
Citation: Amirkavei, M.; Plastino, F.;

Kvanta, A.; Kaarniranta, K.; André,

H.; Koskelainen, A. Hormetic Heat

Shock Enhances Autophagy through

HSF1 in Retinal Pigment Epithelium

Cells. Cells 2022, 11, 1778. https://

doi.org/10.3390/cells11111778

Academic Editor: Dong-Hyung Cho

Received: 1 May 2022

Accepted: 26 May 2022

Published: 28 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Hormetic Heat Shock Enhances Autophagy through HSF1 in
Retinal Pigment Epithelium Cells
Mooud Amirkavei 1,2, Flavia Plastino 2 , Anders Kvanta 2, Kai Kaarniranta 3 , Helder André 2,†

and Ari Koskelainen 1,*,†

1 Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University,
00076 Espoo, Finland; mooud.amirkavei@aalto.fi

2 Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet,
17177 Stockholm, Sweden; flavia.plastino@ki.se (F.P.); anders.kvanta@ki.se (A.K.); helder.andre@ki.se (H.A.)

3 Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio
University Hospital, 70210 Kuopio, Finland; kai.kaarniranta@uef.fi

* Correspondence: ari.koskelainen@aalto.fi
† These authors contributed equally to this work.

Abstract: To maintain homeostasis, cells have evolved stress-response pathways to cope with exoge-
nous and endogenous stress factors. Diverse stresses at high doses may be detrimental, albeit low
doses of stress, known as hormesis, can be beneficial. Upon exposure to stress, such as temperature
rise, the conventional heat shock response (HSR) regulated by the heat shock transcription factor
1 (HSF1) facilitates refolding of misfolded proteins with the help of heat shock proteins (HSPs).
However, the role and molecular mechanisms underlying the beneficial effects of HSR with other
clearance processes, such as autophagy, remain poorly understood. In this study, human ARPE-19
cells, an in vitro model of retinal pigment epithelium, were treated with hormetic heat shock (HHS)
and the autophagy expression profile was examined using quantitative PCR (qPCR), immunoblotting,
immunoprecipitation, and immunofluorescence. We demonstrate that HHS enhances the expression
of fundamental autophagy-associated genes in ARPE-19 cells through the activation of HSF1. HHS
transiently increases the level of SQSTM1 and LC3B-II and activates autophagy. These findings reveal
a role for autophagic HSF1-regulated functions and demonstrate the contribution of autophagy to
hormesis in the HSR by improving proteostasis.

Keywords: autophagy-associated genes; autophagosomes; autolysosomes; heat shock response; heat
shock transcription factor; homeostasis

1. Introduction

The accumulation of damaged and harmful components in cells, particularly those
composed of misfolded and potentially hazardous proteins, is characteristic for several
neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and
age-related macular degeneration (AMD) [1–3]. Misfolded proteins frequently expose
hydrophobic patches that structurally should be buried inside the protein, making the
misfolded proteins prone to aggregation. Inefficient protein homeostasis and failures in
removing misfolded and aggregated proteins or impaired organelles, especially damaged
mitochondria, can lead to the production of reactive oxygen species and increase in ox-
idative stress [4]. In the eye, retinal pigment epithelial (RPE) cells are responsible for
preserving the health of the retina by providing nutrients and removing waste materials,
and by performing functions, such as outer blood-retinal barrier formation and phago-
cytosis of shed photoreceptor outer segments [5,6]. However, the increase in age-related
oxidative stress and cellular waste leads to incomplete protein degradation by overloaded
ubiquitin-proteasome (UPS) and autophagic systems, culminating in RPE and photore-
ceptor cell loss in advanced stages of AMD [7]. To maintain cellular homeostasis, cells
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have evolved highly regulated stress response pathways. Macroautophagy (hereafter,
referred to as autophagy) is a multistep lysosome-dependent process involved in cellular
homeostasis and degradation of sequestered cytoplasmic materials [8]. Under stressful
conditions, such as hypoxia, nutrient starvation, and oxidative stress, the mammalian target
of rapamycin (mTOR) signaling is inhibited and the Unc-51–like kinase (ULK1) is activated,
leading to the initiation of autophagy [9–11]. Conserved autophagy proteins encoded by
autophagy-related genes (ATG) are involved in the sequential process of autophagy [12].
Initially, the Beclin-1 (BECN1; the mammalian homolog of Atg6) complex promotes the
nucleation of phagophore membranes. The phagophores expand in the elongation step;
the microtubule-associated protein I light chain 3 beta (LC3B-I; the mammalian homolog
of Atg8) is conjugated with phosphatidylethanolamine (PE) and converted to LC3B-II,
which is inserted into the autophagosomal membrane by the action of ATG5 and ATG7
proteins [13–15]. The synthesis and processing of LC3-II is upregulated during activation
of autophagy. LC3-II is almost solely expressed in autophagic structures, making it a key
marker of autophagy in cells. Autophagy can either be non-selective, degrading randomly
cytosolic components, or autophagosomes can selectively sequester specific cargos for
destruction. The function of the latter is based on autophagic cargo receptor proteins that
bind to and carry cytoplasmic cargos to autophagophores through binding to LC3B-II.
Sequestosome-1 (SQSTM1; often also referred to as p62) has an LC3-interacting region
and a binding site for ubiquitin, which makes SQSTM1 a key cargo receptor protein in
mammalian cells. In the next step of the autophagic process, the cargo is surrounded by the
autophagophore membrane, forming the autophagosome [16,17]. The autophagic process
terminates with fusion of the autophagosomes with lysosomes to form autolysosomes,
where sequestered cytoplasmic cargo and the inner membrane of the autophagosome are
degraded by lysosomal hydrolases [18]. Both the lysosome-associate membrane protein 2
(LAMP2) and the Ras-related protein 7 (RAB7) play important roles in the final steps of
the autophagic flux, where LAMP2 has been associated with lysosome biogenesis [19] and
RAB7 regulates the fusion of autophagosomes and lysosomes into autolysosomes [18].

