people's attention.

The pathophysiology of stroke is complex and involves excitotoxicity mechanisms, inflammatory pathways, oxidative damage, ionic imbalances, apoptosis, angiogenesis, and neuroprotection.<sup>[3]</sup> In genetic test, arachidonate 5-lipoxygenase-activating protein gene (ALOX5AP) is found to be involved in the stroke. It encodes 5-lipoxygenase, an arachidonic acid metabolites which is critical for inflammatory responses.<sup>[4,5]</sup> Currently, a large amount of literatures have reported the relationship between stroke and ALOX5AP by clinical trials<sup>[6–14]</sup> and meta-analysis,<sup>[15,16]</sup> focusing on SG13S25G (rs17222814, promoter, G/A), SG13S114T (rs1050739), and other sites. However, the results about the site of rs17222919 were controversial, and no study evaluated the site of rs17222919 by meta-analysis. Therefore, we conducted this meta-analysis to explore the relationship between rs17222919 and stroke by combining the published results.

## 2. Materials and methods

### 2.1. Data sources

Search strategies were as follows: English electronic literatures were searched in PubMed (http://www.ncbi.nlm.nih.gov/



## Table 1

#### The basic characteristics of the selected studies.

|        |                | Location |                 |              | IS subjects |             |                        |     | Control subjects |                        |  |  |  |
|--------|----------------|----------|-----------------|--------------|-------------|-------------|------------------------|-----|------------------|------------------------|--|--|--|
| Author | Public<br>year |          | Study year      | NOS<br>score | N           | Male/female | Age, y (mean $\pm$ SD) | N   | Male/female      | Age, y (mean $\pm$ SD) |  |  |  |
| Fan    | 2015           | China    | NA              | 7            | 910         | 479/431     | 56.1 ± 10.6            | 925 | 478/447          | $55.3 \pm 10.3$        |  |  |  |
| Fan    | 2015           | China    | NA              | 7            | 1003        | 542/461     | $60.5 \pm 7.8$         | 889 | 458/431          | $59.6 \pm 7.4$         |  |  |  |
| Kim    | 2011           | Korea    | 2007.10-2009.12 | 7            | 117         | 64/53       | 65.5±12.1              | 398 | 194/204          | 53.8±15.2              |  |  |  |
| Wang   | 2012           | China    | 2008-2011       | 8            | 658         | 392/266     | 69.42 ± 10.58          | 704 | 388/316          | 69.22±9.04             |  |  |  |
| Yang   | 2016           | China    | NA              | 6            | 810         | 416/394     | 57.7±8.6               | 825 | 428/397          | $55.3 \pm 7.2$         |  |  |  |
| Wang   | 2013           | China    | 2010.9-2011.12  | 7            | 622         | 314/308     | $56.8 \pm 10.2$        | 631 | 321/310          | $55.9 \pm 10.7$        |  |  |  |

IS=ischemic stroke, NA=not available, NOS=Newcastle-Ottawa scale, SD=standard deviation.

## Table 2

#### The distribution of genotypes.

|        |             | IS subjects |     |    |      | Control subjects |     |     |    | HWE in control |     |      |
|--------|-------------|-------------|-----|----|------|------------------|-----|-----|----|----------------|-----|------|
| Author | Public year | ΤΤ          | TG  | GG | Т    | G                | TT  | TG  | GG | Т              | G   | Р    |
| Fan    | 2015        | 593         | 288 | 29 | 1474 | 346              | 550 | 327 | 48 | 1427           | 423 | .947 |
| Fan    | 2015        | 658         | 312 | 33 | 1628 | 378              | 529 | 313 | 47 | 1371           | 407 | .937 |
| Kim    | 2011        | 234         | 145 | 19 | 613  | 183              | 71  | 40  | 6  | 182            | 52  | .906 |
| Wang   | 2012        | 417         | 219 | 22 | 1053 | 263              | 469 | 207 | 26 | 1145           | 259 | .600 |
| Yang   | 2016        | 525         | 258 | 27 | 1308 | 312              | 486 | 296 | 43 | 1268           | 382 | .811 |
| Wang   | 2013        | 415         | 189 | 18 | 1019 | 225              | 379 | 221 | 31 | 979            | 283 | .867 |

It was evaluated using the likelihood-ratio chi-square test, P-values were presented. P<.05 was considered representative of a departure from HWE.

 ${\sf HWE}\,{=}\,{\sf Hardy}{-}{\sf Weinberg}\ {\sf equilibrium},\ {\sf IS}\,{=}\,{\sf ischemic}\ {\sf stroke}.$ 

