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Deacetylated SNAP47 recruits HOPS to
facilitate autophagosome-lysosome fusion
independent of STX17

Fenglei Jian1, ShenWang 2, Wenmin Tian3,4, Yang Chen 3,4, ShixuanWang 5,
Yan Li 5, Cong Ma 2 & Yueguang Rong 1,6

Autophagy, a conserved catabolic process implicated in a diverse array of
human diseases, requires efficient fusion between autophagosomes and
lysosomes to function effectively. Recently, SNAP47 has been identified as a
key component of the dual-purpose SNARE complex mediating
autophagosome-lysosome fusion in both bulk and selective autophagy.
However, the spatiotemporal regulatory mechanisms of this SNARE complex
remain unknown. In this study, we found that SNAP47 undergoes acetylation
followed by deacetylation during bulk autophagy and mitophagy. The acet-
ylation status of SNAP47 is regulated by the acetyltransferase CBP and the
deacetylase HDAC2. Notably, the spatiotemporal regulatory dynamics of
SNAP47 acetylation differ between bulk autophagy and mitophagy due to
distinct regulation on the activity of acetyltransferase and deacetylase.
Acetylated SNAP47 inhibits autophagosome-lysosome fusion by indirectly
impeding SNARE complex assembly. Mechanistically, deacetylated SNAP47
recruits HOPS components to autophagic vacuoles independently of STX17
and STX17-SNAP47 interaction, while acetylated SNAP47 inhibits this recruit-
ment, consequently leading to the failure of SNARE complex assembly. Taken
together, our study uncovers a SNAP47 acetylation-dependent regulatory
mechanism governing autophagosome-lysosome fusion by modulating the
recruitment of HOPS to autophagic vacuoles without involving STX17,
SNAP47-STX17 interaction and ternary SNARE complex formation.

Autophagy is a highly conserved lysosome-dependent degrada-
tion process, vital for quality control and cellular homeostasis by
eliminating surplus or impaired organelles, protein aggregates,
and intracellular pathogens1,2. Dysfunction in autophagy has been
implicated in numerous human diseases, including cancer,

neurodegenerative disorders, cardiovascular disorders, and
metabolic syndromes3–5.

In response to diverse stimuli, autophagosome formation is
initiated, which subsequently undergoes fusionwith lysosomes for the
degradation of substrates6–8. The STX17-SNAP29-VAMP7/VAMP8
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SNARE complex mediates the fusion process between autophago-
somes and lysosomes during bulk autophagy9,10. Incomplete fusion
between autophagosomes and lysosomes in STX17 deficient cells leads
to the discovery of a secondary SNARE complex YKT6-SNAP29-STX7
complex in mammalian cells11. YKT6 is also involved in
autophagosome-lysosome fusion in Drosophila and Saccharomyces
cerevisiae, but functions through different mechanisms12–14.

Recently, we identified the STX17-SNAP47-VAMP7/VAMP8 com-
plex as a dual-role SNARE complex responsible for autophagosome-
lysosome fusion in both selective autophagy and bulk autophagy15.
SNAP47 is recruited to phagophores and autophagosomes through its
Pleckstrin homology domain, independently of STX17, via coincident
binding to ATG8s and PI(4,5)P2

15. Subsequently, it assembles with
STX17 and VAMP7/VAMP8 to form a functional ternary SNARE
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complex mediating autophagosome-lysosome fusion15. Nevertheless,
the precise spatiotemporal regulatory mechanisms governing this
SNARE complex remain unknown.

In this study, we found that SNAP47 undergoes acetylation and
subsequent deacetylation in response to the induction of bulk
autophagy or mitophagy. The acetylation status of SNAP47 is regu-
lated by the acetyltransferaseCBP and the deacetyltransferaseHDAC2.
The spatiotemporal regulation of SNAP47 acetylation varies between
bulk autophagy and mitophagy, primarily because of the differential
control of acetyltransferase and deacetylase activities. Deacetylation
of SNAP47 indirectly enhances SNARE complex assembly and pro-
motes autophagosome-lysosome fusion by facilitating HOPS recruit-
ment to autophagic vacuoles, independently of STX17 and the SNARE
complex assembly. Collectively, our findings elucidate a SNAP47
acetylation-mediated spatiotemporal regulatory mechanism govern-
ing autophagosome-lysosome fusion without involving STX17,
SNAP47-STX17 interaction and ternary SNARE complex formation.