Upon a rise in temperature as a stress factor, heat shock factor 1 (HSF1), a master
regulator of protein homeostasis, translocates into the nucleus, where it trimerizes to the
active transcription factor and modulates the cellular heat shock response (HSR). Trimeric
HSF1 binds to heat shock elements (HSE) in the promoter of target genes and induces the
expression of heat shock proteins (HSP) as well as other molecular chaperons [20]. In heat
shock stress, HSPs recognize unfolded or misfolded proteins and act to correct their folding
or mediate their removal through the UPS or chaperone-mediated autophagy [21,22].

Various transpupillary fundus heating methods have been developed with the aim of
treating retinal diseases, such as AMD. The emphasis of these studies has been to apply
temperature increases in order to activate the HSR yet to prevent cellular damage [23–25].
Previous studies have demonstrated the induction of HSPs in the RPE cells after transpupil-
lary laser irradiation [24–29], which could lead to therapeutical effects [24,25,30–32]. How-
ever, the molecular mechanisms underlying the beneficial effects of HHS in RPE cells have
not been fully unraveled yet. On the other hand, aggravating autophagy deregulation and
reduction in the autophagic flux in RPE cells from AMD patients indicates that reduced
autophagy is correlated with the disease’s progression [33–35]. Studies of AMD are limited
to available RPE cells. The human RPE cell line ARPE-19 has been used extensively as an
in vitro model. Albeit, ARPE-19 does not retain all characteristics of naïve RPE cells [36],
and recent studies have centered in human embryonic stem (hES) or human-induced
pluripotent stem (hiPS) cell-derived RPE as alternatives to modeling AMD [37,38].

In this study, we examined the HSR, HSF1, and heat-induced activation of autophagy
in human ARPE-19 cells. The HHS-induced HSF1 was followed by the expression of
HSP70, as expected for a canonical heat shock responder. We found that HHS-induced
HSF1 modulates the expression of several autophagy-associated genes, which resulted in
the formation of larger autophagosomes and enhanced cargo presentation to the lysosome.
These results suggest that hormetic heat shock can be used to increase autophagic flux in
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mammalian RPE cells and thus to potentially improve their waste clearance, which might
be beneficial in AMD.

2. Materials and Methods
2.1. Cell Culture

The human retinal pigment epithelial cell line ARPE-19 was obtained from Ameri-
can Type Culture Collection (ATCC, CRL-2302). The cells were cultured in DMEM/F12
medium (1:1 mixture Dulbecco’s Modified Essential Medium and Ham’s F-12 Medium;
ThermoFisher Scientific: Waltham, MA, USA, 31331093), supplemented with 10% fetal
bovine serum (FBS; ThermoFisher Scientific, 10500064), and 1% penicillin-streptomycin
antibiotics (P/S; ThermoFisher Scientific, 15140122) to reach full confluency and to form
cuboid or hexagonal morphologies.

2.2. Hormetic Heat Shock Treatment

ARPE-19 cells were given a single bout of HHS at 42 ◦C for 30 min by placing the
culture plates in a water bath, followed by recovery at 37 ◦C for 3, 12, and 24 h. Control cells
were maintained at 37 ◦C for 24 h and not exposed to HHS (non-HHS). To evaluate the HHS
impact on the autophagy flux, the cells were first pre-exposed for 6 h to 50 nM Bafilomycin
A1 (Baf), an autophagy inhibitor (Sigma-Aldrich: St. Louis, MO, USA, SML1661) at
37 ◦C. Then, the cultures were heated and recovered as described above in the presence
of Baf. Non-HHS controls in the presence of Baf were collected simultaneously with the
recovery times.

2.3. HSF1 Gain-of-Function

The human HSF1 open-reading frame (NM_005526.4) cloned in-frame into the FLAG-
tagged pcDNA3.1(+) was purchased from GenScript (Piscataway, NJ, USA). ARPE-19 cells
were transfected with 2 µg pDNA encoding FLAG-HSF1 or empty FLAG backbone with
lipofectamine LTX with plus reagent (ThermoFisher Scientific, 15338030), according to
the manufacturer’s instructions. Cell cultures were harvested 36 h post-transfection and
prepared for immunoblotting or qPCR as described below.

2.4. Immunoblotting

Total proteins were extracted from cells using RIPA lysis buffer (Sigma-Aldrich, 20–188)
containing protease (Roche: Basel, Switzerland, 11836170001) and phosphatase (Roche,
4906837001) inhibitor cocktails. Protein extracts were quantified by a Bradford protein assay
(Bio-Rad Laboratories: Hercules, CA, USA, 5000201). A total of 15 µg of total protein was
separated by 4–20% stain-Free TGX SDS-PAGE gels and transferred onto polyvinylidene
difluoride (PVDF) membranes (Bio-Rad Laboratories, 1620177). Then, membranes were
blocked with Tris-buffered saline (TBS) with 1% casein (Bio-Rad Laboratories, 1610782)
for 1 h at room temperature (RT). Subsequently, the membranes were incubated overnight
(ON) at 4 ◦C with primary antibodies diluted in a blocking solution; anti-HSP70 (1:1000,
mouse polyclonal; Santa Cruz Biotechnology: Dallas, TX, USA, SPA-810); anti-SQSTM1
(1:1000, rabbit monoclonal; Novus Biologicals: Abingdon, UK, NBP1-48320); anti-LC3B
(1:1000, rabbit monoclonal; Cell Signaling Technology: Danvers, MA, USA, 3868); anti-HSF1
(1:500, rabbit monoclonal; Cell Signaling Technology, 12972); and anti-FLAG (1:500, mouse
monoclonal; Sigma-Aldrich, F1804). Incubation with secondary antibodies diluted in a
blocking solution was performed 1 h at RT: anti-rabbit-IgG conjugated to horseradish
peroxidase (1:10,000; Dako: Carpinteria, CA, USA, P044801-2); anti-rabbit-IgG StarBright
700 (1:2500; Bio-Rad Laboratories, 12004161); anti-mouse-IgG StarBright 520 (1:2500; Bio-
Rad Laboratories, 12005866); and loading control hFAB-Rhodamine anti-Actin (1:2000;
Bio-Rad Laboratories, 12004164). Membranes were extensively washed with TBS (Bio-Rad
Laboratories, 1706435) supplemented with 0.05% Tween-20 (Sigma-Aldrich, 9005-64-5)
after all antibody steps. Finally, the protein of interest was visualized either by enhanced
chemiluminescence (Clarity ECL; Bio-Rad Laboratories, 1705061) or direct fluorescence
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with a Chemidoc MP imaging system (Bio-Rad Laboratories, Hercules, CA, USA). Image
Lab 3.0 software (Bio-Rad Laboratories, Hercules, CA, USA) was used to determine the
optical density (OD) of the bands, and protein levels was corrected to the Actin as a
loading control.

