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Abstract: Soft actuators (SAs) have been used in many compliant robotic structure and wearable
devices, due to their safe interaction with the wearers. Despite advances, the capability of current
SAs is limited by scalability, high hysteresis, and slow responses. In this paper, a new class of soft,
scalable, and high-aspect ratio fiber-reinforced hydraulic SAs is introduced. The new SA uses a
simple fabrication process of insertion where a hollow elastic rubber tube is directly inserted into
a constrained hollow coil, eliminating the need for the manual wrapping of an inextensible fiber
around a long elastic structure. To provide high adaptation to the user skin for wearable applications,
the new SAs are integrated into flexible fabrics to form a wearable fabric sleeve. To monitor the SA
elongation, a soft liquid metal-based fabric piezoresistive sensor is also developed. To capture the
nonlinear hysteresis of the SA, a novel asymmetric hysteresis model which only requires five model
parameters in its structure is developed and experimentally validated. The new SAs-driven wearable
robotic sleeve is scalable, highly flexible, and lightweight. It can also produce a large amount of force
of around 23 N per muscle at around 30% elongation, to provide useful assistance to the human upper
limbs. Experimental results show that the soft fabric sleeve can augment a user’s performance when
working against a load, evidenced by a significant reduction on the muscular effort, as monitored by
electromyogram (EMG) signals. The performance of the developed SAs, soft fabric sleeve, soft liquid
metal fabric sensor, and nonlinear hysteresis model reveal that they can effectively modulate the
level of assistance for the wearer. The new technologies obtained from this work can be potentially
implemented in emerging assistive applications, such as rehabilitation, defense, and industry.

Keywords: soft robotics; wearable devices; upper limb augmentation; soft sensors; soft actuators;
hysteresis modelling; fabric sleeve; liquid metal

1. Introduction

Over the past two decades, an increasing number of academic and industry groups
have dedicated themselves to their work on the development of upper limb exoskeletons
for rehabilitation and power augmentation applications [1,2]. Physically weak individuals
due to aged, injured, or handicapped situations have been identified as the primary
beneficiaries of this technology. The growth of exoskeleton technology has also been
prompted by an endeavor of the current healthcare system to benefit stroke victims, who
often experience the chronic impairment of upper limbs, with an optimum rehabilitation
therapy [3,4]. The individuals, who suffer from partial or full loss of motor function,
tend to lose their ability to perform basic activities of daily living (ADL), which causes
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their independence to be restricted and their quality of life to be significantly degraded.
Rehabilitation intervention can be helpful in these cases when it comes to helping them
regain various motor skills [1,2,5,6]. In fact, it has been proven that upper limb exercises that
are highly intensive and task-specific, such as active and repetitive movements, are the most
effective methods of therapy for stroke victims to restore their arm function [7]. Assistive
robots are able to provide this kind of training, allowing patients to semi-autonomously
practice their movements, thus facilitating the therapist’s job [8,9]. Several clinical studies
revealed the positive effects of robot-assisted rehabilitation, which are found to be at
least as effective as conventional intensive therapy [10–12]. Although rigid exoskeleton
systems are beneficial for applications requiring high force/torque transmission, or where
portability is not a necessity, such as in the case of on-site rehabilitation [13], their large
size, high weight and rigidity make this design archetype suboptimal for everyday use.
In addition, the lack of compliance with the wearer’s body poses safety concerns and can
cause discomfort during the human–machine interaction. The practical challenges faced
in translating lab-based rigid-bodied systems for real-world applications have driven the
research to a new design philosophy that sees the replacement of external rigid frames with
soft, clothing-like frames. The resulting soft-bodied exoskeletons display some significant
advantages, such as reduced weight, low profile, and increased comfort. These are key
requirements for assistive wearable robots that are designed to facilitate the functional
movement of the wearer during ADLs [14–16].

Nowadays, the most conventional approach to power soft exoskeletons is based
on tendon-driven actuators, which normally consist of an electrical motor and Bowden
cables [17–19]. Despite providing a lightweight and flexible solution, cable transmis-
sion systems introduce major disadvantages, such as the presence of non-linearities of
friction and backlash hysteresis that affect their control accuracy and reduce the energy
efficiency [20–23]. In recent years, the upswing in soft robotics has permeated into the
field of assistive wearable devices with the introduction of new soft actuation technolo-
gies [13,24–33]. Their inherent compliance, providing an opportunity to overcome the
safety concerns and ergonomic limitations that are typical of rigid-bodied robots. The most
common soft robotic actuators are flexible fluidic actuators (FFAs) [34–43], shape memory
materials (SMMs), and electroactive polymers (EAPs) [26,27,32,44]. Most FFAs are driven
by air pressure which is known as a pneumatic artificial muscle (PAM). Hydraulic actua-
tion is used when high force capability, low noise, and low nonlinearity are required [32].
The most established and commonly used PAMs are McKibben actuators, which consist
of an airtight internal bladder surrounded by a braided mesh shell made from flexible
yet inextensible threads. When the rubber tube is pressurised, the woven nature of the
sheath results in axial shortening and radial expansion of the actuator, converting input
pressure into mechanical work [45,46]. Other variations of PAMs have been developed,
such as pleated PAMs (PPAM) [28], vacuum-powered PAMs [47,48], and inverse PAMs
(IPAM) [25,49].

Major attractions of PAMs are the high-power to weight ratio and the direct connection
to the structure that they power, thus excluding the need for gearing, which is associated
with unwanted phenomena in the system, such as backlash and extra inertia [50,51].
However, there is a challenge to develop a fluid-driven artificial muscle that is lightweight,
high strain, and is long in length, with low hysteresis with physical structure, similar to
conventional cable mechanisms. For other types of actuations, the SMMs comprising of
alloys (SMAs), polymers (SMPs) and composites are capable of recovering a memorized
shape after a plastic deformation under external stimuli. The SMAs can produce high
force with specific power similar to human muscle [44]. The major limitations of current
SMM-based technologies are low efficiency, low strain, and low speed. EAPs are another
smart material of relevance to exoskeletons [44] which are a type of active polymers that
are able to undergo shape deformation when electric fields are applied [44]. The most
popular types of EAPs are dielectric elastomer actuators (DEAs) and ionic polymer-metal
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composites (IPMCs) actuators. However, manufacturing a big enough actuator with high
strain to produce a useful amount of power and force is challenging.