|                                                                                                                                                                                                                                                                                                                                                                         | Evenerimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - tal                                                                                                                                                                                                                                    | <b>C</b> 1                                                                                              |                                                                                                                                                      |                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           | Weisch4                                                                                                                                         | Mainht                                                                                                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Study                                                                                                                                                                                                                                                                                                                                                                   | Experiment<br>Events To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otal                                                                                                                                                                                                                                     | Events                                                                                                  | Total                                                                                                                                                | Odds Ratio                            | OR                                                                                                                                                                                    | 95%-CI                                                                                                                                                                                                                                                                                                    | (fixed)                                                                                                                                         | (random)                                                                                                                                             |  |
| ollay                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                                      |                                       | •                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           | (11104)                                                                                                                                         | ()                                                                                                                                                   |  |
| Fan YJ1 2015                                                                                                                                                                                                                                                                                                                                                            | 346 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 820                                                                                                                                                                                                                                      | 423                                                                                                     | 1850                                                                                                                                                 | <u> </u>                              | 0.79                                                                                                                                                                                  | [0.68; 0.93]                                                                                                                                                                                                                                                                                              | 22.8%                                                                                                                                           | 19.7%                                                                                                                                                |  |
| Fan YJ2 2015                                                                                                                                                                                                                                                                                                                                                            | 378 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 006                                                                                                                                                                                                                                      | 407                                                                                                     | 1778                                                                                                                                                 |                                       | 0.78                                                                                                                                                                                  | [0.67; 0.92]                                                                                                                                                                                                                                                                                              | 23.5%                                                                                                                                           | 19.9%                                                                                                                                                |  |
| Kim DH 2011                                                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 234                                                                                                                                                                                                                                      | 183                                                                                                     | 796                                                                                                                                                  |                                       | 0.96                                                                                                                                                                                  | [0.67; 1.36]                                                                                                                                                                                                                                                                                              | 4.3%                                                                                                                                            | 8.1%                                                                                                                                                 |  |
| Wang Y 2012                                                                                                                                                                                                                                                                                                                                                             | 263 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 316                                                                                                                                                                                                                                      | 259                                                                                                     | 1404                                                                                                                                                 |                                       | 1.10                                                                                                                                                                                  | [0.91; 1.34]                                                                                                                                                                                                                                                                                              | 13.5%                                                                                                                                           | 16.9%                                                                                                                                                |  |
| Yang DZ 2016                                                                                                                                                                                                                                                                                                                                                            | 312 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 620                                                                                                                                                                                                                                      | 382                                                                                                     | 1650                                                                                                                                                 |                                       | 0.79                                                                                                                                                                                  | [0.67; 0.94]                                                                                                                                                                                                                                                                                              | 20.5%                                                                                                                                           | 18.9%                                                                                                                                                |  |
| Wang YF 2013                                                                                                                                                                                                                                                                                                                                                            | 225 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 244                                                                                                                                                                                                                                      | 283                                                                                                     | 1262                                                                                                                                                 |                                       | 0.76                                                                                                                                                                                  | [0.63; 0.93]                                                                                                                                                                                                                                                                                              | 15.4%                                                                                                                                           | 16.5%                                                                                                                                                |  |
| Fixed effect model                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240                                                                                                                                                                                                                                      |                                                                                                         | 8740                                                                                                                                                 |                                       | 0.83                                                                                                                                                                                  | 10 77 0 901                                                                                                                                                                                                                                                                                               | 100.0%                                                                                                                                          |                                                                                                                                                      |  |
| Random effects model                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210                                                                                                                                                                                                                                      |                                                                                                         | 0140                                                                                                                                                 |                                       | 0.84                                                                                                                                                                                  | [0.75: 0.95]                                                                                                                                                                                                                                                                                              |                                                                                                                                                 | 100.0%                                                                                                                                               |  |
| Heterogeneity: $I^2 = 55\%$ , a                                                                                                                                                                                                                                                                                                                                         | $t^2 = 0.0111, \mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p = 0.                                                                                                                                                                                                                                   | .05                                                                                                     |                                                                                                                                                      | r                                     |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                      |  |
| A                                                                                                                                                                                                                                                                                                                                                                       | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                                      | 0.75 1 1.5                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                         | Experimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ntal                                                                                                                                                                                                                                     | Cc                                                                                                      | ontrol                                                                                                                                               |                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           | Weight                                                                                                                                          | Weight                                                                                                                                               |  |
| Study                                                                                                                                                                                                                                                                                                                                                                   | Events To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | otal                                                                                                                                                                                                                                     | Events                                                                                                  | Total                                                                                                                                                | Odds Ratio                            | OR                                                                                                                                                                                    | 95%-CI                                                                                                                                                                                                                                                                                                    | (fixed)                                                                                                                                         | (random)                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                                      |                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 | •                                                                                                                                                    |  |
| FGn YJ1 2015                                                                                                                                                                                                                                                                                                                                                            | 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 881                                                                                                                                                                                                                                      | 327                                                                                                     | 877                                                                                                                                                  |                                       | 0.82                                                                                                                                                                                  | [0.67; 0.99]                                                                                                                                                                                                                                                                                              | 22.7%                                                                                                                                           | 20.1%                                                                                                                                                |  |
| FGn YJ2 2015                                                                                                                                                                                                                                                                                                                                                            | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 970                                                                                                                                                                                                                                      | 313                                                                                                     | 842                                                                                                                                                  |                                       | 0.80                                                                                                                                                                                  | [0.66; 0.97]                                                                                                                                                                                                                                                                                              | 23.4%                                                                                                                                           | 20.3%                                                                                                                                                |  |