2.5. Immunoprecipitation

The protein extracts from six independent experiments were pooled into one sample
to produce a high protein content. A total of 15 µL of Dynabeads protein G (ThermoFisher
Scientific, 10003D) was blocked with 1% bovine serum albumin (BSA; Sigma-Aldrich,
A9418) in TBS, for 30 min at RT under rotation, followed by immunization with 5 µL of
rabbit monoclonal anti-LC3B (rabbit monoclonal; Cell Signaling Technology, 3868) for 1 h
at RT. After magnetizing the beads and removal of the antibody solution, 300 µg of total
protein extract diluted to a final volume of 500 µL with TBS was added to the immunized
beads and incubated ON at 4 ◦C under rotation. Following extensive washes with TBS-T,
cleared protein complexes were eluted by boiling with 15 µL denaturing Laemmli buffer
for 10 min at 95 ◦C, and 10 µg of the total proteins was used as input. Immunoprecipitated
and input protein were processed by immunoblotting, and ODs were corrected to Actin or
IgG as the loading control.

2.6. Quantitative PCR

Total RNA was extracted and purified from both non-HHS and HHS-treated ARPE-19
cells using the RNeasy mini plus kit (Qiagen: Hilden, Germany, 74034), and 1 µg RNA was
retrotranscribed to cDNA using iScript cDNA synthesis kit (Bio-Rad Laboratories, 1708891).
The expressions of the transcripts were assayed with using iQ SYBR green supermix (Bio-Rad
Laboratories, 1708880) in a CFX real-time thermal cycler (Bio-Rad Laboratories, Hercules,
CA, USA). The PrimePCR used were HSP70 (AssayID: qHsaCED0037313); BECN1 (AssayID:
qHsaCID0016032); ATG7 (AssayID: qHsaCID0012170); ATG5 (AssayID: qHsaCID0018096);
MAP1LC3B/LC3B (AssayID: qHsaCED0038576); SQSTM1 (AssayID: qHsaCED0045925);
RAB7 (AssayID: qHsaCID0008324); and LAMP2 (AssayID: qHsaCID0020863). The mRNA
levels of the target genes were corrected to the mean of the housekeeping genes: RPL13
(AssayID: qHsaCED0045063) and TBP (AssayID: qHsaCID0007122). The relative transcript
expression levels for HHS samples were normalized to non-HHS applying the ∆∆CT
method. All paired oligos for PrimePCR are from Bio-Rad Laboratories.

2.7. Immunofluorescence

Cells were cultured on glass coverslips and treated with HHS. Cells were rinsed
with phosphate-buffered saline (PBS; ThermoFisher Scientific, 10010023) and fixed with
formaldehyde (FA; Solveco: Rosersberg, Sweden, 50-00-0) in PBS for 10 min at RT, fol-
lowed by permeabilization with PBS supplemented with 0.5% Triton X-100 (Sigma-Aldrich,
No.9002-93-1) for 15 min at RT. Permeabilized cells were incubated in a blocking solu-
tion of 0.1% PBS-T supplemented with 10% normal goat serum (ThermoFisher Scientific,
10000C) for 1 h at RT. Then, the cells were incubated ON at 4 ◦C with primary antibodies
diluted in a blocking solution: HSP70 (1:200, mouse polyclonal; Santa Cruz Biotechnology,
SPA-810); anti-SQSTM1 (1:200, rabbit monoclonal; Novus Biologicals, NBP1-48320); anti-
LC3B (1:200, rabbit monoclonal; Cell Signaling Technology, 3868); and anti-HSF1 (1:150,
rabbit monoclonal; Cell Signaling Technology, 12972D). Incubation with secondary an-
tibodies diluted in a blocking solution was performed for 1 h at RT: Anti-mouse-Alexa
647 (1:500; ThermoFisher Scientific, A32787), Anti-rabbit-Alexa 488 (1:500; ThermoFisher
Scientific, A-11034), Anti-rabbit-Alexa 546 (1:500; ThermoFisher Scientific, A-11010), Alexa
Fluor 488-Phalloidin (1:500; ThermoFisher Scientific, A12379), and Hoechst 33258 (1:10,000;
Sigma-Aldrich, 23491-45-4). Finally, immunofluorescence (IF) was post-fixed for 5 min
in FA at RT, and coverslips were mounted with fluorescence mounting medium (Dako,
CS70330-2). Images were acquire using a Zeiss fluorescence microscope with the AxioVi-
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sion software version 4.8 (Zeiss, Gottingen, Germany) by applying fixed camera exposures
for equative signal across the same channel.

2.8. Autophagic Flux Detection

The Premo™ Autophagy Tandem Sensor RFP-GFP-LC3B Kit (ThermoFisher Scientific,
P36239) was used to evaluate the autophagosome. Tandem sensor RFP-GFP-LC3B was
used as described in the manufacturer’s instructions. Briefly, cells were cultured on glass
coverslips to ~70% confluency and exposed to 40 BacMam particles per cell ON, followed
by Baf treatment as described. Then, the cells were rinsed and fixed with FA for 10 min at
RT. The nuclei were stained with Hoescht at 1:10,000 (Sigma-Aldrich, 23491-45-4) for 5 min
and post-fixed before mounting with fluorescent mounting medium (Dako, CS70330-2).