Nonlinear hysteresis in existing soft artificial muscles (SAMs) also poses many chal-
lenges to precisely control the system for optimal outcomes. The development of effective
hysteresis models to capture the nonlinearity of the SAMs has been an active research area
in recent decades, ranging from wearable assistive devices to surgical robots [22,24,51,52].
Many studies have attempted to develop effective hysteresis models using discrete ap-
proaches such as Preisach, Maxwell–Slip, and Prandtl–Ishlinskii (P-I) models. However,
their accuracy closely depends on the selection of a number of hysteresis elements, which
requires a complex identification process, and significant computational time [50,51]. In
contrast to the discrete approaches, continuous models, such as the Bouc–Wen model
or its variants, are potential candidates to describe the dynamic hysteresis of nonlinear
systems, with less complexity and ease of control implementation [53]. These models
capture the hysteresis curves by using continuous state variables and shape parameters of
the hysteresis loops. Despite advances, there is a trade-off between the number of model
variables and their accuracy [50,51].

Though still at an early stage, the successful integration of soft actuation and sensing
technologies in wearable assistive devices is seeing increasing endorsement. However, ma-
jor limitations, such as low strain or low force, have hampered their widespread adoption,
leaving room for further improvement. Previously, we have developed a simple version
of the soft robotic sleeve that could provide useful support to the wearer [54]. However,
we have not completely described full characterizations for the soft muscles, such as the
effect of outer constrained coil on the hysteresis profile, the nonlinear hysteresis model
with a small number of model parameters, the degree of hysteresis, and the use of soft
fabric sensors for monitoring muscle strain or elongation. In this paper, we re-introduce a
new class of soft artificial actuators that are lightweight, highly compliant, scalable, and
with a high aspect ratio (length/diameter > 300). Unlike traditional McKibben actuators,
the flexibility and scalability of the developed soft artificial actuators introduced in this
paper allow for the organization into larger structures, such as the sheet-like configurations
of braiding or weaving yarn used in conventional apparel engineering. In this way, highly
distributed forces can be produced, while maintaining high conformability to complex skin
surfaces via a flexible fabric interface. These features make this new actuator exceptionally
suitable for use in wearable devices that can be worn as human clothing. In addition, we
also developed a new liquid metal-based soft fabric skin sensor that can precisely detect
the muscle strain for feedback control purposes, or for monitoring gait posture.

To predict the hysteresis nonlinearity between the input driving source and the soft
actuator (SA) elongation, we also designed and experimentally validated a new asymmet-
ric hysteresis model, which has fewer model parameters in its structure compared to a
conventional Bouc–Wen model [53], while offering great accuracy to capture the complex
hysteresis loop. To this end, we aimed to realize a wearable upper limb fabric suit with
an integrated soft sensor that assisted elbow flexion and extension movements, as well as
maintaining posture with no additional metallic energy. The developed wearable robotic
sleeve could be potentially used to support the user in activities of daily living (ADLs)
or augment lifting and carrying ability in the workplace. The further development of
such an exoskeleton could also find applications in rehabilitation by extending the therapy
of hemiparetic upper limbs outside the clinical setting and into the patient’s home, with
benefits to the cost and accessibility of care.

2. Materials and Methods
2.1. Overview of the Soft Actuator and Soft Fabric Sleeve

The new robotic fabric sleeve consists of a fabric shoulder, a fabric elbow sleeve, a
fabric wrist support, miniature SAs, a soft liquid metal (LM)-based skin fabric sensor,
and an actuation stage (DC motors, miniature syringes, and linear ball screws). Details
are shown in Figure 1. The soft fabric sleeve is devoted to transferring the axial tension
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force from the SAs to torque applied to the limb joint, and thus assist with upper limb
motion. Within the soft fabric sleeve, there is an array of SAs, which are arranged in
parallel and connected to miniature syringes via fluid transmission tubes. According to
different required loads, there will be a double or an array of miniature SAs that can be
woven to form a sheet-like soft artificial actuator. To drive the SAs, a linear DC motor
which is externally located will control the axial displacement of a miniature hydraulic
syringe. The hydraulic element can be water or hydraulic oil. To monitor the actuator
strain for bending motion feedback, a soft piezoresistive sensor made from a soft silicone
microtube and LM eutectic gallium indium (EGaIn), which is sandwiched in between two
stretchable fabric layers, was used. For the fabric sleeve design, the SAs are held together
and lined up using 3D-printed locks, which function as anchor points. The upper lock
and middle lock are positioned on the proximal side of the elbow joint, while the lower
lock sits on the distal side. To achieve high elongation or contraction force, each SA can
be routed inside a flexible yet inextensible tube acting as a guided sheath where the SA
slides freely during the operation. The flexible guided sheaths are fixed onto the upper
limb, and therefore their shape configuration is unchanged during the operation. The SA
can extend or contract under the applied hydraulic pressure, where the contraction force
is higher than the extension force. Detailed operating principles of the SA will be given
in the next section. In our design, the resulting tensile force generated by the SA under a
reduced fluid pressure pulls the distal anchor point closer to the arm, where it generates a
bending moment around the elbow joint to achieve the limb flexion. The elbow extension,
in contrast, is obtained by lengthening the SAs with an increase in fluid pressure.