Results
Identification of acetylation sites on SNAP47
To investigate the spatiotemporal regulatory mechanism on the func-
tion of SNAP47 in autophagosome-lysosome fusion, we found that both
endogenous and exogenous SNAP47 was acetylated (Fig. 1a and Sup-
plementary Fig. 1a) and the level of SNAP47 acetylation increased in the
presence of the HDAC family inhibitor trichostatin A (TSA), in contrast
to sirtuin family inhibitor nicotinamide (NAM) (Fig. 1b, c). In addition,
the acetylation of SNAP47 did not show further increase in the presence
of both TSA and NAM compared to TSA alone (Fig. 1b, c). The acetyla-
tion level of SNAP47 decreased in bulk autophagy induced by starvation
with Earle’s Balanced Salt Solution (EBSS) or mitophagy induced by
oligomycin and antimycin A (OA), respectively (Fig. 1d, e), suggesting
SNAP47 is acetylated and undergoes deacetylation during bulk autop-
hagy or mitophagy. Treatment with thapsigargin, puromycin, and
hypoxia—inducers of ER-phagy, aggrephagy, and mitophagy, respec-
tively—also resulted in a lesser reduction of SNAP47 deacetylation
compared to OA and EBSS treatment (Supplementary Fig. 1b). A similar
deacetylation pattern was observed in STX17(Supplementary Fig. 1c).
Mass spectrometry analysis identified seven acetylation sites of SNAP47
at residues K58, K131, K156, K259, K286, K301, and K377, respectively
(Fig. 1f, g and Supplementary Fig. 1d–j). These seven lysine residueswere
found to be highly conserved across species (Fig. 1h), indicating the
possible conserved acetylation sites in different eukaryotes.

To determine which are the major acetylation sites of acetyl-
transferase(s), we individually introduced non-synonymousmutations
to convert the seven lysine sites identified by mass spectrometry into
arginine residues to mimic the deacetylation status of SNAP47.
Assessment of SNAP47 acetylation levels in cells harboring each of the
mutated acetylation sites revealed a notable decrease in SNAP47
acetylation in the K58R, K259R and K377R mutants regardless of the
presence of TSA (Fig. 1i-l). We then generated a SNAP47-3KR triple
mutant (i.e., harboring K58R, K259R, and K377R) which exhibited
almost complete abolition of SNAP47 acetylation (Fig. 1k, l). These

findings suggest that the primary acetylation sites of SNAP47 are
residues K58, K259, and K377.

CBP and HDAC2 have antagonistic effects on SNAP47
acetylation
To identify the acetyltransferase(s) responsible for the acetylation of
SNAP47, the five most common acetyltransferases related to cell
metabolism were overexpressed. We observed that only CBP (CREB
binding protein) overexpression led to increased acetylation levels of
SNAP47. Other acetyltransferases, including its paralogue p300, did
not show significant effects (Fig. 2a, b). Knockdown of CBP corre-
spondingly reduced SNAP47 acetylation, which was restored by com-
plementation with wild-type (WT) CBP (Fig. 2c, d). Additionally,
treatment with CTB, a p300/CBP activator, or C646, their inhibitor,
respectively promoted and suppressed SNAP47 acetylation (Fig. 2e, f).
These findings suggest that CBP is responsible for SNAP47 acetylation.

Based on the observed relationship between CBP and SNAP47, we
investigated whether SNAP47 is a direct substrate of CBP. Co-
immunoprecipitation (Co-IP) results showed an in vivo interaction
between SNAP47 andCBP (Fig. 2g). In in vitro acetylation assays, where
recombinant GST-SNAP47 was incubated with immunoprecipitated
CBP-HA in the presence of acetyl-CoA, we observed the acetylation of
SNAP47 by CBP (Fig. 2h, i). Furthermore, C646 inhibited SNAP47
acetylation, while CTB promoted it (Fig. 2h, i). Importantly, the acet-
ylation of SNAP47 was significantly reduced in both in vivo and in vitro
when using the SNAP47-3KR triple mutant (Fig. 2j–m). These results
collectively confirm that CBP directly catalyzes the acetylation of
SNAP47.