The pH independent LysoTracker Red DND-99 (ThermoFisher Scientific, L7528) was
used to evaluate the lysosomes in the autophagy flux. Cells cultured on glass coverslips
and treated with Baf and HHS were exposed to 75 nM LysoTracker during the final 2 h
of treatment. The fixed cells were co-stained with SQSTM1 and Hoescht following the
IF protocol.

To enhance the visualization of the puncta, autophagy flux images were acquired with
a Zeiss fluorescence microscope and corrected to maximum projection using the AxioVision
software version 4.8 (Zeiss, Gottingen, Germany); co-localization measurements were
performed after subtracting the backgrounds and applying maximum fluorescence intensity
threshold. Sixty cells displaying triple staining from three independent experiments were
analyzed by counting and measuring the area of puncta.

2.9. Statistical Analysis

The statistical analyses were calculated using Prism software version 8 (GraphPad Inc.,
San Diego, CA, USA). The data were subjected to one-way analysis of variance (ANOVA),
corrected by Sidak or Bonferroni post hoc tests for multiple comparisons, as described in
figure legends. The data were presented as mean ± standard error of mean (SEM), and
values of p < 0.05 were considered statistically significant.

3. Results
3.1. Hormetic Heat Shock Induces a Long-Lasting Heat Shock Response in ARPE-19 Cells

To investigate the mechanisms engaged in the HHS responses in ARPE-19 cells, we
first examined the time recovery behavior of the canonical heat shock responders, HSF1 and
HSP70, to a 30 min 42 ◦C heat shock (Figure 1). The immediate response of HHS after 3 h
recovery demonstrated a significant increase in HSF1 protein expression levels (p < 0.001 vs.
non-HHS; Figure 1A). The exposure to HHS resulted in the observed electrophoretic upshift
of the HSF1 protein immunosignal due to post-translational modifications, correlated to
the activation of the transcription factor [39,40]. The HSR of this treatment demonstrated
200-fold induction of the HSP70 gene transcript (p < 0.001 vs. non-HHS; Figure 1B) and an
observable nuclear translocation of HSF1 at 3 h post-HHS (Figure 1C). On later times of
recovery, HSF1 expression was reverted to the non-HHS level (Figure 1A). In agreement,
immunofluorescence imaging demonstrated diminished localization of the HSF1 protein
in the cytosol and elevated accumulation in the nucleus at the 3 h time point and redistri-
bution to cytosolic and nuclear localization at later times, suggesting deactivation of the
transcription factor (Figure 1C). This observation is in agreement with previous studies on
different cell lines [40,41]. However, protein analysis demonstrated sustained upregulation
of HSP70 expression in the studied recovery time frame (p < 0.001 vs. non-HHS; Figure 1A).
The sub-cellular localization of HSP70 was largely cytosolic and remained unaltered by
HHS and during recovery (Figure 1C). Cell morphology was monitored using fluorescent-
labelled phalloidin to visualize polymerized Actin filaments. No discernable changes in the
morphology or cytoskeleton organization of the ARPE-19 cells due to HHS were observed
(Figure 1C). Collectively, hormetic heat did not alter the morphology of RPE cells, and the
short-term induction of HSF1 was followed by the long-lasting expression of HSP70.
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Figure 1. Hormetic heat shock induces heat shock response in ARPE-19 cells. ARPE-19 cells were
treated without HHS (−) or with 30 min HHS (+) at 42 ◦C, followed by recovery at 37 ◦C. (A) Cell
lysates were subjected to immunoblot analysis with HSF1 and HSP70, and Actin. The quantitative
analysis of protein level was corrected to Actin as a loading control. (B) mRNA expression of the
HSP70 gene evaluated with qPCR. mRNA levels for the HHS samples were normalized to non-HHS
applying the ∆∆CT method. (C) Immunofluorescence analysis was illustrated for HSF1 (yellow),
HSP70 (magenta), and Actin (green). Cells’ nuclei were counterstained with Hoechst (blue). C stands
for control (non-HHS). R shows the post-HHS time of recovery at 37 ◦C. Data are represented as
mean ± SEM (n = 3 for (A) and n= 6 for (B)) and statistical analysis was performed using one-way
ANOVA, followed by Bonferroni‘s multiple comparisons test (*** p < 0.001 vs. C, ˆˆˆ p < 0.001 vs. 12
and 24). Scale bar 20 µm.
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3.2. Hormetic Heat Shock Increase Autophagy Gene Expression by HSF1
Transcriptional Activation

Previous studies reveal that HHS may prevent age-related detrimental protein aggre-
gation [42,43]. Therefore, to analyze the effects of HHS on autophagy activity in ARPE-19
cells, a set of autophagy-associated genes involved in the different phases of the autophagic
flux, including nucleation (BECN1), elongation (ATG7, ATG5, LC3B, and SQSTM1), and
fusion (RAB7, LAMP2) were selected for analysis by qPCR (Figure 2A). Gene expression
data revealed two different profiles: early and late responding genes. The early response
genes, including ATG5, LC3B, SQSTM1, and RAB7, displayed a rapid and statistically
significant upregulation (p < 0.01, ATG5 and LC3B and p < 0.05, SQSTM1 and RAB7 vs.
non-HHS), showing the maximum mRNA level at the earliest (3 h) recovery time point and
gradually decreasing after longer recovery times. Instead, the late response genes BECN1
and LAMP2 demonstrated significant progressive increase (from p < 0.05 to p < 0.01 vs.
non-HHS) of their mRNA levels up to the 24 h recovery time point. The transcript level of
ATG7 did not vary in response to HHS.
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Figure 2. Hormetic heat response regulates the induction of autophagy-associated genes. (A) ARPE-
19 cells were treated without HHS (–) or with 30 min HHS (+) at 42 ◦C, followed by recovery at
37 ◦C. The expression level of transcripts involved in various stages of autophagy was analyzed
by qPCR. (B,C) ARPE-19 cells were transfected with the FLAG-HSF1 expression construct at 37 ◦C.
(B) Immunoblot analysis of FLAG, HSP70, and Actin for cells overexpressing HSF1 were illustrated
with representative images. (C) Transcript levels of genes involved in various steps of the autophagy
process in ARPE-19 cells under HSF1 gain-of-function were evaluated with qPCR. The dashed line
(—) stands for non-HHS (A) or mock-transfected controls (C). R represents the post-HHS time of
recovery at 37 ◦C. Data are reported as mean ± SEM (n = 6) and statistical analysis was achieved
using one-way ANOVA, followed by Sidak test (* p < 0.05, ** p < 0.01, *** p < 0.001).
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The benefits of hormesis have been shown to be mediated by the activation of HSR
regulated by HSF1 [44]. We further explored whether the gain-of-function of HSF1 can
transcriptionally upregulate the expression of autophagy-associated genes in RPE cells. In
this regard, ARPE-19 cells were transfected with a FLAG-tagged HSF1 expression construct
and demonstrated an observable increase in the expression of HSP70 (Figure 2B) as well
as a statistically significant increase in the HSP70 gene expression (Figure 2C), validating
the activation of HSF1. Moreover, the expression of genes including BECN1, ATG5, LC3B,
SQSTM1, and LAMP2 was significantly higher in cells overexpressing HSF1 than in cells
under basal (non-HHS) conditions (Figure 2C). These data demonstrated that increased
expression and transcriptional activity leads to upregulated expressions of autophagy
genes, including those involved in autophagosome formation and lysosome degradation.
Altogether, the transient HHS-induced activation of autophagy genes is caused by a time-
dependent activation of HSF1.