In contrast to conventional fiber-reinforced SAMs, developed SA is a type of long
artificial muscle (length is up to few meters, diameter ranges from 0.8 mm to 7 mm) that
can be fabricated by the insertion method. This avoids non-uniform distribution of the fiber
along its inner silicone tube. Although we previously introduced the fabrication process
of this type of SA [33,55], there are several different steps for creating the SA in this work
(Figure 2). Firstly, we assembled the guided tube between the hydraulic pressure source
(syringe) and the inner rubber tube of the SA by inserting a blunt metal needle into one end
of the guided tube (which will be connected to the hydraulic syringe) and a short metal
tube into its other end (which will be directly inserted into the hollow channel of the inner
rubber tube). To stabilize the connections under high hydraulic pressure, we fastened both
sides with super glue and fishing line. Secondly, we inserted the rubber tube inside the
channel of the constrained helical coil with excess length on both sides. We then inserted
the guide tube with short metal tube to one end of the SA, followed by a tight fastening
using super glue and fishing line to form a strong connection. Thirdly, we filled the guide
tube and muscle with distilled water to ensure that there are no air bubbles present in the
fluid channel. The free end of the SA was then closed by making a tight knot with the
excess rubber tube before being tightly fastened to the external helical coil using super
glue and fishing line. Finally, rigid 3D-printed parts were used to lock the junctions at both
sides of the muscle to increase the device’s durability against high pressure.



Sensors 2021, 21, 7638 5 of 24

Figure 1. Soft wearable fabric sleeve for upper limb assistance. (A) Conceptual design with integrated components,
including soft liquid metal-based skin sensor, soft artificial actuators and their guide tube, elbow support, wrist support, and
shoulder support. It is noted that each muscle is connected to a miniature syringe, and the array of these muscles is driven
by a single Zaber DC motor. (B) Fabrication process for the high aspect ratio soft actuator and its prototype (length/outer
diameter = 1000 mm/3.15 mm ~317).
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Figure 2. The soft actuator (SA). (A) Its working principle when it slides inside a hollow channel and pressure P distribution.
(B) Lifting performance of SA1 (see Table 1, weight of 50 g, outer diameter of 6.35 mm, length of 200 mm), without a flexible
outer channel against a load of 2 kg (left panel) and the relation between the elongation and generated contraction force
(right panel).

Although the SA can transmit force and motion from a distance which is similar to that
of conventional flexible cable mechanisms [56,57], it avoids high energy loss between the
driving source and the soft actuator due to the use of hydraulic liquid as the transmission
element. The SA generates motion via the local extension of individual actuation segment,
where the outer helical coil restrains the radial expansion of the inner latex rubber tube,
resulting in exclusively axial elongation of the SA under applied hydraulic pressure. The
SA generates a contraction force Fcon, by reversing this motion if there is a reduction in
hydraulic pressure. Specifically, it stores elastic energy (EE) by extending to a certain
length under a high pressure, and it then releases this EE to pull load when this pressure
is reduced (Figure 2). Depending on the specific application, the generated force highly
relies on the choice of SA materials, its diameter, and the elongated length. Mathematically,
the inner rubber tube will be lengthened from initial length c = c0 to a length cp with a
displacement ∆c = cp − c0, when a hydraulic pressure P is supplied to its channel. During
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the elongation, it accumulates EE, and when the pressure P is reduced, it discharges this
EE to generate a contraction force Fcon. The higher the applied pressure P, the greater the
elongation of ∆c, thus generating a higher contraction force Ftotal = Fcon + Fcoil − Fp against
a load. It is noted that Fcoil = k∆c is the contraction force of the outer coil, where k is the coil
stiffness coefficient. Fcon = EA∆c

(∆c+c0)
is the elastic force of the inner tube, and Fp = 0.25πD2

i P
is the driving force generated by fluid pressure P, where E is the Young’s modulus of the
inner silicone tube, A = 0.25π

(
D2

t − D2
i
)

is the cross-sectional area of the inner silicone
tube once it is inserted into the helical coil, Dt is the inner diameter of helical coil, Di is the
inner diameter of the silicone tube.

Table 1. Physical properties of the SAs used in experiments.

Prototypes Inner Rubber Tube Outer Helical Coil

SA1

Manufacturer: Latex rubber tube (McMaster-Carr
Supply Co., Elmhurst, IL, USA)

OD: 6.35 mm
ID: 3.175 mm

Durometer: 40A

Manufacturer: Spring-Tempered Steel
(McMaster-Carr Supply Co., Elmhurst, IL, USA)

OD: 6.35 mm
ID: 5.18 mm

Length: 200 mm

SA2

Manufacturer: Latex rubber tube (McMaster-Carr
Supply Co., Elmhurst, IL, USA)

OD: 3.18 mm
ID: 1.59 mm

Durometer: 40A

Manufacturer: Spring-Tempered Steel
(McMaster-Carr Supply Co., Elmhurst, IL, USA)

OD: 3.18 mm
ID: 2.51 mm

Length: 20 mm

It is noted that each SA has an upper elongation limit ∆c,max corresponding to maxi-
mum pressure Pmax to avoid failure during the operation. To mitigate the initial nonlinear
dead-zone of the SA, we use a soft rubber tube with a diameter Dot, which is larger than
that of the inner helical coil diameter Dt (Figure 1). The main reason is that the inner tube
normally undergoes an initial radial expansion, until it fits tightly into the inner channel
of the helical coil, meaning that an increase in input pressure or volume to the inner rub-
ber tube will result in no change in the axial elongation of the muscle. Overcoming this
problem will result in the simpler motion control of SA operation. In addition, an initial
pre-tension can be applied to the inner rubber tube at the time that it is inserted inside the
helical coil, which will significantly increase the contraction force, and reduce the nonlinear
hysteresis in a trade-off of high fluid pressure and lower elongation. In order to use the
above analytical model, several assumptions are needed. These include: (i) a small inertial
force of the fluid; (ii) uniform distribution of the pressure within the fluid channel; (iii) no
radial expansion of the inner tube or relative sliding motion between the helical coil and the
inner rubber tube; (iv) a Poisson’s ratio for the inner rubber tube of 0.5. This means that the
inner rubber tube has a constant material volume during the operation. It is also obvious
that the maximum output force generated by the SA can be determined by the stiffness k of
the outer coil, the muscle elongation ∆c, the material Young’s modulus E (which highly
depends on the initial pretension applied to the inner tube when it is inserted into the
helical coil), and the size of the inner silicone tube A. In addition, the developed SAs have
one additional component of generated force (Fcoil) from the outer helical coil, which is an
advantage compared to other artificial muscles with similar structures.