| Kim DH 2011                                                                                                                                                                                                                                                                                                                                                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111                                                                                                                                                                                                                                      | 145                                                                                                     | 379 -                                                                                                                                                | <u> </u>                              | 0.91                                                                                                                                                                                  | [0.59; 1.41]                                                                                                                                                                                                                                                                                              | 4.3%                                                                                                                                            | 7.1%                                                                                                                                                 |  |
| WGng Y 2012                                                                                                                                                                                                                                                                                                                                                             | 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 636                                                                                                                                                                                                                                      | 207                                                                                                     | 676                                                                                                                                                  |                                       | 1.19                                                                                                                                                                                  | [0.94; 1.50]                                                                                                                                                                                                                                                                                              | 13.5%                                                                                                                                           | 17.1%                                                                                                                                                |  |
| YGng DZ 2016                                                                                                                                                                                                                                                                                                                                                            | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 783                                                                                                                                                                                                                                      | 296                                                                                                     | 782                                                                                                                                                  |                                       | 0.81                                                                                                                                                                                  | [0.66; 0.99]                                                                                                                                                                                                                                                                                              | 20.4%                                                                                                                                           | 19.0%                                                                                                                                                |  |
| WGng YF 2013                                                                                                                                                                                                                                                                                                                                                            | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 604                                                                                                                                                                                                                                      | 221                                                                                                     | 600                                                                                                                                                  |                                       | 0.78                                                                                                                                                                                  | [0.62; 0.99]                                                                                                                                                                                                                                                                                              | 15.7%                                                                                                                                           | 16.5%                                                                                                                                                |  |
| Fixed offect model                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 005                                                                                                                                                                                                                                      |                                                                                                         | 44EC                                                                                                                                                 | e e                                   | 0.06                                                                                                                                                                                  | 10 79. 0 041                                                                                                                                                                                                                                                                                              | 100 0%                                                                                                                                          |                                                                                                                                                      |  |
| Random effects model                                                                                                                                                                                                                                                                                                                                                    | ى<br>ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 905                                                                                                                                                                                                                                      |                                                                                                         | 4150                                                                                                                                                 |                                       | 0.00                                                                                                                                                                                  | [0.76, 0.94]                                                                                                                                                                                                                                                                                              | 100.0%                                                                                                                                          | 100.0%                                                                                                                                               |  |
| Heterogeneity: $l^2 = 47\%$                                                                                                                                                                                                                                                                                                                                             | $r^2 = 0.0120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n = 0                                                                                                                                                                                                                                    | 09                                                                                                      |                                                                                                                                                      |                                       | 0.07                                                                                                                                                                                  | [0.70, 0.33]                                                                                                                                                                                                                                                                                              | 1000                                                                                                                                            | 100.078                                                                                                                                              |  |
| B                                                                                                                                                                                                                                                                                                                                                                       | - 0.0120, p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 - 0.                                                                                                                                                                                                                                   | 00                                                                                                      |                                                                                                                                                      | 0.75 1 1.5                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                      |  |
| B                                                                                                                                                                                                                                                                                                                                                                       | Europine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                          | <b>C</b> -                                                                                              |                                                                                                                                                      |                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           | Mainh4                                                                                                                                          | Mainht                                                                                                                                               |  |
| Study                                                                                                                                                                                                                                                                                                                                                                   | Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | otal                                                                                                                                                                                                                                     | Evente                                                                                                  | Total                                                                                                                                                | Odda Patio                            | OP                                                                                                                                                                                    | 05%-01                                                                                                                                                                                                                                                                                                    | (fixed)                                                                                                                                         | (random)                                                                                                                                             |  |
| Study                                                                                                                                                                                                                                                                                                                                                                   | Events it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | otai                                                                                                                                                                                                                                     | Evenus                                                                                                  | Total                                                                                                                                                |                                       | UK                                                                                                                                                                                    | 95%-CI                                                                                                                                                                                                                                                                                                    | (lixeu)                                                                                                                                         | (ranuoni)                                                                                                                                            |  |
| FGn YJ1 2015                                                                                                                                                                                                                                                                                                                                                            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 622                                                                                                                                                                                                                                      | 48                                                                                                      | 598                                                                                                                                                  |                                       | 0.56                                                                                                                                                                                  | [0.35: 0.90]                                                                                                                                                                                                                                                                                              | 23.4%                                                                                                                                           | 22.1%                                                                                                                                                |  |
| FGn YJ2 2015                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 691                                                                                                                                                                                                                                      | 47                                                                                                      | 576                                                                                                                                                  | · · · · · · · · · · · · · · · · · · · | 0.56                                                                                                                                                                                  | [0.36; 0.89]                                                                                                                                                                                                                                                                                              | 24.5%                                                                                                                                           | 23.6%                                                                                                                                                |  |
| Kim DH 2011                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77                                                                                                                                                                                                                                       | 19                                                                                                      | 253                                                                                                                                                  |                                       | 1.04                                                                                                                                                                                  | [0.40; 2.71]                                                                                                                                                                                                                                                                                              | 4.1%                                                                                                                                            | 5.5%                                                                                                                                                 |  |
| WGng Y 2012                                                                                                                                                                                                                                                                                                                                                             | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 439                                                                                                                                                                                                                                      | 26                                                                                                      | 495                                                                                                                                                  |                                       | 0.95                                                                                                                                                                                  | [0.53; 1.70]                                                                                                                                                                                                                                                                                              | 11.7%                                                                                                                                           | 14.7%                                                                                                                                                |  |
| YGng DZ 2016                                                                                                                                                                                                                                                                                                                                                            | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 552                                                                                                                                                                                                                                      | 43                                                                                                      | 529                                                                                                                                                  |                                       | 0.58                                                                                                                                                                                  | [0.35; 0.96]                                                                                                                                                                                                                                                                                              | 21.0%                                                                                                                                           | 20.2%                                                                                                                                                |  |