3.3. Hormetic Heat Shock Increases Autophagic Flux

As autophagy is a complex pathway with contributions from a myriad of proteins, the
expressions of LC3B and SQSTM1, two canonical autophagy proteins vital for autophago-
some formation in the elongation step and cargo recognition, were further monitored in
ARPE-19 cells exposed to HHS. The protein level of LC3B-II demonstrated a significant
increase at 12 h recovery time point compared with non-HHS (p < 0.01), albeit normalized
at 24 h recovery (Figure 3A). Subcellular distribution of both LC3B and SQSTM1 into a
punctate pattern is considered to validate the formation of autophagosomes. In agreement
with the immunoblot analysis, IF illustrated an increase in LC3B puncta at 12 h with a
decrease at 24 h post-HHS (Figure 3B). In addition, HHS significantly increased the SQSTM1
protein level (p < 0.001 vs. non-HHS), followed by a normalization to non-HHS levels at
24 h recovery (Figure 3A). A concomitant SQSTM1 puncta pattern was observed by IF
(Figure 3B).

The observed increase in LC3B-II protein level and LC3B puncta distribution could
result from enhanced autophagy induction or from inhibition of the autophagic flux [45].
To distinguish between these possibilities, Bafilomycin A1 was used to evaluate the im-
pact of HHS on ARPE-19 cells. Bafilomycin A1 is a V-ATPase inhibitor that inactivates
autophagosomal turnover and prevents acidification of the lysosome. Immunoblot analysis
demonstrated that Bafilomycin A1 did not affect the amount of HSP70 in ARPE-19 cells
(Figure 4). Instead, HHS induced a significant and similar expression of HSP70 at all recov-
ery times assessed (p < 0.001 vs. non-HHS), regardless of whether Baf was present or not.
These data validate that HSP70 overexpression is due to hormetic HSR and independent of
Baf treatment (non-significant vs. HHS/Baf; Figure 4).

Inhibition of lysosomal activity by Baf led to a significant accumulation of both LC3B-II
and SQSTM1 (p < 0.001 and p < 0.01 vs. non-HHS/non-Baf). In the presence of Baf, the
amount of LC3B-II demonstrated a significant HHS-induced increase at 12 h recovery
(p < 0.01 vs. non-HHS/Baf), in line with a significant HHS-induced elevation at 12 h
without Baf (p < 0.01 vs. non-HHS/non-Baf). However, no significant additional HHS-
induced accumulation of LC3B-II could be observed at 24 h. The HHS-induced increase
in SQSTM1 expression was significant at 12 and 24 h recovery (p < 0.001 and p < 0.01
vs. non-HHS/Baf). The HHS-induced additional accumulation of LC3B-II and SQSTM1
proteins in the presence of Bafilomycin (compared with Baf alone) demonstrates that HHS
enhances the autophagic flux in RPE cells.
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Figure 3. Hormetic heat shock increases expression of autophagosome-related proteins. ARPE-19
cells were treated without HHS (–) or with 30 min HHS (+) at 42 ◦C, followed by recovery at 37 ◦C.
(A) Immunoblot quantitative analysis of the LC3B-II and SQSTM1 levels was corrected to Actin as
a loading control. (B) Immunofluorescence analysis was shown for the puncta of LC3B (red) and
SQSTM1 (green). Cells’ nuclei counterstained blue with Hoechst. C stands for control (non-HHS). R
shows the post-HHS time of recovery at 37 ◦C. Data are represented as mean ± SEM (n = 3). Statistical
analysis was used by one-way ANOVA followed by Bonferroni‘s multiple comparisons (** p < 0.01
and *** p < 0.001 vs. C, ˆˆ p < 0.01 vs. 24). Scale bar = 20 µm.
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Figure 4. Hormetic heat shock induces autophagy. ARPE-19 cells were exposed initially for 6 h
to 50 nM Bafilomycin (Baf); then, cells were treated without HHS (–) or with 30 min HHS (+) at
42 ◦C, followed by recovery at 37 ◦C in the presence of Baf. Immunoblot analysis of HSP70, LC3B-II,
and SQSTM1 are illustrated with representative images. C stands for Non-HHS/Non-Baf and Non-
HHS/Baf treated cells. R shows the post-HHS time of recovery at 37 ◦C. The quantitative analysis
was corrected to Actin as a loading control and normalized to Non-HHS/Non-Baf as the control.
Data are represented as mean ± SEM (n = 3), followed by one-way ANOVA by Sidak test (** p < 0.01
and *** p < 0.001 vs. C, ˆˆ p < 0.01, and ˆˆˆ p < 0.001 vs. Baf).
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3.4. HHS-Induced Increase in Autophagic Flux Does Not Depend on HSP70