2.2. Soft Actuator Characterization

A dedicated experimental setup (Figure 3A) was established to investigate the nonlin-
ear hysteresis in the SAs. We applied different input signals to the system to characterize
the relationships between the syringe plunger displacement and the SA elongation. The
experimental setup consisted of an automated single axis linear stage (Zaber Technologies
Inc., Vancouver, BC, Canada) and two optical encoders (US DIGITAL, Vancouver, WA,
USA) (Figure 3A). The working fluid (water) was provided via a BD Luer LokTM (3 mL
syringe is used for the SA1, and a 0.5 mL syringe is used for the SA2; see Table 1 for
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detailed specification of the SAs). The barrel of the syringes was clamped on the top of the
actuator, while the syringe plunger is positioned on a 3D-printed holder connected to the
ball screw mechanism (MISUMI, Tokyo, Japan), to provide the input displacement. A first
optical encoder (Omron, Chicago, IL, USA) was employed to record the displacement of
the syringe plunger. A fluid transmission tube (Cole-Parmer, Sydney, Australia) was used
to connect the syringe and the SA. One end of the SA was fixed onto a 3D-printed base,
and the other end sat on a low-friction linear guide (MISUMI, Tokyo, Japan) that ensured
longitudinal displacement without any twisting of the muscle. Output displacement of the
actuator was recorded by a second optical encoder, while output force was recorded by a
force sensor (Mark 10 Series 5, Copiague, NY, USA). The data were decoded and processed
using a data acquisition device (QPIDe Data Acquisition Device, Markham, Canada) and
MATLAB Simulink (Mathworks Inc., Natick, MA, USA). As discussed in the previous
section, the performance of the SA, in terms of hysteresis and generated force, depends on
the dimension selection of the inner silicone tube and the helical coil, their materials, and
input pressure threshold. Therefore, we fabricated two different prototypes for the SAs
(see Table 1). It is noted that the length of the soft actuator does not significantly affect its
hysteresis profile and generated force, due to the uniform extension of the SA elements
along its axial direction. To reduce the fabrication time, we used different lengths for the
two prototypes, where SA1 (Table 1) will be used for both experimental validation and the
soft robotic sleeve (see next sections).

It has been reported that the typical frequency that can provide useful assistance to
the upper limbs for most wearable devices is less than 2 Hz [58]. Therefore, we applied
different input signals to the syringe plunger via the linear DC motor, which include a
1 Hz sine wave input (Figure 3(Bi)), two pairings of sine waves (combined frequencies of
1 Hz and 1.7 Hz, Figure 3(Bii)), and two pairings of sine waves (combined frequencies of
2 Hz and 2.7 Hz, Figure 3(Biii)). The amplitude of each signal was scaled to produce 0 to
30% of the SA elongation. Experimental results from Figure 3B show that input syringe
displacement has an approximate linear relationship with the SA1 elongation. It can be
explained by using a strong helical coil, which has a high elastic energy to release once
the pressure is reduced. In addition, the inner silicone tube was pre-stretched during the
fabrication process, and this contributes to increasing the elastic energy while reducing
the nonlinear elastic deformation of the tube. Therefore, the nonlinear hysteresis of SA1
is minimal. However, this reduction has a trade-off in that high hydraulic pressure and
applied force are needed to drive the syringe plunger. We also conducted experiments for
SA2. Figure 4 shows the time history of the applied input displacement from the syringe
plunger (0.5 mL syringe) and the output displacement of SA2. We applied different input
signals to the syringe plunger via the linear DC motor, which include 1 Hz sine wave
input (Figure 4i); two pairings of sine waves (combined frequency of 1 Hz and 1.5 Hz,
Figure 4ii); and two pairings of sine waves (combined frequencies of 1 Hz and 1.73 Hz,
Figure 4iii). During the fabrication process for SA2, we avoided applying high pre-tension
to the inner tube. The hysteresis characteristic results from Figure 4 revealed that SA2
exhibits a nonlinear hysteresis profile compared to that of SA1 (Figure 3B). This is due to
the use of a smaller size for SA2, where the stiffness of the outer coil is smaller compared to
that of SA1. In addition, the high deformation of the inner rubber tube under the applied
hydraulic pressure resulted in a highly nonlinear hysteresis profile for SA2. However,
this type of SA requires a lower pressure to operate, and thus a smaller force to drive the
syringe plunger. In practice, one could increase the number of participating SA2s to meet a
specific force requirement.
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Figure 3. Experimental results for the soft actuator (SA1). (A) Experimental setup. (B) Different input signals applied to the
syringe plunger. They include 1 Hz sine wave input (i); two pairings of sine waves (combined frequency of 1 Hz and 1.7 Hz)
(ii); and two pairings of sine waves (combined frequencies of 2 Hz and 2.7 Hz (iii)) with amplitudes scaled to produce 0 to
30% elongation. (Left panel) time history of the input and output displacement. (Right panel) input displacement versus
output displacement (or the SA1 elongation).

To illustrate the capability of the SAs, we also perform a lifting test whilst recording
force measurement with respect to actuator elongation. For the muscle elongation versus
tensile force (Figure 2B) experiment, we rigidly fixed one end of the SA1, while its other
end is connected to a linear guide via a force gauge (Mark 10 Series 5, Copiague, NY,
USA). Before the experiment, we elongated the SA1 to reach around 35% of its initial
length. During the experiment, we varied the applied pressure from the syringe to induce
contracted force from the SA. The left panel of Figure 2B shows SA1 (weighing 50 g)
carrying a 2 kg load. When the muscle was depressurized, it had an initial length c = c0.
When the muscle was pressurized, it expanded axially to cp = ∆c + c0, with no radial
expansion, due to the constraint of the outer helical coil. The motion was produced while
elastic energy was stored in both the stretched inner tube and the coil. When SA1 was
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depressurized from the pressurized state, it shortened towards its free length (e.g., from cp
to c) using the elastic stored energy to pull against the external load. The right panel of
Figure 2B shows that there is a linear relation between the SA elongation and output force.