| WGng YF 2013                                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 433                                                                                                                                                                                                                                      | 31                                                                                                      | 410 ·                                                                                                                                                |                                       | 0.53                                                                                                                                                                                  | [0.29; 0.96]                                                                                                                                                                                                                                                                                              | 15.3%                                                                                                                                           | 14.0%                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~ · · ·                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                      |                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                      |  |
| Fixed effect model                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 814                                                                                                                                                                                                                                      |                                                                                                         | 2861                                                                                                                                                 |                                       | 0.63                                                                                                                                                                                  | [0.50; 0.78]                                                                                                                                                                                                                                                                                              | 100.0%                                                                                                                                          | 100 0%                                                                                                                                               |  |
| Heterogeneity: $I^2 = 0\% \tau^2$                                                                                                                                                                                                                                                                                                                                       | $= 0 \ n = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                                                      |                                       | 0.03                                                                                                                                                                                  | [0.50; 0.76]                                                                                                                                                                                                                                                                                              |                                                                                                                                                 | 100.0%                                                                                                                                               |  |
| C                                                                                                                                                                                                                                                                                                                                                                       | - 0, p - 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | '                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                                                      | 0.5 1 2                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                      |  |
| U                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                                      |                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                         | Exporimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ntal                                                                                                                                                                                                                                     | 64                                                                                                      | ntrol                                                                                                                                                |                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           | Moight                                                                                                                                          | Woight                                                                                                                                               |  |
| Study                                                                                                                                                                                                                                                                                                                                                                   | Experiment<br>Events To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otal                                                                                                                                                                                                                                     | Evente                                                                                                  | Total                                                                                                                                                | Odds Ratio                            | OR                                                                                                                                                                                    | 95%-CI                                                                                                                                                                                                                                                                                                    | (fixed)                                                                                                                                         | (random)                                                                                                                                             |  |
| olddy                                                                                                                                                                                                                                                                                                                                                                   | Events it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Juli                                                                                                                                                                                                                                     | Lvento                                                                                                  | Iotai                                                                                                                                                | Odda Natio                            | OIL                                                                                                                                                                                   | 5570 01                                                                                                                                                                                                                                                                                                   | (inceu)                                                                                                                                         | (random)                                                                                                                                             |  |
| FGn YJ1 2015                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                                      |                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                      |  |
| FGn YJ2 2015                                                                                                                                                                                                                                                                                                                                                            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 910                                                                                                                                                                                                                                      | 48                                                                                                      | 925                                                                                                                                                  |                                       | 0.60                                                                                                                                                                                  | [0.38; 0.96]                                                                                                                                                                                                                                                                                              | 23.3%                                                                                                                                           | 22.1%                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                         | 33 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 910<br>003                                                                                                                                                                                                                               | 48<br>47                                                                                                | 925<br>889                                                                                                                                           |                                       | 0.60<br>0.61                                                                                                                                                                          | [0.38; 0.96]<br>[0.39; 0.96]                                                                                                                                                                                                                                                                              | 23.3%<br>24.4%                                                                                                                                  | 22.1%<br>23.6%                                                                                                                                       |  |
| Kim DH 2011                                                                                                                                                                                                                                                                                                                                                             | 29<br>33 10<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 910<br>003<br>117                                                                                                                                                                                                                        | 48<br>47<br>19                                                                                          | 925<br>889<br>398                                                                                                                                    |                                       | 0.60<br>0.61<br>1.08                                                                                                                                                                  | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]                                                                                                                                                                                                                                                              | 23.3%<br>24.4%<br>4.1%                                                                                                                          | 22.1%<br>23.6%<br>5.5%                                                                                                                               |  |
| Kim DH 2011<br>WGng Y 2012                                                                                                                                                                                                                                                                                                                                              | 29<br>33 1<br>6<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 910<br>003<br>117<br>658                                                                                                                                                                                                                 | 48<br>47<br>19<br>26                                                                                    | 925<br>889<br>398<br>702                                                                                                                             |                                       | 0.60<br>0.61<br>1.08<br>0.90                                                                                                                                                          | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]                                                                                                                                                                                                                                              | 23.3%<br>24.4%<br>4.1%<br>12.3%                                                                                                                 | 22.1%<br>23.6%<br>5.5%<br>14.6%                                                                                                                      |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016                                                                                                                                                                                                                                                                                                                              | 29<br>33 1<br>6<br>22<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 910<br>003<br>117<br>658<br>810                                                                                                                                                                                                          | 48<br>47<br>19<br>26<br>43                                                                              | 925<br>889<br>398<br>702<br>825                                                                                                                      |                                       | 0.60<br>0.61<br>1.08<br>0.90<br>0.63                                                                                                                                                  | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]                                                                                                                                                                                                                              | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%                                                                                                        | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%                                                                                                             |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013                                                                                                                                                                                                                                                                                                              | 29<br>33 1<br>6<br>22<br>27<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 910<br>003<br>117<br>658<br>810<br>622                                                                                                                                                                                                   | 48<br>47<br>19<br>26<br>43<br>31                                                                        | 925<br>889<br>398<br>702<br>825<br>631                                                                                                               |                                       | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58                                                                                                                                          | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]                                                                                                                                                                                                              | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%                                                                                               | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%                                                                                                    |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013                                                                                                                                                                                                                                                                                                              | 29<br>33 11<br>6<br>22<br>27<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 910<br>003<br>117<br>658<br>810<br>622                                                                                                                                                                                                   | 48<br>47<br>19<br>26<br>43<br>31                                                                        | 925<br>889<br>398<br>702<br>825<br>631                                                                                                               |                                       | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58                                                                                                                                          | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]                                                                                                                                                                                                              | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%                                                                                               | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%                                                                                                    |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model                                                                                                                                                                                                                                                                                        | 29<br>33 11<br>6<br>22<br>27<br>18<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 910<br>003<br>117<br>658<br>810<br>622<br><b>120</b>                                                                                                                                                                                     | 48<br>47<br>19<br>26<br>43<br>31                                                                        | 925<br>889<br>398<br>702<br>825<br>631                                                                                                               |                                       | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br><b>0.66</b>                                                                                                                           | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br>[0.53; 0.82]                                                                                                                                                                                              | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%                                                                                               | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%                                                                                                    |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\% r^2$                                                                                                                                                                                                                              | 29<br>33 11<br>6<br>22 0<br>27 1<br>18 0<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 910<br>003<br>117<br>658<br>810<br>622<br><b>120</b>                                                                                                                                                                                     | 48<br>47<br>19<br>26<br>43<br>31                                                                        | 925<br>889<br>398<br>702<br>825<br>631<br><b>4370</b>                                                                                                |                                       | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br><b>0.66</b>                                                                                                                           | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b>                                                                                                                                                                | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%                                                                                     | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%                                                                                                    |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $I^2 = 0\%$ , $\tau^2$                                                                                                                                                                                                                       | 29 1<br>33 11<br>6 22 0<br>27 1<br>18 0<br>4<br>27 1<br>18 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 910<br>003<br>117<br>658<br>810<br>622<br><b>120</b><br>5                                                                                                                                                                                | 48<br>47<br>19<br>26<br>43<br>31                                                                        | 925<br>889<br>398<br>702<br>825<br>631<br><b>4370</b>                                                                                                |                                       | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br><b>0.66</b><br><b>0.66</b>                                                                                                            | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b>                                                                                                                                                                | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%                                                                                     | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%                                                                                                    |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2$<br>D                                                                                                                                                                                                                  | 29 33 11<br>33 11<br>6<br>22 1<br>27 4<br>18<br>4<br>1<br>2<br>1<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 910<br>003<br>117<br>658<br>810<br>622<br>120<br>5                                                                                                                                                                                       | 48<br>47<br>19<br>26<br>43<br>31                                                                        | 925<br>889<br>398<br>702<br>825<br>631<br><b>4370</b>                                                                                                |                                       | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br><b>0.66</b>                                                                                                                           | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b>                                                                                                                                                                | 23.3%<br>24.4%<br>12.3%<br>20.8%<br>15.1%                                                                                                       | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%                                                                                                    |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2$<br>D                                                                                                                                                                                                                  | 29 = 3<br>33 = 10<br>22 = 0<br>27 = 4<br>18 = 0<br>$4^{2}$<br>Experiment<br>Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 910<br>003<br>117<br>658<br>810<br>622<br>120<br>5<br>ntal                                                                                                                                                                               | 48<br>47<br>19<br>26<br>43<br>31                                                                        | 925<br>889<br>398<br>702<br>825<br>631<br>4370                                                                                                       |                                       | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br>0.66<br>0.66                                                                                                                          | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b>                                                                                                                                                                | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%                                                                                     | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br><br>100.0%<br>Weight                                                                            |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2$<br>D<br>Study                                                                                                                                                                                                         | 29 3<br>33 10<br>6<br>22 0<br>27 4<br>18 0<br>4<br>1<br>Experiments To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 910<br>003<br>117<br>658<br>810<br>622<br>120<br>5<br>ntal<br>otal                                                                                                                                                                       | 48<br>47<br>19<br>26<br>43<br>31<br>31<br>Co<br>Events                                                  | 925<br>889<br>398<br>702<br>825<br>631<br>4370                                                                                                       | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br>0.66<br>0.66<br>OR                                                                                                                    | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b>                                                                                                                                                                | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br><br>Weight<br>(fixed)                                                            | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br><br>100.0%<br>Weight<br>(random)                                                                |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2$<br>D<br>Study<br>FGn YJ1 2015                                                                                                                                                                                         | 29 3<br>33 10<br>6<br>22 0<br>27 4<br>18 0<br>4<br>Experiment<br>Events To<br>317 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 910<br>003<br>117<br>658<br>810<br>622<br>120<br>5<br>ntal<br>otal<br>910                                                                                                                                                                | 48<br>47<br>19<br>26<br>43<br>31<br>31<br>Co<br>Events<br>375                                           | 925<br>889<br>398<br>702<br>825<br>631<br>4370<br>Total<br>925                                                                                       | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br>0.66<br>0.66<br>0.66<br>OR                                                                                                            | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br>[0.53; 0.82]<br>[0.53; 0.83]<br>95%-Cl<br>[0.65; 0.95]                                                                                                                                                    | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br><br>Weight<br>(fixed)<br>22.7%                                                   | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br><br>100.0%<br>Weight<br>(random)<br>19.6%                                                       |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2$<br>D<br>Study<br>FGn YJ1 2015<br>FGn YJ2 2015                                                                                                                                                                         | 29 3<br>33 10<br>6<br>22 0<br>27 3<br>18 0<br>4<br>1<br>5 = 0, p = 0.79<br>Experiments<br>Events To<br>317 9<br>345 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 910<br>003<br>117<br>658<br>810<br>622<br>120<br>5<br>ntal<br>ptal<br>910<br>003                                                                                                                                                         | 48<br>47<br>19<br>26<br>43<br>31<br>31<br><b>Co</b><br>Events<br>375<br>360                             | 925<br>889<br>398<br>702<br>825<br>631<br>4370<br>4370<br>Total<br>925<br>889                                                                        | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br>0.66<br>0.66<br>0.66<br>0.66                                                                                                          | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b><br><b>95%-Cl</b><br>[0.65; 0.95]<br>[0.64; 0.93]                                                                                                               | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br><br>Weight<br>(fixed)<br>22.7%<br>23.5%                                          | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br><br>100.0%<br>Weight<br>(random)<br>19.6%<br>19.8%                                              |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2$<br>D<br>Study<br>FGn YJ1 2015<br>FGn YJ2 2015<br>Kim DH 2011                                                                                                                                                          | 29 3<br>33 10<br>6<br>22 0<br>27 3<br>18 0<br>27 4<br>18 0<br>4<br>5 0, p = 0.75<br>Experiment<br>Events To<br>317 5<br>345 10<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 910<br>003<br>117<br>658<br>810<br>622<br>120<br>5<br>ntal<br>otal<br>910<br>003<br>117                                                                                                                                                  | 48<br>47<br>19<br>26<br>43<br>31<br>31<br><b>Co</b><br>Events<br>375<br>360<br>164                      | 925<br>889<br>398<br>702<br>825<br>631<br>4370<br>4370                                                                                               | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br><b>0.66</b><br><b>0.66</b><br><b>0.66</b><br><b>0.77</b><br>0.92                                                                      | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b><br><b>95%-CI</b><br>[0.65; 0.95]<br>[0.64; 0.93]<br>[0.61; 1.41]                                                                                               | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br><b>100.0%</b><br><br>Weight<br>(fixed)<br>22.7%<br>23.5%<br>4.2%                           | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br><b></b><br><b>100.0%</b><br>Weight<br>(random)<br>19.6%<br>19.8%<br>7.9%                        |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%, \tau^2$<br>D<br>Study<br>FGn YJ1 2015<br>FGn YJ1 2015<br>FGn YJ2 2015<br>Kim DH 2011<br>WGng Y 2012                                                                                                                              | 29 33 10<br>33 10<br>22 0<br>27 3<br>18 0<br>$4^{2}$<br>= 0, p = 0.75<br>Experiment<br>Events Tot<br>317 10<br>317 10<br>46<br>241 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 910<br>003<br>117<br>658<br>810<br>622<br><b>120</b><br>5<br><b>ntal</b><br>003<br>117<br>658                                                                                                                                            | 48<br>47<br>19<br>26<br>43<br>31<br><b>Co</b><br>Events<br>375<br>360<br>164<br>233                     | 925<br>889<br>398<br>702<br>825<br>631<br>4370<br>4370<br>500000000000000000000000000000000000                                                       | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br><b>0.66</b><br><b>0.66</b><br><b>0.66</b><br><b>0.66</b><br><b>0.77</b><br>0.92<br>1.16                                               | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b><br><b>95%-CI</b><br>[0.65; 0.95]<br>[0.64; 0.93]<br>[0.61; 1.41]<br>[0.93; 1.45]                                                                               | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br><br>Weight<br>(fixed)<br>22.7%<br>23.5%<br>4.2%<br>13.4%                         | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br>100.0%<br>Weight<br>(random)<br>19.6%<br>19.8%<br>7.9%<br>7.9%                                  |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%, \tau^2$<br>D<br>Study<br>FGn YJ1 2015<br>FGn YJ2 2015<br>Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016                                                                                                                              | 29 = 3<br>33 = 11<br>6<br>22 = 0<br>27 = 3<br>18 = 0<br>4<br>27 = 0, p = 0.73<br><b>Experiment</b><br><b>Experiment</b><br>317 = 12<br>345 = 11<br>46<br>241 = 12<br>285 = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 910<br>003<br>117<br>658<br>810<br>622<br>120<br>5<br>ntal<br>003<br>117<br>658<br>810                                                                                                                                                   | 48<br>47<br>19<br>26<br>43<br>31<br><b>Co</b><br>Events<br>375<br>360<br>164<br>233<br>339              | 925<br>889<br>398<br>702<br>825<br>631<br>4370<br>4370<br>500000000000000000000000000000000000                                                       | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br><b>0.66</b><br><b>0.66</b><br><b>0.66</b><br><b>0.77</b><br>0.72<br>1.16<br>0.78                                                      | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.32; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b><br><b>95%-CI</b><br>[0.65; 0.95]<br>[0.64; 0.93]<br>[0.61; 1.41]<br>[0.93; 1.45]<br>[0.64; 0.95]                                                               | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br><br>Weight<br>(fixed)<br>22.7%<br>23.5%<br>4.2%<br>13.4%<br>20.4%                | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br><b>—</b><br>100.0%<br>Weight<br>(random)<br>19.6%<br>19.8%<br>7.9%<br>17.1%<br>18.8%            |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $I^2 = 0\%, \tau^2$<br>D<br>Study<br>FGn YJ1 2015<br>FGn YJ2 2015<br>Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013                                                                                                              | 29 3<br>33 10<br>6<br>22 0<br>27 4<br>18 0<br>27 4<br>18 0<br>4<br>27 4<br>27 4<br>18 0<br>4<br>27 4<br>27 | 910<br>003<br>117<br>658<br>810<br>622<br><b>120</b><br>5<br><b>ntal</b><br>003<br>117<br>658<br>810<br>622                                                                                                                              | 48<br>47<br>19<br>26<br>43<br>31<br><b>Co</b><br>Events<br>375<br>360<br>164<br>233<br>339<br>252       | 925<br>889<br>398<br>702<br>825<br>631<br>4370<br>4370<br>701<br>701<br>701<br>701<br>889<br>398<br>702<br>825<br>631                                | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br>0.66<br>0.66<br>0.66<br>0.76<br>0.78<br>0.77<br>0.92<br>1.16<br>0.78<br>0.75                                                          | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.32; 1.04]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b><br><b>95%-CI</b><br>[0.65; 0.95]<br>[0.64; 0.93]<br>[0.64; 0.95]<br>[0.64; 0.95]<br>[0.64; 0.95]                                                               | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br><br>Weight<br>(fixed)<br>22.7%<br>23.5%<br>4.2%<br>13.4%<br>20.4%<br>15.7%       | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br><b>—</b><br>100.0%<br>Weight<br>(random)<br>19.6%<br>19.8%<br>7.9%<br>7.1%<br>18.8%<br>16.6%    |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2$<br>D<br>Study<br>FGn YJ1 2015<br>FGn YJ2 2015<br>Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013                                                                                                           | 29 33 10<br>33 10<br>6<br>22 0<br>27 4<br>18 0<br>4<br>27 4<br>27 4<br>18 0<br>4<br>27 4<br>27 4<br>20 7<br>20 7<br>2 | 910<br>003<br>117<br>658<br>810<br>622<br><b>120</b><br>5<br><b>ntal</b><br>003<br>117<br>658<br>810<br>622                                                                                                                              | 48<br>47<br>19<br>26<br>43<br>31<br><b>Co</b><br>Events<br>375<br>360<br>164<br>233<br>339<br>252       | 925<br>889<br>398<br>702<br>825<br>631<br><b>4370</b><br><b>4370</b><br><b>0</b><br><b>trol</b><br>925<br>889<br>398<br>702<br><b>8</b><br>25<br>631 | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br>0.66<br>0.66<br>0.66<br>0.76<br>0.78<br>0.77<br>0.92<br>1.16<br>0.78<br>0.75                                                          | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.32; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b><br><b>95%-CI</b><br>[0.65; 0.95]<br>[0.64; 0.93]<br>[0.64; 0.95]<br>[0.64; 0.95]<br>[0.64; 0.95]                                                               | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br><br>Weight<br>(fixed)<br>22.7%<br>23.5%<br>4.2%<br>13.4%<br>20.4%<br>15.7%       | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br><br>100.0%<br>Weight<br>(random)<br>19.6%<br>19.8%<br>7.9%<br>17.1%<br>18.8%<br>16.6%           |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%, \tau^2$<br>D<br>Study<br>FGn YJ1 2015<br>FGn YJ2 2015<br>Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Pandom offer model                                                                  | 29 33 10<br>33 10<br>6<br>22 0<br>27 4<br>18 0<br>4<br>27 4<br>18 0<br>4<br>27 4<br>18 0<br>27 4<br>18 0<br>27 4<br>18 0<br>27 4<br>18 0<br>27 4<br>285 10<br>207 0<br>241                                                                                                     | 910<br>003<br>117<br>658<br>810<br>622<br><b>120</b><br>5<br><b>ntal</b><br>003<br>117<br>658<br>810<br>622<br><b>120</b>                                                                                                                | 48<br>47<br>19<br>26<br>43<br>31<br><b>Co</b><br>Events<br>375<br>360<br>164<br>233<br>339<br>252       | 925<br>889<br>398<br>702<br>825<br>631<br>4370<br>4370<br>925<br>889<br>398<br>702<br>839<br>8398<br>702<br>631<br>4370                              | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br>0.66<br>0.66<br>0.66<br>0.77<br>0.92<br>1.16<br>0.78<br>0.75<br>0.83                                                                  | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b><br><b>95%-CI</b><br>[0.65; 0.95]<br>[0.64; 0.93]<br>[0.64; 0.93]<br>[0.64; 0.95]<br>[0.64; 0.95]<br>[0.64; 0.94]                                               | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br>Weight<br>(fixed)<br>22.7%<br>23.5%<br>4.2%<br>13.4%<br>20.4%<br>15.7%<br>100.0% | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br><b>100.0%</b><br><b>Weight</b><br>(random)<br>19.6%<br>19.8%<br>7.9%<br>17.1%<br>18.8%<br>16.6% |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2$<br>D<br>Study<br>FGn YJ1 2015<br>FGn YJ2 2015<br>Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneitie: $l^2 = 55\%$                             | 29 3 10<br>33 10<br>22 0<br>27 4<br>18 0<br>4<br>1<br>18 0<br>4<br>1<br>20, p = 0.73<br>Experiment<br>Experiment<br>345 10<br>46<br>241 0<br>285 4<br>207 0<br>46<br>207 0<br>47<br>46<br>207 0<br>46<br>207 0<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 910<br>003<br>117<br>658<br>810<br>622<br><b>120</b><br>5<br><b>ntal</b><br>003<br>117<br>658<br>810<br>622<br><b>120</b>                                                                                                                | 48<br>47<br>19<br>26<br>43<br>31<br><b>Co</b><br>Events<br>375<br>360<br>164<br>233<br>339<br>252       | 925<br>889<br>398<br>702<br>825<br>631<br><b>4370</b><br><b>4370</b><br>925<br>889<br>398<br>702<br>825<br>631<br><b>4370</b>                        | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br><b>0.66</b><br><b>0.66</b><br><b>0.77</b><br>0.92<br>1.16<br>0.75<br><b>0.83</b><br><b>0.84</b>                                       | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b><br><b>95%-Cl</b><br>[0.65; 0.95]<br>[0.64; 0.93]<br>[0.64; 0.95]<br>[0.64; 0.95]<br>[0.66; 0.94]<br><b>[0.76; 0.91]</b><br><b>[0.73; 0.96]</b>                 | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br><br>Weight<br>(fixed)<br>22.7%<br>23.5%<br>4.2%<br>13.4%<br>20.4%<br>15.7%       | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br>100.0%<br>Weight<br>(random)<br>19.6%<br>19.8%<br>7.9%<br>17.1%<br>18.8%<br>16.6%               |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: / <sup>2</sup> = 0%, τ <sup>2</sup><br>D<br>Study<br>FGn YJ1 2015<br>FGn YJ2 2015<br>Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: / <sup>2</sup> = 55%, τ<br>E | 29 = 3<br>33 = 11<br>6<br>22 = 0<br>27 = 3<br>18 = 0<br>4<br>1 = 0, p = 0.72<br><b>Experimential</b><br><b>Experimential</b><br>345 = 11<br>46<br>241 = 0<br>285 = 1<br>207 = 0<br>4<br>1 = 0<br>285 = 1<br>207 = 0<br>4<br>1 = 0<br>1 = 0<br>285 = 1<br>285 = 1<br>287 = 1<br>46 = 1<br>285 = 1<br>287 = 1<br>46 = 1<br>285 = 1<br>285 = 1<br>47 = 1<br>285 = 1<br>47 = 1<br>47 = 1<br>10 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 910<br>003<br>117<br>658<br>810<br>622<br><b>120</b><br>5<br><b>ntal</b><br>003<br>117<br>658<br>810<br>622<br><b>120</b><br>0 = 0.                                                                                                      | 48<br>47<br>19<br>26<br>43<br>31<br><b>Cc</b><br>Events<br>375<br>360<br>164<br>233<br>339<br>252<br>05 | 925<br>889<br>398<br>702<br>825<br>631<br>4370<br>4370<br>925<br>889<br>398<br>702<br>825<br>631<br>4370                                             | 0.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br><b>0.66</b><br><b>0.66</b><br><b>0.66</b><br><b>0.66</b><br><b>0.77</b><br>0.92<br>1.16<br>0.78<br>0.75<br><b>0.83</b><br><b>0.84</b> | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b><br><b>95%-Cl</b><br>[0.65; 0.95]<br>[0.64; 0.93]<br>[0.64; 0.95]<br>[0.64; 0.95]<br>[0.66; 0.94]<br><b>[0.76; 0.91]</b><br><b>[0.73; 0.96]</b>                 | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br>22.7%<br>23.5%<br>4.2%<br>13.4%<br>20.4%<br>15.7%<br>100.0%                      | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br>100.0%<br>Weight<br>(random)<br>19.6%<br>19.8%<br>7.9%<br>17.1%<br>18.8%<br>16.6%               |  |
| Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: / <sup>2</sup> = 0%, τ <sup>2</sup><br>D<br>Study<br>FGn YJ1 2015<br>FGn YJ2 2015<br>Kim DH 2011<br>WGng Y 2012<br>YGng DZ 2016<br>WGng YF 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: / <sup>2</sup> = 55%, τ<br>E | 29 = 3<br>33 = 11<br>6<br>22 = 0<br>27 = 1<br>18 = 0<br>27 = 1<br>18 = 0<br>4<br>10 = 0<br>27 = 0<br>18 = 0<br>27 = 0<br>18 = 0<br>27 = 0<br>27 = 0<br>345 = 11<br>46 = 241<br>285 = 207<br>4<br>10 = 207<br>4<br>10 = 0<br>10 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 910<br>003<br>117<br>658<br>810<br>622<br><b>120</b><br>5<br><b>ntal</b><br>003<br>117<br>658<br>810<br>003<br>117<br>658<br>810<br>003<br>117<br>003<br>117<br>003<br>003<br>117<br>003<br>003<br>003<br>003<br>003<br>003<br>003<br>00 | 48<br>47<br>19<br>26<br>43<br>31<br><b>Cc</b><br>Events<br>375<br>360<br>164<br>233<br>339<br>252<br>05 | 925<br>889<br>398<br>702<br>825<br>631<br>4370<br>925<br>889<br>398<br>702<br>825<br>631<br>4370                                                     | O.5 1 2<br>Odds Ratio                 | 0.60<br>0.61<br>1.08<br>0.90<br>0.63<br>0.58<br>0.66<br>0.66<br>0.66<br>0.66<br>0.77<br>0.92<br>1.16<br>0.78<br>0.75<br>0.83<br>0.84                                                  | [0.38; 0.96]<br>[0.39; 0.96]<br>[0.42; 2.77]<br>[0.50; 1.60]<br>[0.38; 1.03]<br>[0.32; 1.04]<br><b>[0.53; 0.82]</b><br><b>[0.53; 0.83]</b><br><b>95%-Cl</b><br>[0.65; 0.95]<br>[0.64; 0.93]<br>[0.64; 0.93]<br>[0.64; 0.95]<br>[0.64; 0.95]<br>[0.60; 0.94]<br><b>[0.76; 0.91]</b><br><b>[0.73; 0.96]</b> | 23.3%<br>24.4%<br>4.1%<br>12.3%<br>20.8%<br>15.1%<br>100.0%<br><br>Weight<br>(fixed)<br>22.7%<br>23.5%<br>4.2%<br>13.4%<br>20.4%<br>15.7%       | 22.1%<br>23.6%<br>5.5%<br>14.6%<br>20.2%<br>13.9%<br>100.0%<br>Weight<br>(random)<br>19.6%<br>19.8%<br>7.9%<br>17.1%<br>18.8%<br>16.6%               |  |