LC3B and SQSTM1 play significant roles in autophagic flux, and previous studies
have described the interactions between LC3B and SQSTM1 as well as between HSP70 and
SQSTM1 [45,46]. However, a putative interaction between HSP70 and LC3B as a result
of HHS has not been characterized. To elaborate on whether hormetic HSR mediates a
putative LC3B/HSP70 interaction or alters the LC3B/SQSTM1 complex, a possible role
for HSP70 in the regulation of autophagy was assessed by a co-immunoprecipitation
analysis (Figure 5). Protein complexes isolated by immunoprecipitation of LC3B did not
suggest an interaction with HSP70. Expectedly, an analysis of the co-immunoprecipitated
protein complex demonstrated a clear interaction between LC3B and SQSTM1. Relative
densitometry (RD) of complexed SQSTM1 demonstrated that exposure to HHS increased
its interaction with LC3B, particularly when compared with non-HHS/Baf. Together,
these data indicated that hormetic heat enhanced the autophagic flux through increased
interaction between LCB3 and SQSTM1 but in an HSP70-independent manner.
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Figure 5. LC3B associated interactome in the presence of HHS. ARPE-19 cells were exposed initially
for 6 h to 50 nM Bafilomycin (Baf); then, cells were treated without HHS (–) or with 30 min HHS (+)
at 42 ◦C, followed by recovery at 37 ◦C in the presence of Baf. Immunoprecipitation of the LC3B was
performed with LC3B antibody to identify interactions between LC3B/HPS70 and LC3B/SQSTM1
complex. The protein complex formation was normalized to the IgG as loading control. R shows
the post-HHS time of recovery at 37 ◦C. The complex interaction status was determined by relative
densitometry (RD) in percentage compared to either Non-HHS/Non-Baf or Non-HHS/Baf. The
immunoprecipitation was performed from a pool of six independent experiments.
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3.5. Hormetic Heat Shock Increases the Size of Autophagosomes and the Presentation of
SQSTM1-Associated Cargo to Lysosomes

The interaction of LC3B with SQSTM1 occurs mainly during the elongation phase of
autophagy and is associated with cargo presentation into the autophagosome [8]. Therefore,
to investigate whether the increased interaction of the LC3B/SQSTM1 complex in response
to HHS would affect the elongation step and lead to an increase in the size of autophago-
somes, the effect of hormetic heat shock on the LC3 puncta was evaluated using the tandem
RFP-GFP-LC3B construct (Figure 6). LC3B tagged with both pH-dependent GFP and
pH-independent RFP enabled differentiation of autophagosomes from autolysosomes; the
higher sensitivity of GFP to the acidic environment inside lysosomes leads to quenching of
the GFP signal upon fusion of autophagosome to lysosome during autolysosome formation.
Thus, autophagosomes are visualized as yellow puncta, while autolysosomes are visualized
as red puncta. Notably, the use of Baf prevents acidification of lysosomes and therefore
quenching of GFP, resulting in yellow LC3B puncta [47]. Fluorescence microscopy illus-
trated that exposure of ARPE-19 cells to Bafilomycin A1 had no observable effects on the
size of LC3B-positive structures (Figure 6A, non-HHS/Baf vs. non-HHS/non-Baf). Instead,
exposing the cells to HHS in the presence of Baf appeared to increase the size of LC3B
puncta at 12 and 24 h post-HHS (Figure 6A, HHS/Baf). To further elaborate on autophago-
some enlargement, the area of the LC3B-positive structures was measured (Figure 6B). The
quantitative analysis demonstrated that HHS/Baf treatment significantly increased the
area of individual LC3 puncta at 12 and 24 h (both p < 0.001 vs. non-HHS/non-Baf), while
Baf treatment alone did not affect the size of LC3B-positive structures.

The observed increase in the size of autophagosomes as a consequence of hormetic
heat suggested improved sequestration of cargo during autophagy. Since SQSTM1 is a
known carrier responsible for the presentation of multiple substrates to the autophago-
some for subsequent degradation in the autolysosome, we assessed whether hormetic heat
improves the presentation of SQSTM1 to the lysosome. Therefore, a pH-independent Lyso-
Tracker, which fluorescently labels all lysosomal compartments, was used to determine the
SQSTM1 puncta localization (Figure 7). IF displayed a discernible increase in the number
of yellow puncta, suggesting a population considered as SQSTM1 localized to lysosomal
compartments at 12 and 24 h post-HHS in cells exposed to HHS/Baf (Figure 7A). Accord-
ingly, the quantification analysis of lysosomal-SQSTM1 puncta confirmed a significant
increase of ~50% in the number of puncta in HHS-treated cells (p < 0.05 vs. non-HHS/Baf;
Figure 7B) both at 12 and 24 h. Collectively, these findings indicated that HHS increased
the size of autophagosomes and enhanced the presentation of SQSTM1-associated cargo
for the lysosome.
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Figure 6. Hormetic heat shock increases size of autophagosome. ARPE-19 cells were transfected with
RFP-GFP- LC3B construct for 16 h; then, were exposed initially for 6 h to 50 nM Bafilomycin (Baf).
Later, the cells were treated without HHS (–) or with 30 min HHS (+) at 42 ◦C, followed by recovery
at 37 ◦C in the presence of Baf. Non-HHS/Non-Baf were used as a control. (A) Immunofluorescence
analysis was illustrated for autophagosome puncta (yellow) and autolysosome (red). Nuclei was
counterstained with Hoechst (blue), and the arrowhead points to autophagosomes. (B) The area of
yellow puncta (scored autophagosome’s size) was analyzed per sample and quantitative analysis
was normalized to Non-HHS/Non-Baf, represented as a dashed line (—). R shows the post-HHS
time of recovery at 37 ◦C. Statistical analyses are shown as mean ± SEM (n= 60) followed by one-way
ANOVA by Sidak test (*** p < 0.001 vs. C). Scale bar = 20 µm.
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Figure 7. Hormetic heat shock enhances SQSTM1-associated cargo presentation to lysosome. ARPE-
19 cells were exposed initially for 6 h to 50 nM Bafilomycin (Baf); then, cells were treated without
HHS (–) or with 30 min HHS (+) at 42 ◦C, followed by recovery at 37 ◦C in the presence of Baf. Cells
were exposed to LysoTracker during the final 2 h treatment. (A) Colocalization of SQSTM1 (green)
with LysoTracker (red) was examined by IF. Cells’ nuclei were counterstained with Hoechst (blue).
(B) The number of yellow puncta (scored as colocalized SQSTM1-LysoTracker) was counted per
sample, and quantitative analysis was normalized to Non-HHS/Baf, represented as dashed line (—).
Data are shown as mean ± SEM (n = 60). Statistical analysis was performed using one-way ANOVA,
followed by Sidak test (* p < 0.05). Scale bar = 20 µm.
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4. Discussion