Figure 4. Experimental results for the soft actuator (SA2). Different input signals applied to the syringe plunger. They
include 1 Hz sine wave input (i); two pairings of sine waves (combined frequency of 1 Hz and 1.5 Hz, (ii)); and two
pairings of sine waves (combined frequencies of 1 Hz and 1.73 Hz, (iii)). (Left panel) Time history of the input and output
displacement. (Right panel) input displacement of the syringe plunger versus the SA2 elongation.

2.3. New, Nonlinear Hysteresis Model for a Soft Actuator

Although SA1 exhibits a low hysteresis profile or an approximately linear relation
between the input displacement of the syringe plunger and the actuator elongation, a
high-pressure source (~3 MPa) is needed to drive the system, and thus a strong linear
system is required to generate a high linear force to drive the 3 mL syringe. For some
application where the requirement of light weight driving source for wearable purposes is
highly desirable, the use of smaller SAs is highly recommended. To fulfil the art for the
real-time implementation of the SA at any desired length and scale, we here develop a new
nonlinear hysteresis model that can capture the hysteresis profile of the smaller SAs, such
as SA2. The new hysteresis model can be used for future compensation control purpose of
SA, such as a model-based feedforward control scheme, or nonlinear adaptive control in the
case where real-time position feedback is available. The experimental results from Figure 4
show that the nonlinearities between the input displacement of the syringe plunger and
the output motion (the elongation of the SA) follow an asymmetric hysteresis profile.
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In this work, we introduce a simple yet effective asymmetric hysteresis model to
precisely capture the hysteresis loop of the SA2. Although other discrete models such
as Preisach and Prandtl–Inshlinskii [51] can be potentially used to capture the hysteresis
profile for nonlinear systems, such as the tendon sheath mechanisms [20–23], their accuracy
mainly relies on the use of a high number of hysteresis elements, which requires a large
number of model parameters to be identified. Other continuous models, such as the sym-
metric Bouc–Wen [59–61], are not suitable for the SAs, as it can only capture the symmetric
profile of the hysteresis where at least seven model parameters must be identified. Like the
symmetric Bouc–Wen model [59–61], the generalized asymmetric Bouc–Wen model [62]
can capture the asymmetric hysteresis profile of nonlinear systems well. However, it still
requires ten model parameters in its structure, and this results in more computational time
and a complicated control process if a feedforward control algorithm is used. Although
we recently introduced an asymmetric hysteresis model that can capture the hysteresis
loop of miniature hydraulic muscle [24], this model requires seven model parameters in its
structure. To overcome these challenges, we here develop a new asymmetric hysteresis
model in the form of differential equations that require only five model parameters in its
structure, while precisely capturing the hysteresis profile of SA2. This new asymmetric
hysteresis model is expressed by:{
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where βi (i = 1 to 4), δ are model parameters that control the shape and size of the hys-
teresis loop; ps is the input displacement of the syringe plunger; ∆c is the elongation
of SA; the dot at the top of each variable represents the first derivative with respect to
time. The hyperbolic tangent which is used to adjust the smoothness of the hysteresis
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To capture the asymmetric hysteresis profile of the SA, a set of five model param-
eters βi (i = 1 to 4) and δ given by Equations (1) and (2) is identified. These parame-
ters are optimized by minimizing the mean square error (MSE) between the proposed
model and experimental data via a genetic algorithm (GA). This results in β1 = 1.2936,
β2 = 1.8577, β3 = −62.1064, β4 = 31.4916, δ = 29.9878.

The predicted hysteresis curves are given in Figure 5. As shown in this figure, the
hysteresis profiles (for single frequency and dual frequencies, Figure 4) are asymmetric in
forward and backward direction. The MSEs for the developed model given by Equations (1)
and (2) and the symmetric Bouc–Wen model given by [59–61] for a single sine wave signal
of 1 Hz (Figure 5A,B) are 0.0164 and 0.4557, respectively. Unlike the symmetric Bouc–Wen
model, the developed model requires only five model parameters and could much more
accurately fit the asymmetric hysteresis profile of SA2. To demonstrate the capability of
the developed model, we also performed non-periodic motions (combined sine waves of
1 Hz and 1.5 Hz). Results from Figure 5C,D show that our developed model has a smaller
value of MSE = 0.0457 compared to MSE = 0.6252 of the symmetric Bouc–Wen model.
These results confirm that our developed model given by Equations (1) and (2) captures
the hysteresis profile of the SA2 under various inputs well.
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Figure 5. Comparison between the hysteresis models and experimental data using 1 Hz sine wave input signal (A,B) and
combined frequency of 1 Hz and 1.5 Hz (C,D). (A,C) The symmetric Bouc–Wen model. (B,D) The developed asymmetric
hysteresis model given by Equations (1) and (2).
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2.4. Fabrication of SA-Based Robotic Sleeve with Its Elbow Kinematics and Kinetics

We fabricated a prototype of a soft fabric robotic sleeve to augment upper limb
performance (left panel of Figure 6). As an illustration, we used SA1 (see Table 1) as the
main actuation source to drive the soft robotic sleeve. First, we attached the soft fabric sleeve
into commercial fabric shoulder and the elbow brace (Amazon, Sydney, Australia) using a
sewing machine (FS155, Brother Bridgewater, NJ, USA) to form a contiguous garment.

Figure 6. The soft robotic fabric sleeve attached to the elbow (left) and its kinematics (right).

The fabric shoulder supported fully encircles the user’s chest to resist the slipping
of the fabric frame when tensioned. For a similar purpose, the distal component was
routed around the thumb and first finger of the wearer. This was created by removing
the aluminum support from a commercial wrist orthosis (Amazon, Sydney, Australia).
Moreover, 3D-printed locks were used to secure the SA1s to the fabric sleeve. The upper
and middle locks were attached to the arm using Velcro straps (Bunnings, Perth, Australia),
while the lower lock was sewn into the non-stretchable fabric of the distal component to
prevent unpredictable and undesirable deformation caused by the tensile forces applied
by the muscles. To avoid the misalignment of the 3D-printed locks and unwanted forces
or moments acting on the arm, a fabric pattern was embedded into the elbow sleeve to
indicate the correct positioning of the locks. This design enabled a quick and simple
replacement of the SA by opening the locks. A soft liquid metal-based strain fabric sensor
(see next section) was attached along and onto the surface of the soft actuators, with its
ends attached to the Velcro straps.