pubmed) and Embase (http://www.embase.com); Chinese electronic literatures were searched in Wanfang and China National Knowledge Infrastructure databases. The keywords included stroke or "cerebral apoplexy," ALOX5AP gene, rs17222919

Figure

(rs17222919, -1316T/G). The retrieval deadline was January 2018. This study was a meta-analysis of previous studies on IS patients and did not involve animal experiments; therefore, no ethical review was needed.

#### Meta-analysis results of all models.

|             | Total gene |         | Test of association     |      |          | Model  | Test  | of heterogene | Egger test <sup>‡</sup> |        |       |
|-------------|------------|---------|-------------------------|------|----------|--------|-------|---------------|-------------------------|--------|-------|
| Туре        | Cases      | Control | OR (95%CI)              | Z    | Р        |        | Q     | Р             | ľ, %                    | Т      | Р     |
| G vs T      | 8240       | 8740    | 0.8436 [0.7515; 0.9469] | 2.88 | 0.0039   | Random | 11.08 | 0.0498        | 54.9                    | 0.8834 | .4269 |
| GT vs TT    | 3985       | 4156    | 0.8601 [0.7842; 0.9432] | 3.20 | 0.0300   | Fixed  | 9.39  | 0.0945        | 46.8                    | 0.4899 | .6498 |
| GG vs TT    | 2814       | 2861    | 0.6265 [0.5012; 0.7831] | 4.11 | < 0.0001 | Fixed  | 3.86  | 0.5703        | 0                       | 1.9531 | .1225 |
| GG vs GT+TT | 4120       | 4370    | 0.6614 [0.5302; 0.8249] | 3.67 | 0.0002   | Fixed  | 2.65  | 0.7534        | 0                       | 2.3549 | .0781 |
| GG+GT vs TT | 4120       | 4370    | 0.8396 [0.7320; 0.9631] | 2.50 | 0.0125   | Random | 11.13 | 0.0488        | 55.1                    | 0.6418 | .5559 |

CI = confidence interval, OR = odds ratio.

\* Random-effects model was used when the P for heterogeneity test < .05, otherwise the fixed-effect model was used.

 $^{+}P$ <.05 is considered statistically significant for Q statistics.

\* Egger test to evaluate publication bias, P<.05 is considered statistically significant.