In this study, we demonstrated novel evidence that hormetic heat shock activates
autophagy in human RPE cells. HHS induces a short-term activation of HSF1 followed
by a long-term expression of HSP70, a canonical heat shock responder. Furthermore,
our study highlights that the activation of HSF1 by HHS mediates the expression of
several autophagy genes, resulting in enlarged autophagosomes and an enhancement in
the SQSTM1-mediated cargo presentation to the lysosomes, which does not depend on
HSP70 in line with our earlier report [48]. Based on these findings, our results indicate that
hormetic heat shock increases the induction of autophagic flux in RPE cells.

Several studies in retinal disease have been directed to apply a hormetic increase in
temperature to activate the HSR yet prevent cellular damage [23–25]. Accordingly, the
induction of HSPs in RPE cells after transpupillary laser irradiation [24–29] could lead to
therapeutical effects [24,25,30–32]. However, hormetic heat shock can affect and modulate
a multitude of mechanisms, e.g., a corresponding heat shock led to an upregulation of
nearly 1500 genes and downregulation of approximately 8000 genes in mouse embryonic
fibroblasts during the first hour of heat shock [49]. Thus, the molecular mechanisms
underlying the beneficial effects of HHS response may remain largely uncharacterized yet.

The conventional heat shock response is generated by a conserved signaling pathway
that regulates the activity of HSFs, such as HSF1, in which activation leads to the expression
of heat shock proteins acting as molecular chaperones [50–52]. Among the three major
protection mechanisms responsible for maintaining the cellular proteostasis (the heat shock
proteins, the UPS, and autophagy), the HSPs are the only class of proteins that has the
ability to refold and repair unfolded or misfolded proteins. Upon activation of HSFs,
phosphorylation and other post-translational modifications followed by the formation of
homotrimers of HSF1 are responsible for the heat shock response, leading to the increased
synthesis of HSPs [50,51]. This was confirmed in our study on ARPE-19 cells, as an early
response of HSF1 at 3 h post-HHS resulted in a significant increase in HSP70 mRNA and
HSF1 protein levels but both had returned to their non-HHS levels within 12 h, which is
probably due to the HSF1 autoregulation by HSPs [50]. On the contrary, the transcriptional
activation of HSP70 promoted a significant and long-term expression of HSP70 in RPE cells,
suggesting a long-lasting HHS impact on the translation of HSP70 and therefore elevated
capacity for maintenance and repair of proteins. Although our data shows no recovery
of HSP70 towards the basal level, the HSP70 protein level had started to decrease at 48 h
post-HHS (data not shown).

Recent data suggest that the role of HHS is not limited to the expression of HSP70
and other HSPs. Heat treatment has been shown to increase autophagy induction in C.
elegans, human malignant glioma cells, and rat hepatocytes [53–55]. An efficient autophagic
flux in RPE cells is required to allow for proper nutrient recycling and removal of protein
aggregates and dysfunctional organelles [2], and impaired autophagy has been associ-
ated with multiple neurodegenerative diseases [56], including AMD [33–35]. Since RPE
cells obtained from AMD donors show lower autophagic flux compared with RPE cells
from healthy controls [33–35], we considered whether moderate heating might activate
autophagy in human RPE cells, thereby possibly providing the means to a heat-controlled
waste clearance and improved proteostasis in RPE cells. We found that hormetic heat shock
and the overexpression of HSF1 significantly upregulates several key autophagy-associated
genes in ARPE-19 cells while none of the genes examined in this study was downregulated.
In line with a study on C. elegans, our findings clarify an HHS-mediated HSF-transcriptional
activation in ARPE-19 cells that upregulate a set of autophagy-associated genes [53]. In
addition, we found that the HHS-induced upregulation of the autophagy-associated genes
featured two different profiles, early and late responding genes. Among the early response
genes, there are genes involved in phagophore expansion and autophagosome formation
(ATG5, LC3B, and SQSTM1) as well as in the fusion step between autophagosome and lyso-
some (RAB7), while the two late responding genes found in the chosen set of seven genes
are involved in the early phase of autophagy induction, the nucleation phase of the isolation
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membrane (BECN1), and in the late phase of autophagy, the fusion of autophagosome and
lysosome (LAMP2).

Although the canonical heat shock response inducing the elevated production of heat
shock proteins has been studied extensively, the observation that autophagy might be
initiated by moderate heat shocks has emerged relatively recently, and much of the present
data on heat induction of autophagy-related genes comes from studies in C. elegans [53].
Many genes contain HSEs in their promoter region, which identifies them as HSF-regulated
target genes. Since HSFs are rapidly activated by heat shock, HSF1 is a potential initiator
candidate for the early responding genes. Previous to our study, among the mammalian
genes studied, only the SQSTM1 gene has been identified to contain an HSE in its promoter
region and be HSF1-upregulated (for a review of HSF1 target genes, see [57]). Here, we
identified five autophagy-associated genes, including SQSTM1, BECN1, ATG5, LC3B, and
LAMP2 to be upregulated in response to overexpression of HSF1, suggestive of HSF1-
mediated transcriptional activation of these genes in human retinal cells. A study in C.
elegans has identified over 40 autophagy-related genes contain at least one putative HSE,
including atg-7, bec-1, lgg-2, sqst-1, and vps-34 [53]. However, it has been suggested that
binding of HSF1 to an HSE does not show induction in all genes [58]. This could imply
that at least some of the HHS-induced autophagy-related genes might not be under direct
transcriptional control of HSF1, albeit HSF1-associated alternative epigenetic regulation
may be involved. Thus, much research is needed to understand the activation pathways
and the biological role of the heat-induced early and late responses of autophagy-associated
gene, as identified by us following a time-dependent activation of active HSF1 in human
RPE cells.