Furthermore, we observed a marked decrease in SNAP47 acet-
ylation upon starvation, whereas its acetylation significantly increased
in the presence of TSA with or without exogenous expression of CBP
(Fig. 2n, o). However, NAM failed to reverse this reduction (Fig. 2p, q).
Similarly, Histone 3 acetylation decreased during EBSS starvation, and
this reduction was reversed by NAM, but not by TSA, regardless of
exogenous CBP expression (Fig. 2n–q). This suggests that the acet-
ylation activity of CBP towards SNAP47 increases during starvation
induced by EBSS, yet the deacetylation of SNAP47 is more pro-
nounced, resulting in reduced levels of SNAP47 acetylation. Similarly,
the acetylation of both SNAP47 and Histone 3 was dramatically
reduced during OA-induced mitophagy (Fig. 2r–u). Interestingly, the
acetylation levels of SNAP47 and Histone 3 did not reverse in the
presence of TSA or both TSA and NAM (Fig. 2r–u), indicating a
decreased acetylation activity of CBP towards SNAP47 during OA-
induced mitophagy.

TSA increased the acetylation of SNAP47, suggesting that HDACs
are responsible for SNAP47 deacetylation (Figs. 1 and 2). To identify
which HDAC deacetylates SNAP47, we co-expressed all HDACs with
SNAP47 and found that HDACs interacted with SNAP47 to varying
extents (Fig. 3a). However, only HDAC2 markedly reduced the acet-
ylation of SNAP47 (Fig. 3b, c). Knockdown of HDAC2, but not HDAC1,
significantly increased the acetylation of SNAP47, and this enhance-
ment was reversed by re-expression of HDAC2 (Fig. 3d-g). However,

Fig. 1 | Identification of acetylation sites on SNAP47. a Immunoblot analysis of
Flag-SNAP47 acetylation in HEK293T cells (n = 3 independent experiments).
b, c Immunoblot analysis of Flag-SNAP47 acetylation in HEK293T cells treated with
or without TSA alone, NAM alone or a combination of TSA and NAM (b). The levels
of Ace-lyswerequantifiedby ImageJ software andnormalizedwith Flag-SNAP47 (c).
d, e Immunoblot analysis of Flag-SNAP47 acetylation in HEK293T cells stably
expressing Parkin with or without EBSS or OA (oligomycin 2.5 µM and antimycin-A
250 nM) treatment (d). The levels of Ace-lyswerequantifiedby ImageJ software and
normalizedwithFlag-SNAP47 (e). f,gThe schematicdiagramofSNAP47 acetylation
sites (f). Structure model of human SNAP47 (UniProt entry: 501A0A087X0B7)
generated by AlphaFold 2. The acetylation sites in SNAP47 are highlighted in red,
and the PHdomain, SNAREmotif, and second SNAREmotif are colored blue, green,

and laurel green, respectively (g). h Alignment of amino acid sequences of SNAP47
from various species, with amino acids numbered based on the human sequence.
Yellow texts highlight the amino acids corresponding to acetylated lysine residues
of SNAP47 identified through mass spectrometry. i–l Characterization of the cri-
tical acetylation sites of SNAP47 through acetylation analysis of Flag-SNAP47.
HEK293T cells were transfected with WT or lysine substitution mutants of Flag-
SNAP47 (i). Twenty-four hours after transfection, cells were treatedwith orwithout
TSA for 16 h (k). The levels of Ace-lye were quantified by ImageJ software and
normalized with Flag-SNAP47 (j, l). Data in (c–l) are presented as mean± SD, n = 3
independent experiments, statistical significance was assessed by a one-way
ANOVA (c–j) or two-wayANOVA (l). P values are indicated in the figure. Source data
are provided as a Source Data file.
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HDAC2 knockdown failed to increase the acetylation of SNAP47-3KR,
which mimicked the deacetylation status of SNAP47 (Fig. 3h, i). A
similar increase and decrease in acetylation of both endogenous
SNAP47 and STX17 were observed in CBP knockdown and HDAC2
knockdown cells, respectively (Supplementary Fig. 1a). Altogether,
these results suggest that CBP and HDAC2 regulate the acetylation or
deacetylation of SNAP47, respectively.