| Study                                                                                                                                            | Odds Ratio | OR 95%-CI                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------|
| Omitting Fan YJ1 2015<br>Omitting Fan YJ2 2015<br>Omitting Kim DH 2011<br>Omitting Wang Y 2012<br>Omitting Yang DZ 2016<br>Omitting Wang YF 2013 |            | 0.86 [0.74; 0.99]<br>0.86 [0.75; 0.99]<br>0.83 [0.74; 0.95]<br>0.79 [0.73; 0.86]<br>0.86 [0.74; 0.99]<br>0.86 [0.75; 0.99] |
| Random effects model                                                                                                                             |            | 0.84 [0.75; 0.95]                                                                                                          |
|                                                                                                                                                  | 0.8 1 1.2  | 5                                                                                                                          |
| Study                                                                                                                                            | Odds Ratio | OR 95%-CI                                                                                                                  |
| Omitting FGn YJ1 2015<br>Omitting FGn YJ2 2015<br>Omitting Kim DH 2011<br>Omitting WGng Y 2012<br>Omitting YGng DZ 2016<br>Omitting WGng YF 2013 |            | 0.87 [0.79; 0.97]<br>0.88 [0.79; 0.98]<br>0.86 [0.78; 0.94]<br>0.81 [0.73; 0.89]<br>0.87 [0.79; 0.97]<br>0.87 [0.79; 0.97] |
| Fixed effect model                                                                                                                               | $\sim$     | 0.86 [0.78; 0.94]                                                                                                          |
| В                                                                                                                                                | 0.8 1 1.3  | 25                                                                                                                         |
| Study                                                                                                                                            | Odds Ratio | OR 95%-CI                                                                                                                  |
| Omitting FGn YJ1 2015<br>Omitting FGn YJ2 2015<br>Omitting Kim DH 2011<br>Omitting WGng Y 2012<br>Omitting YGng DZ 2016<br>Omitting WGng YF 2013 |            | 0.65 [0.50; 0.83]<br>0.65 [0.50; 0.83]<br>0.61 [0.48; 0.77]<br>0.58 [0.46; 0.74]<br>0.64 [0.50; 0.82]<br>0.64 [0.51; 0.82] |
| Fixed effect model                                                                                                                               |            | 0.63 [0.50; 0.78]                                                                                                          |
| С                                                                                                                                                | 0.5 1      | 2                                                                                                                          |
| Study                                                                                                                                            | Odds Ratio | OR 95%-CI                                                                                                                  |
| Omitting FGn YJ1 2015<br>Omitting FGn YJ2 2015<br>Omitting Kim DH 2011<br>Omitting WGng Y 2012<br>Omitting YGng DZ 2016<br>Omitting WGng YF 2013 |            | 0.68 [0.53; 0.87]<br>0.68 [0.53; 0.87]<br>0.64 [0.51; 0.81]<br>0.63 [0.49; 0.80]<br>0.67 [0.52; 0.86]<br>0.68 [0.53; 0.86] |
| Fixed effect model                                                                                                                               |            | 0.66 [0.53; 0.82]                                                                                                          |
| D                                                                                                                                                | 0.5 1      | 2                                                                                                                          |
| Study                                                                                                                                            | Odds Ratio | OR 95%-CI                                                                                                                  |
| Omitting FGn YJ1 2015<br>Omitting FGn YJ2 2015<br>Omitting Kim DH 2011<br>Omitting WGng Y 2012<br>Omitting YGng DZ 2016<br>Omitting WGng YF 2013 |            | 0.86 [0.72; 1.02]<br>0.86 [0.73; 1.02]<br>0.83 [0.72; 0.97]<br>0.78 [0.71; 0.86]<br>0.86 [0.72; 1.01]<br>0.86 [0.73; 1.01] |
| Random effects model                                                                                                                             |            | 0.84 [0.73; 0.96]                                                                                                          |
| E                                                                                                                                                | 0.8 1 1.2  | 5                                                                                                                          |

Figure 3. Sensitivity analysis results. (A) G versus T; (B) GT versus TT; (C) GG versus TT; (D) GG versus GT+TT; (E) GG+GT versus TT.

#### 2.2. Document selection criteria

Literature were selected based on the following criteria: a casecontrol study with stroke patients as case group and healthy subjects as control group; study about the relationship between ALOX5AP gene polymorphism on -rs17222919 site and stroke; written in English; and with reports of the number of cases and controls, genotypes, and alleles. Review, report, comments, and letters were excluded.

#### 2.3. Literature data extraction and quality assessment

Two authors (HY and ZC) independently extracted the following data: the first author, year of publication, study countries, research time, number of genotypes in case and control groups, as well as demographic data characteristics (e.g., gender and age composition, etc.). If there was different data extraction, consistent results were obtained through panel discussions with a third author (XL). Quality assessment was performed by using the United States Agency for Healthcare Research and Quality recommended the Newcastle-Ottawa scale<sup>[17]</sup>; the evaluation includes 3 aspects with a total of 9 points, wherein the subject selection 4 points, comparability 2 points, and exposure assessment 3 points.

#### 2.4. Statistical analysis

This meta-analysis observed the LOX5AP gene polymorphism on -rs17222919 loci and stroke based on the mutant allele (G) and wild type (T). Four gene models were analyzed including, allele genetic model (G vs T), additive genetic model (GG vs TT, GT vs TT), recessive genetic model (GG vs GT+TT), and dominant genetic model (GG+GT vs TT).

First, Hardy–Weinberg equilibrium test (HWE tests) was conducted on subjects in the control group.<sup>[18]</sup> In order to ensure that our research quality study that the control group did not comply with HWE (P < .05) would be rejected.<sup>[19]</sup>

Meta-analysis was performed by using the meta-package of R 3.10 software. Effect sizes included odds ratio (OR) and 95% confidence interval (CI). Q test based on  $\chi^{2[20]}$  and  $I^2$  statistics were used for heterogeneity assessment. If heterogeneity was statistically significant (P < .05,  $I^2 > 50\%$ ), the merged effect sizes were calculated under the random effects model, otherwise, under the fixed effect model.<sup>[21]</sup> Egger method was applied for publication bias detection. Finally, exclusion method was used for sensitivity analysis test by ignoring a study each time to observe the effect of this study on the overall OR.



Figure 4. Funnel plots of all models. (A) G versus 1; (B) G1 versus 11; (C) GG versus TT; (D) GG versus GT+TT; (E) GG+GT versus TT.

#### 3. Results

#### 3.1. General characteristics of the selected literature

Literature search results and literature selection process are shown in Fig. 1. Firstly, 358 documents were searched and 144 repeated documents were excluded. By screening of the title and summary, 177 documents those obviously not meet the inclusion criteria were removed. Then in the remaining 27 documents, 22 were excluded, including 7 reviews, 6 cases reports, 4 studies with repeated crowd, and 5 studies with unacquirable data. Finally, 5 documents<sup>[22–26]</sup> were included in this meta-analysis.

The general characteristics of the selected are shown in Table 1. A total of 8492 cases were included, with 4120 cases in the case group and 4372 cases in the control group. The selected documents were published between 2011 and 2016. Basic demographic characteristics: average age 55 to 69 years old without statistical difference between the 2 groups; more male than female (case group 2207/1913, control group 2267/2105); subjects came from China and Korean. Quality assessment showed that all selected documents had high quality (Newcastle-Ottawa scale ranged of 6–8 points). Table 2 shows that all the controls in the selected studies accorded to HWE.

#### 3.2. Quantitative data consolidation

The heterogeneity test showed that for the models G versus T and GG+GT versus TT, the heterogeneity was statistically significant (P < .05,  $I^2 > 50\%$ ), so the random effects were used, while, for GT versus TT, GG versus TT, and GG versus GT+TT, the fixed effect model was chosen due to the homogeneity (P > .05,  $I^2 < 50\%$ ).

Meta-analysis showed except under the additive genetic model GT versus TT (OR = 0.8601, 95% CI: 0.7842–0.9432, P > .05), there were significant relationships between ALOX5AP -rs17222919 polymorphism and stroke under all models (Fig. 2): allelic genetic model (G vs T, OR = 0.8436, 95% CI: 0.7515–0.9469, P < .05), additive genetic model (GG vs TT, OR = 0.6265, 95% CI: 0.5012–0.7831, P < .0001), recessive genetic model (GG vs GT+TT, OR = 0.6614, 95% CI: 0.5302–0.8249, P < .05), and dominant genetic model (GG+GT vs TT, OR = 0.8396, 95% CI: 0.7320–0.9631, P < .05). The results were summarized in Table 3.

#### 3.3. Sensitivity analysis

The sensitivity analysis showed that for the dominant genetic model (GG+GT vs TT), the OR values undergone different changes, while for allele genetic model (G vs T), additive genetic model (GT vs TT), additive genetic model (GG vs TT), and recessive genetic model (GG vs GT+TT), the OR values did not reversed (Fig. 3). The studies Kim  $2011^{[23]}$  and Wang  $2012^{[24]}$  had significant influence in the overall ORs.