We also developed a simple kinematic and kinetic model, with illustrated parameters
for the elbow (see the right panel of Figure 6). Briefly, when the elbow joint was fully
extended, the elbow angle α is assumed to be zero, where α = 1800 − α1 − α2 − α3 and
α2 changed in accordance with the elbow joint, while angles α1 and α3 stayed unchanged
for the predetermined values of the lower and upper arm lengths (l and u) and the corre-
sponding offset from the underlying bone (lo f f and uo f f ). The elbow kinematic and kinetic
model can be expressed by:  α1 = tan−1

( lo f f
l

)
α3 = tan−1

( uo f f
u

) (3)

a =
√

l2
o f f + l2, b =

√
u2

o f f + u2, (4){
c2 = a2 + b2 − 2ab cos α2

α2 = cos−1
(

a2+b2−c2

2ab

) (5)

M = aFt = ab
F
c

sin α2 (6)
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Using the measured analogue signal from the soft fabric sensor (see next section), we
can obtain the SA length c from which α = 1800 − α1 − α2 − α3 can be computed using
the cosine law given by Equations (3)–(5). The torque M contributed by the soft upper
limb support can be calculated from the perpendicular component of the muscle tension
F = nFtotal with respect to segment a (forearm) (see Equation (6)), where n is the number of
SA1 units used in the robotic sleeve, and Ftotal is the generated force of each SA1. It is noted
that this model can be used in the future precision control of the wearable fabric sleeve.

2.5. Liquid Metal-Based Soft Fabric Sensor for Bending Motion Detection

To detect the bending motion of the elbow joint, a soft liquid metal-based fabric
strain sensor was developed (Figure 7). The new sensor was designed in a way that it
could be directly integrated into the soft robotic sleeve. The new sensor was comprised of
elastic fabric substrates and liquid metal-filled soft microtubules. The microtubules were
fabricated by a roll-coating method with liquid silicone elastomers. Briefly, the platinum-
cured soft elastomer (Smooth-On, Inc., Macungie, PA, USA) was mixed with a weight
ratio of 1:1 (part A: part B) and laminated onto a metal plate by a thin-film applicator
(Zehntner GmbH Testing Instruments, Sissach, Switzerland) to approximately 750 µm
in thickness. A carbon fiber rod (Composite Store Inc., Tehachapi, CA, USA) was then
rolled on the uncured silicone surface using a hand drill, and subsequently heated over
a hot plate. The silicone quickly cured under the high temperature, forming thin-walled
microtubules that can be safely peeled off the carbon fiber rod. Different rod diameters
could be used to control the inner diameter of the microtubules. The wall thickness and
therefore the outer diameter of the microtubules were also adjusted by varying the number
of rolling layers. In this work, the microtubules were fabricated with an ID of 450 µm, an
OD of 750 µm, and a length of 250 mm. Once the soft microtubule was created, it was
then filled with EGaIn liquid metal (Sigma Aldrich, Sydney, Australia) by a miniature
syringe (BD MEDICAL SYRINGE, Franklin Lakes, NJ, USA) and a 25 G blunt needle
(Element14, Sydney, Australia), and sealed at both ends by electrodes made from 40 AWG
wires (Element14, Sydney, Australia) using superglue (Super Glue, Ontario, CA, USA).
The EGaIn-filled microtubule was then arranged into a serpentine shape with 3 loops on
a stretchable fabric (black color in Figure 7) and secured at both ends with Velcro strips
and silicone glue. Two more pieces of non-stretchable fabrics (white color in Figure 7) were
sewn to both ends of the stretchable fabric substrate, enabling the middle section to be the
only part that experiences strain during the movement of the arm. Figure 7 describes, in
detail, the design of the fabric strain sensor.

The fabric strain sensor works as a piezoresistive sensor, where its length change
corresponds to the change of its resistance defined by R = ρ L

A , where the liquid metal
resistivity ρ = 2.9 × 10−6 Ωcm, A is its cross-sectional area, and L is its length. Upon the
elongation of the muscles, the fabric strain sensor also increases in its length, from L to L*,
and decreases in its cross-sectional area, from A = πr2 to A∗ = π(r∗)2, where r, r∗ are the
radius of the liquid metal channel of the sensor. This deformation results in a change in the
sensor resistance, from R to R∗ = ρ L∗

A∗ , as depicted in Figure 7.
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Figure 7. The fabrication process and prototype of the liquid metal-based soft fabric sensor.

2.6. Characterisation of Soft Liquid Metal-Based Fabric Sensor

The fabric strain sensor was first characterized in a separate experiment, with a setup
depicted in Figure 8A. The inset image of Figure 8A describes the schematic of the readout
circuit that was used to acquire sensor readings. Using this experimental setup, the fabric
strain sensor was subjected to elongation (loading) and retraction (unloading) cycles at
0.2 Hz by an automated linear stage (Zaber Technologies Inc., Vancouver, BC, Canada).
The relationship between normalized changes in the resistance, ∆R/R, of the sensor and
its strain was collected and displayed in Figure 8B. In order to characterize the hysteresis in
the sensor response, the degree of hysteresis (DH) is quantified by the following equation:

DH =
Aloading − Aunloading

Aloading
100% (7)

where Aloading and Aunloading are the areas of resistance loading and unloading curves,
respectively, or the areas under the loading and unloading curves of the resistance change-
strain relationship (see Figure 8D).
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Figure 8. Characterization of the soft fabric sensor. (A) Experimental setup for characterization of the fabric sensor.
(B) Change in resistance versus strain. (C) Frequency response. (D) Degree of hysteresis (DH) calculation.