Consistent with the early induction of the SQSTM1 gene by HHS, we found a sig-
nificant increase in the SQSTM1 protein level at 3 and 12 h after HHS. In the cytosol,
SQSTM1 can bind to polyubiquitin chain-tagged proteins destined for destruction and
therefore spontaneously create SQSTM1 droplets that have gel-like properties. The SQSTM1
droplets can exchange their components with the environment and recruit core ATG pro-
teins necessary for autophagosome formation [59–61]. We hypothesized that the observed
HHS-induced increase in SQSTM1 and in other core proteins involved in phagophore
nucleation and elongation (BECN1, ATG5, and LC3B-II) would lead to the formation of
larger SQSTM1 droplets and consequently to larger autophagosomes. Indeed, this was
confirmed by our immunofluorescence analysis on autophagosome puncta, leading us to
conclude that hormetic heat shock may result in enhanced condensation of SQSTM1 cargo,
manifested as larger autophagosomes, and thus potentially lead to more effective waste
clearance by selective autophagy in human RPE cells.

The interaction between LC3B and SQSTM1 in selective autophagy as well as between
HSP70 and SQSTM1 in chaperone-assisted selective autophagy has been described [45,46].
Using HSP70 overexpressing cell lines and inhibiting HSF-1 expression with siRNA, Dok-
ladny et al. showed that high levels of HSP70 lead to low LC3-I and LC3-II levels in human
cancer cells [62]. This interaction was shown to be independent of HSF-1, suggesting
that HSP70 rather than HSF-1 may regulate the LC3 levels. Therefore, we investigated
using immunoprecipitation whether HSP70 and LC3B could form protein complexes as
response to HHS-mediated autophagy. An interaction between HSP70 and LC3B could not
be identified, indicating that the observed enlarged autophagosomes identified in ARPE-19
cells are SQSTM1-mediated yet HSP70-independent. This new evidence is in agreement
also with our previous findings, demonstrating that HSP70 is selectively involved in
proteasome-mediated clearance of protein aggregates rather than macroautophagy [48].

In yeast, autophagic activity is regulated by modulating both the number and the
size of autophagosomes [63]. Based on a study using nitrogen starvation or rapamycin
treatment, leading to elevated ATG8 level and enlarged autophagosomes, the researchers
of Klionsky lab concluded that ATG8, the yeast homolog of the human LC3B protein, is a
key protein in controlling the growth of phagophores and that enhanced amounts of ATG8
are necessary for larger autophagosomes [64]. Our result that HHS substantially raises the
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level of LC3B-II and enhances the size of autophagosomes is in line with the yeast data,
suggesting a parallel mechanism in mammalian cells during HHS response. In addition to
larger autophagosomes, we also observed an increase in the number of LC3B and SQSTM1
puncta in response to HHS. We also demonstrated that the SQSTM1 puncta colocalized with
lysosomes under bafilomycin treatment, a condition that blocks the lysosomal degradation
of autophagic cargos and allows for colocalization examinations. The SQSTM1-lysosome
colocalization suggests that the observed puncta most likely represent autophagosomes
instead of being random focal accumulations of SQSTM1.

The observed HHS-induced increase in the level of the key autophagy proteins LC3B-II
and SQSTM1 may be interpreted that heat either can boost the production of autophagy-
associated proteins and thus accelerate autophagic flux, or that heat inhibits autophagy
and therefore causes the accumulation of LC3B-II and SQSTM1. The first clue that HHS
improved autophagic flux in our experiments on ARPE-19 cells comes from the observation
that the heat-induced elevation of both LC3B-II and SQSTM1 proteins was almost com-
pletely removed at 24 h post-HHS, suggesting that autophagy is active after heat shock.
This conclusion is supported by the result that, under bafilomycin treatment, which inhibits
lysosomal cargo degradation and thus strongly increases the accumulation of LC3B-II
and SQSTM1, HHS was able to elevate still the levels of these proteins. Furthermore, the
observed HHS-induced increase in the expression of six out of the seven key autophagy-
associated genes is in line with our interpretation that HHS activates autophagy in human
ARPE-19 cells.

A lack of proper RPE cell lines hinders the development of in vitro AMD models.
The human RPE cell line ARPE-19 is widely used to study molecular mechanisms, but
ARPE-19 cells tend to lose the original phenotype of the RPE. hES and hiPS cells have been
differentiated into functional RPE cells and present alternatives for in vitro AMD models,
although such cultures require time consuming protocols. Currently, our study has been
limited to ARPE-19 cells, and further investigation in other RPE cells, including animal
models, would contribute to extending our findings in ophthalmic diseases.

5. Conclusions

Our study provides evidence that hormetic heat shock boosts the expression of several
fundamental autophagy-associated genes through activation of HSF1, transiently raises
the level of SQSTM1 and LC3B-II proteins crucial for autophagic cargo building and
autophagosome formation, and activates autophagy in human retinal pigment epithelial
cells (see graphical abstract). Our results suggest that HHS might provide improved cellular
waste clearance and proteostasis, which could be beneficial under cytotoxic conditions
and in age-related neurodegenerative diseases. As HHS transiently activates both the
HSP70 expression and selective autophagy in human RPE cells, transpupillary near-IR
laser heating of the RPE might provide a means to improving the cytoprotective capacity
of the RPE cells at the fundus of the eye. However, the therapeutic temperature window
for subthreshold heat shock is narrow and requires accurate temperature control of the
RPE during heating [26]. This may be achieved by the retinal temperature determination
method developed in the research group of Koskelainen [65–67], thereby counteracting the
progress of age-related macular degeneration.
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