#### 3.4. Assessment of publication bias

Egger method showed no publication bias exists, indicating that the results were reliable (Table 3, Fig. 4).

#### 4. Discussion

Our study was a meta-analysis of previous studies on IS patients. To our knowledge, this is the first meta-analysis on the relationship between ALOX5AP-rs17222919 and stroke. Basing on large sample size (8492 cases), this study makes a reliable conclusion that LOX5AP -rs17222919 gene is a protective gene for stroke.

There are previous meta-analyses on the relationship. Zintzaras et al<sup>[15]</sup> found the no evidence of relationship between ALOX5AP gene and stroke by a meta-analysis focusing on HapA haplotype, HapB haplotype, and SG polymorphisms. However, Sophie et al found that in the Iberian population, the SG13S114 (HapB haplotype) variant is an independent risk factor for IS.<sup>[16]</sup> Based on the ALOX5AP-rs17222919, the present meta-analysis with all subjects in Asian indicated a strong relationship between ALOX5AP gene and stroke.

The heterogeneity of some models was significant. From the forest plot, the study of Kim  $2011^{[23]}$  and Wang  $2012^{[24]}$  contribute the high heterogeneity. Except Kim 2011, the subjects of all other studies were IS. The difference in mechanisms of hemorrhagic stroke and IS can lead to different genetic characteristic. The sensitivity analysis also hints the influence of these 2 studies. The heterogeneity can come from other aspects like racial differences in country areas. The subjects of Kim  $2011^{[23]}$  came from Korean while those of other studies from Chinese. Other confounding factors, age, sex, living habits, and cultural exchange may also affect the results. However, due to the limited data in the original study, subgroup analysis could not be conducted.

As reported in the original study, ALOX5AP mRNA levels were not compared between cases and controls,<sup>[22,25]</sup> which might also be a limitation of this study. Other limitations are listed as follows. Firstly, the potential confounding factors those may affect the meta-analysis were not corrected due to the incomplete data. Secondly, this study only focused on gene polymorphism of 1 gene site rs17222919, which may lead to misjudgment on the overall relationship. Thirdly, sensitive analysis hints that part of the results is not stable. The studies of Kim<sup>[23]</sup> and Wang<sup>[24]</sup> had significant influence in the overall ORs.

In short, the present meta-analysis showed that rs17222919 genetic polymorphism is a protective factor for stroke. Of course, the conclusion of this study still needs verification by more largescale association analysis or larger sample size study updated meta-analysis.

#### **Author contributions**

Lifa Huang and Hui Ye conceived and designed the research. Tiehui Zhang and Chao Yang acquired the data. Xin Zhang, Zupeng Chen, and Xu Li performed the statistical analysis. Lifa Huang drafted the manuscript. All the authors have revised and approved the final version.

Data curation: Tiehui Zhang.

Formal analysis: Chao Yang.

Investigation: Xin Zhang.

Methodology: Zupeng Chen.

Software: Xu Li.

Writing - original draft: Hui Ye.

Writing - review & editing: Lifa Huang.

#### References

 Alexandrov AW. What is a stroke? in. Acute Stroke Nursing 2010; Wiley-Blackwell, 331, 33–65.

- [2] Donnan GA, Fisher M, Macleod M, et al. Stroke. Lancet 2008;371:1612–23.
- [3] Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 2010;17:197–218.
- [4] Evans J, Ferguson A, Mosley RT, et al. What's all the FLAP about?: 5lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharmacol Sci 2008;29:72–8.
- [5] Helgadottir A, Manolescu A, Thorleifsson G, et al. The gene encoding 5lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 2004;36:233–9.
- [6] Löhmussaar E, Gschwendtner A, Mueller JC, et al. ALOX5AP gene and the PDE4D gene in a central European population of stroke patients. Stroke 2005;36:731–6.
- [7] Li ZW, Min YX, Jia S, et al. Polymorphism of SG13S114T/A in the ALOX5AP gene and the risk for stroke in a large Chinese cohort. Acta Genet Sin 2006;33:678–84.
- [8] Meschia JF, Brott TG, Brown RDJr, et al. Phosphodiesterase 4D and 5lipoxygenase activating protein in ischemic stroke. Ann Neurol 2005;58:351–61.
- [9] Kaushal R, Pal P, Alwell K, et al. Association of ALOX5AP with ischemic stroke: a population-based case-control study. Hum Genet 2007;121:601–7.
- [10] Liu J, Kai S, Bai Y, et al. Association of three-gene interaction among MTHFR, ALOX5AP and NOTCH3 with thrombotic stroke: a multicenter case-control study. Hum Genet 2009;125:649–56.
- [11] Helgadottir A, Gretarsdottir S, Clair DS, et al. Association between the gene encoding 5-lipoxygenase-activating protein and stroke replicated in a Scottish population. Am J Hum Genet 2005;76:505–9.
- [12] Zee RY, Cheng S, Hegener HH, et al. Genetic variants of arachidonate 5lipoxygenase-activating protein, and risk of incident myocardial infarction and ischemic stroke: a nested case-control approach. Stroke 2006;37:2007–11.
- [13] Sun H, Wu H, Zhang J, et al. A tagging SNP in ALOX5AP and risk of stroke: a haplotype-based analysis among eastern Chinese Han population. Mol Biol Rep 2011;38:4731–8.
- [14] Wang G, Yao W, Hao S, et al. Variants of the arachidonate 5lipoxygenase-activating protein (ALOX5AP) gene and risk of ischemic stroke in Han Chinese of eastern China. J Biomed Res 2011;25:319–27.
- [15] Zintzaras E, Rodopoulou PN. Variants of the arachidonate 5lipoxygenase-activating protein (ALOX5AP) gene and risk of stroke: a HuGE gene-disease association review and meta-analysis. Am J Epidemiol 2009;169:523–32.
- [16] Domingues-Montanari S, Fernández-Cadenas I, del Rio-Espinola A, et al. Association of a genetic variant in the ALOX5AP with higher risk of ischemic stroke: a case-control, meta-analysis and functional study. Cerebrovasc Dis 2010;29:528–37.
- [17] Wells G, Shea B, O'connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000.
- [18] Schaid DJ, Jacobsen SJ. Blased Tests of Association: comparisons of allele frequencies when departing from Hardy-Weinberg proportions. Am J Epidemiol 1999;149:706–11.
- [19] Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene–disease associations requires appropriate methodological and statistical approaches. J Clin Epidemiol 2008;61:634–45.
- [20] Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Int Med 1997;127:820–6.
- [21] Feng R-N, Zhao C, Sun C-H, et al. Meta-analysis of TNF 308 G/A polymorphism and type 2 diabetes mellitus. PloS One 2011;6:e18480.
- [22] Fan Y, Chen H, Li A, et al. A promoter polymorphism (rs17222919, -1316T/G) of ALOX5AP gene is associated with decreased risk of ischemic stroke in two independent Chinese populations. PLoS One 2015;10:e0122393.
- [23] Kim DH, Ahn WY, Kim DK, et al. A Promoter polymorphism (rs17222919, -1316T/G) of ALOX5AP is associated with intracerebral hemorrhage in Korean population. Prostaglandins Leukot Essent Fatty Acids 2011;85:115–20.
- [24] Wang Y, Wang GN, Sun H, et al. Association of ALOX5AP with ischemic stroke in eastern Chinese. World J Emerg Med 2012;3:108–13.
- [25] Yang D, Huang X, Cui C, et al. Genetic variants in the transcriptional regulatory region of the ALOX5AP gene and susceptibility to ischemic stroke in Chinese populations. Sci Rep 2016;6:29513.
- [26] Yu-fei W, Cong-cong S, Lian-long J, et al. Interaction of 5-npoxygenaseactivating protein gene polymorphisms and environmental risk factors in ischemic stroke. Chin J Neurol 2013;46:531–5.