According to Equation (7), the lower DH value indicates less hysteresis in the sensor
response, and therefore, more precise strain-resistance relationship. The DH value of the
fabric strain sensor fabricated in this paper was calculated as 0.8%, which indicates a low
hysteresis response. In addition, the strain-resistance relationship of the fabric sensor can
also be seen to be highly linear, demonstrating a linear regression with R2 = 0.9982. This
result indicates that a simple calibration and readout method is possible to obtain the strain
values, and subsequently bending angles, directly from the sensor’s resistance changes. It
is noted that the bending angle α is estimated based on the strain c (or elongation) of the
muscle. Detailed calculation is shown in Equation (3) to Equation (6) and Figure 6. The
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strain or elongation c is directly estimated based on the resistance change (see Figure 8B,
where the relation between the resistance change and strain is almost linear). The fabric
strain sensor was also put through a frequency response experiment, with loading stimuli
of at least 10 Hz and three repetitions for each frequency. It is noted that the sensor could
operate at higher frequencies. However, the soft wearable device used here operated at
frequencies which were less than 5 Hz, and therefore we only tested within this range up
to 10 Hz. The results demonstrated in Figure 8C show that the sensor can work well with
stimuli of at least 10 Hz, with minimal attenuation in the signal readings, and therefore it is
compatible with the support robotic sleeve.

2.7. Characterization of the Soft Robotic Fabric Sleeve for Upper Limb Augmentation

We also carried out experiments to validate the soft robotic sleeve to augment upper
limb performance. This experiment aimed at demonstrating that the developed system is
stable and could provide necessary assistance to the upper limb. Subjects were provided all
written informed consents prior to the experiment, and the procedures were approved by
the Institutional Review Board, University of New South Wales. It is noted that this device
can be worn as a conventional sleeve, where the shoulder and elbow supports are formed
into a continuous garment with the soft fabric sleeve using a sewing machine. To prevent
the fabric frame from slipping under high tension, the shoulder support fully covered
the wearer’s chest, while the wrist support also wrapped around the user’s wrist, thumb
and first finger. We used electromyogram (EMG) electrodes (ADInstruments, Dunedin,
New Zealand), which were attached below the soft upper limb sleeve to monitor the EMG
signals. Two conditions were applied during the experiments: (i) the wearers without
holding any load started with a pose of 90◦ arm flexion. The wearers then extended to
0◦ and flexed back to 90◦; (ii) the wearer carried a 1.8 kg weight with a pose of 90◦ arm
flexion. Then, the wearer extended to 0◦ and flexed back 90◦. Each moving cycle was
repeated 6 times. Three conditions were tested: (1) the users wore the soft robotic sleeve
without actuating the SA through the whole movement (denoted as SA w/out act); (2) the
wearer received support from the soft robotic sleeve with the SA pressurized during the
90◦ extension and depressurized during the 0◦ to 90◦ flexion (denoted as SA w/act); and
(3) the wearers did not wear the soft robotic sleeve (denoted as no SA). The EMG electrodes
were placed in identical positions for all three configurations.

The results in Figures 9 and 10 indicate that the soft robotic sleeve reduced the
workload of the subject’s biceps and triceps compared to the configurations with no SA,
and without actuating the SAs. For example, without lifting any load, the root mean square
error (RMS) for the triceps and biceps was reduced around 7 times (from RMS = 0.148 mV
to RMS = 0.02 mV) and 12 times (from RMS = 0.321 mV to RMS = 0.027 mV) if the soft robotic
sleeve is activated, respectively. For experiments when the wearer held a load, there was a
significant reduction in the RMS (around 12.5 times for the triceps from RMS = 0.187 mV
to RMS = 0.02 mV and 14.5 times for the biceps from RMS = 0.204 mV to RMS = 0.014 mV)
once the soft robotic sleeve was activated. It is noted that the first configuration (i.e., SA
w/out act) had significantly higher muscle activation, because the wearer’s arm not only
had to carry the 1.8 kg weight, but also resist the non-actuated SAs.
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Figure 9. Validation of the soft robotic fabric sleeve for upper limb augmentation of a subject with EMG measurements and
no load. (Left panel) Experimental setup for EMG measurements with no load. (Right panel) EMG measurements.

Figure 10. Validation of the soft robotic fabric sleeve for upper limb augmentation with EMG measurements and load of
1.8 kg. (A) Experimental setup for EMG measurements. (B) EMG measurements.
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3. Discussion

According to [1,2], the actuators used in exoskeletons should be lightweight, capable
of producing precise motion, have high operating bandwidth, and be able to deliver large
torques. Our developed SAs are soft, lightweight, and highly compliant. They were tested
at frequencies ranging from 1 Hz to 2 Hz to prove their capability of operating at the
frequency bandwidth used in most assistive elbow exosuits [18,19,30,63]. The bending
independent behavior represents a big advantage over the widely adopted Bowden cable
transmission, whose configuration-dependent hysteresis is found to degrade control perfor-
mance and limit its application [58,64]. Our developed muscles, in contrast, are not affected
by the change of its configuration from the driving source to actuation source or a constant
hysteresis profile, regardless of its transmission paths (see [24] for more details). The new
SAs are flexible and lightweight, where an SA weighing 50 g and with an OD = 6.35 mm
could lift a load of at least 2 kg. Compared to other artificial muscles, the developed SAs
are scalable, have high aspect ratios (length/diameter ~ 314, Figure 2), and could induce a
strain up to 245% [33].

The characterization of the SAs showed an approximate linear relation between the
elongation and generated contraction force, which introduces a great flexibility to control
the generated force via position information. For a large SA (OD > 6 mm), there is an
approximate linear relation between the displacement of the input syringe plunger and
the SA elongation, in a trade-off of high hydraulic pressure and applied driving force.
For the smaller SA (OD~3.18 mm), there exists a nonlinear hysteresis loop between the
syringe plunger displacement and SA elongation. However, the smaller SAs require low
hydraulic pressure (<1 MPa) to actuate the system, and thus require less power. In some
studies, output feedback methods have been used to compensate for hysteresis, but this
requires additional sensors that increase device size [21,65]. Since the friction between the
hollow tube and the SA does not vary with the bending angle of the SA, as it does in a
Bowden cable mechanism, the developed SAs exhibit better transmission efficiency and
ease of control when compared to tendon-driven actuators, due to the use of a hydraulic
source. Moreover, the flexibility of the SAs allows for complex configuration, such as
woven structures that can achieve larger displacements compared to a single muscle, which
is challenging with traditional McKibben muscles.