SNAP47 acetylation inhibits autophagosome-lysosome fusion in
bulk autophagy and mitophagy
To explore the involvement of SNAP47 acetylation in mitophagy, we
investigated mitochondrial protein degradation in cells expressing
either the SNAP47-3KQ or SNAP47-3KR mutant, which respectively
mimic the acetylated or deacetylated state of SNAP47. In cells
expressing the SNAP47-3KQ acetylation mimic, we observed a
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significant inhibition of mitochondrial protein degradation, as indi-
cated by the levels of mitochondrial proteins PHB2, COX2, and
TOM20,while cells expressing SNAP47-3KR showed a slight increase in
mitochondrial protein degradation (Fig. 4a–d). Additionally, we uti-
lized the mito-Keima assay, which detects changes in emission wave-
length upon pH alteration, to monitor mitophagic flux to lysosomes16.
We found that the mito-Keima shift indicative of mitophagy was
markedly inhibited in cells expressing the SNAP47-3KQ acetylation
mimic compared to those expressing SNAP47-WT and SNAP47-3KR
(Fig. 4e, f). These findings suggest that deacetylation of SNAP47 is
essential for autophagosome-lysosome fusion in OA-induced
mitophagy.

Similarly, in line with the role of SNAP47 in OA-induced mito-
phagy, the SNAP47-3KQ acetylation mimic significantly impeded the
degradation of LC3 and p62, along with RFP-GFP-LC3 acidification, as
indicated by GFP quenching due to the low lysosomal pH and stable
RFP, compared to SNAP47-WT and SNAP47-3KR in starvation-induced
autophagy (Fig. 4g–k). These results suggest that deacetylation of
SNAP47 is necessary for autophagosome-lysosome fusion in
starvation-induced autophagy.

SNAP47 acetylation inhibits the SNARE complex assembly
indirectly
To investigate how SNAP47 acetylation affects autophagosome-
lysosome fusion, we first examined whether SNAP47 acetylation
affects SNARE complex assembly. The results from Co-IP experiments
revealed that the SNAP47-3KRmutant displayed increased interactions
with STX17 and VAMP7/VAMP8, whereas the SNAP47-3KQ acetylation
mimic exhibited significantly reduced interactions in SNAP47 KO cells
(Fig. 5a, b), indicating that SNAP47 acetylation inhibits the formationof
the STX17-SNAP47-VAMP7/VAMP8 complex in vivo. In addition, the
interactions of SNAP47-WT or SNAP47-3KR with STX17 and VAMP7/
VAMP8, but not SNAP47 3KQ, increase during OA-induced mitophagy
(Supplementary Fig. 2a).

To delve deeper into how SNAP47 acetylation hinders the for-
mation of the STX17-SNAP47-VAMP7/VAMP8complex,we investigated
its impact on SNAP47 localization to autophagosomes. Compared to
SNAP47-WT both SNAP47-3KR and SNAP47-3KQmutants displayed no
discernible differences in colocalization with LC3 or with both LC3 and
mito-BFP (BFP tagged mitochondrial targeting sequence of COX4)
during starvation-induced autophagy or OA-induced mitophagy,
respectively (Fig. 5c–f). This suggests that SNAP47 acetylationdoes not
regulate complex formation via its localization to autophagosomes.
Additionally, in vitro liposome fusion assays indicated that neither
SNAP47-3KR nor SNAP47-3KQ obviously affected fusogenic activity in
STX17-SNAP47-VAMP8 complex formation (Fig. 5g–i). These results
indicate that SNAP47 acetylation likely indirectly regulates influencing
SNARE complex formation. In line with this inference, the results from
both in vitro pull-down assays and in vitro SNARE assembly assays

demonstrated that neither SNAP47-3KR nor SNAP47-3KQ markedly
affected SNARE assembly (Fig. 5j–o). Thus, SNAP47 acetylation indir-
ectly inhibits SNARE complex assembly.