To capture the nonlinear hysteresis loop for the smaller SAs, a novel asymmetric
hysteresis model was developed. The new model only requires five model parameters in
its structure to closely predict the nonlinear hysteresis loop. Compared to other traditional
models, such as the symmetric Bouc–Wen model, which requires a higher number of model
parameters, our developed model requires fewer computational times and offers an ease of
control if a feedforward compensation-based control scheme is used. The new model also
precisely captures the nonlinear hysteresis of the SA for different input signals at different
working velocities. Because there is a linear relation between the contraction force and
the SA elongation, these results demonstrate that our developed hysteresis model is well
suited for force control. This will be the subject of the future works with applications in
soft wearable devices such as flexible surgical robotics or smart garments [66,67].

We have also fabricated and successfully validated soft liquid metal-based fabric
sensors that can monitor the position (elongation) of the SA. The new fabric sensors can
be used as potential candidates to monitor the upper limb and lower limb motion for gait
posture detection, or provide real-time motion feedback for advanced control purpose,
such as nonlinear adaptive control to deal with nonlinear disturbances and uncertainties
from the surrounding environments. To demonstrate the usefulness of the SA, we also
created a soft robotic fabric sleeve that can provide useful assistance to the wearer’s upper
limb. As an illustration, we use only two SAs in the robotic sleeve structure, and this
device could assist the upper limb, without requiring any additional power from the body.
Depending on the power augmentation needs, more SAs could be added to increase the
support for tasks which require a high load. To drive the SA, a small amount of fluid
(~2 mL of water) is required, and this offers a miniaturization for the driving source that
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can be worn by the users. It is noted that the actuation stage is also scalable, because
the fluid syringe functions as a fluid reservoir that can be changed in size according to
the available force of the driving source. For example, a smaller syringe would require
a smaller applied force to the plunger, which can be generated by a smaller linear stage.
Experimental results also revealed that the soft robotic sleeve significantly reduced the
workload of the subject’s biceps and triceps compared to the configurations with no SA
and without actuating the SAs.

It is noted that, in this paper, we implemented the developed soft muscles for a
wearable assistive device for upper limb augmentation, with several advantages compared
to our works [33,55]. Firstly, we investigated different outer constrained coil for the soft
muscles, where a linear relation between the input and output motion can be achieved
if a stiffer coil is used, and vice versa (see Figures 3 and 4). Secondly, we developed a
novel nonlinear hysteresis model (See Section 2.3), which could capture the nonlinear
hysteresis profile for the soft muscle, with a smaller number of model parameters (five)
compared to previous works (seven) [55]. Thirdly, we developed a new soft fabric liquid
metal skin sensor that can monitor the elongation or strain c of the soft muscle for future
feedback control purpose. Finally, while previous works only focused on the use of a single
muscle, in this paper, we developed an array of soft muscles to actuate the wearable fabric
sleeves that could provide useful assistance to the wearer. In addition, these muscles were
combined with the outer sheath to enhance the desired elongation or working range of the
bending elbow, which were not reported in previous works.

However, one of the major limitations of the presented soft robotic sleeve is the
use of a tethered driving hydraulic source which limits its use for home rehabilitation
applications. The target population of such a soft exoskeleton has been identified to be
individuals with some physical disability that needs assistance during activities of daily
living (ADLs), such as drinking from a mug, combing the hair, eating with a spoon, or
answering the phone. Therefore, future development of the current soft robotic sleeve
must involve a portable hydraulic source that can be worn by the users, such as the works
proposed by [68–70]. During the mannequin experiment, the device showed the ability
of maintaining the arm posture and a smooth natural elbow flexion motion. The stretch
sensor and the kinematic and nonlinear hysteresis model demonstrate the possibility of
applying force control algorithms to actuate the soft upper limb in a closed-loop manner.

4. Conclusions

This paper describes the design and fabrication process for a new class of soft ar-
tificial actuators and soft liquid metal sensors that can be integrated into a soft upper
limb suit. The soft muscle actuators are lightweight, have high operating bandwidth,
are capable of producing precise motion, and could deliver a large amount of torque
(around 23 N per muscle at 30% of its elongation). Similarly, the soft sensor can measure
distance/displacement between two points (one at forearm and the other at upper arm)
from which the joint kinematics of the soft upper limb suit (elbow joint angle) can be
inferred. The new hysteresis model has also been introduced to capture the nonlinearity of
smaller SAs that can directly benefit lightweight wearable devices. In addition, this new
hysteresis model can benefit the future development of a feedforward compensation-based
control law to further promote the applicability of the system. The assistive sleeve shows
great potential in assisting people with disabled upper limbs in performing ADLs, or
in rehabilitation applications outside of clinical settings, such as in the patients’ home,
with benefits including lowering the cost of care and improving accessibility to care. In
future work, feedback motion control that recognizes the intention of the user should be
developed for assistance application, such as nonlinear adaptive controls. In addition, the
soft sensor and linear DC motors should also be re-designed to provided portable and
compact wireless signal communication and control for better use in practice. Furthermore,
the user studies should be carried out on disabled people to demonstrate the effectiveness
of the approach. The validation of the soft robotic sleeve should also be carried out in
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the presence of disturbances, such as the varying load applied against the wearer’s hand.
Finally, the developed concept and prototypes in this work can be extended to support
the lower limbs and the whole body towards a complete soft wearable suit to augment
human performance.
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List of Abbreviations

Abbreviation Meaning
ADL Activities of Daily Living
FFA Flexible Fluidic Actuator
SMM Shape Memory Material
EAP Electroactive Polymer
PAM Pneumatic Artificial Muscle
PPAM Pleated PAM
IPAM Inverse PAM
SMA Shape Memory Alloy
SMP Shape Memory Polymer
DEA Dielectric Elastomer Actuator
IPMC Ionic Polymer–Metal Composite
SAM Soft Artificial Muscle
SA Soft Actuator
LM Liquid Metal
EGaIn Eutectic Gallium Indium
EE Elastic Energy
MSE Mean Square Error
GA Genetic Algorithm
EMG Electromyogram
DH Degree of Hysteresis
RMS Root Mean Square
ID Inner Diameter
OD Outer Diameter
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