SNAP47 recruits the HOPS complex to autophagic vacuoles
Next, we sought to investigate how SNAP47 acetylation affects SNARE
assembly in vivo. Given the critical role of the HOPS complex in
tethering autophagosomes to endolysosomes, thereby facilitating
subsequent SNARE complex assembly17–21, we aimed to ascertain
whether SNAP47 is involved in recruiting the HOPS complex to
autophagosomes. Initially, we observed co-localization between GFP-
SNAP47 and mCherry-tagged components of the HOPS complex
(VPS11, VPS16, VPS18, VPS33A, VPS39, and VPS41), as well as LC3 and a
few of these puncta also exhibited limited co-localization with LAMP2
(Supplementary Fig. 3a). These findings suggest that SNAP47 primarily
co-localizes with components of the HOPS complex on autophago-
somes, with only a minor fraction associating with autolysosomes. Co-
IP results showed that SNAP47 interacted not only with all exogenous
HOPS complex components, but also with endogenous components
(VPS11, VPS16, VPS18, VPS33A, and VPS41), whereas SNAP29 did not
exhibit such interactions. (Fig. 6a, b). In vitropull-downassays revealed
a significant and direct interaction between SNAP47 and VPS39
(Fig. 6c). Notably, SNAP47 still interacts with endogenous HOPS
components (VPS11, VPS16, VPS18, VPS33A, and VPS41) in SNAP47/
STX17 double knockout cells (DKO) (Supplementary Fig. 2b). Further,
the SNAP47-2QR (Q143R/Q390R) mutant, which disrupts the STX17-
SNAP47-VAMP7/VAMP8 interaction due to alterations in critical amino
acids for the 0-layer of the SNARE complex, did not significantly affect
the interactions between SNAP47 and HOPS components in SNAP47
KO cells (Fig. 6d-f and Supplementary Fig. 2c). These results suggest
that SNAP47 interacts with HOPS independently of STX17 and the
SNARE complex formation. Additionally, the interactions of SNAP47-
WT or SNAP47-2QR with endogenous HOPS components (VPS11,
VPS16, VPS18, VPS33A, and VPS41) in SNAP47 KO and SNAP47/STX17
DKO cells increased in starvation-induced autophagy and OA-induced
mitophagy, respectively (Supplementary Fig. 2b, c).

As the localization ofHOPS components is obscured by the strong
signal in the cytoplasm, we employed gradient fractionation assays to
investigate the impact of SNAP47 on the localization of HOPS com-
ponents to autophagosomes11,19. The results revealed a decrease in the
amount of HOPS components in the autophagosome-enriched frac-
tions (i.e., fractions 3–5) of SNAP47 knockout (KO) cells compared to
WT cells (Fig. 6g–j). Similarly, the SNAP47 LIRmutant, which exhibits a
dramatic decrease in localization to autophagosomes15, also led to a
decreased level of HOPS components in the autophagosome-
enriched fractions (Fig. 6k-n). Further, both SNAP47 and STX17 are
capable of recruiting HOPS subunits in SNAP47/STX17 DKO cells,
respectively (Supplementary Fig. 2d), suggesting SNAP47 can recruit
HOPS components independently of STX17, and vice versa. In

Fig. 2 | SNAP47 is acetylated by CBP/CREBBP. a, b Acetylation of Flag-SNAP47 in
HEK293T cells overexpressing the indicated individual histone acetyltransferases
(a). Quantification of Ace-lys by ImageJ software and normalized with Flag-SNAP47
(b). c, d Flag-SNAP47 Acetylation in HEK293T cells transfected with CBP-HA after
incubation with CBP siRNA (c). Quantification of Ace-lys by ImageJ software and
normalized with Flag-SNAP47 (d). e, f Flag-SNAP47 acetylation in HEK293T cells
treated with CBP activator CTB or inhibitor C646 (e). Quantification of Ace-lys by
ImageJ software and normalized with Flag-SNAP47 (f). g Co-IP analysis of interac-
tions between Flag-SNAP47 and CBP-HA in HEK293T cells (three independent
experiments). h, i In vitro acetylation assay using purifiedGST-SNAP47 andCBP-HA
immunoprecipitated from HEK293T cells in the presence of C646 or CTB (h).
Quantification of Ace-lys by ImageJ software and normalized with GST-SNAP47 (i).
j, k Acetylation of Flag-SNAP47 WT or 3KR (K58R, K259R and K377R) in
HEK293T cells with or without CBP-HA (j). LE: low exposure; HE: high exposure.

Quantification of Ace-lys by ImageJ software and normalized with Flag-SNAP47 (k).
l,m In vitro acetylation assays using purified GST-SNAP47 WT or 3KR and CBP-HA
immunoprecipitated from HEK293T cells (l). Quantification of Ace-lys by ImageJ
software and normalized with GST-SNAP47 (m). n–q Flag-SNAP47 acetylation in
HEK293T cells transfected with or without CBP-HA treated with EBSS, with or
without TSA (n), or with NAM alone or both NAM and TSA (p). Quantification of
Ace-lys by ImageJ software and normalized with Flag-SNAP47 (o, q). r–u Flag-
SNAP47 acetylation in HEK293T cells expressing Parkin with or without CBP-HA
treated with OA, with or without TSA (r), or with NAM alone or both NAM and TSA
(t). Quantification of Ace-lys by ImageJ software and normalized with Flag-SNAP47
(s, u). Data in (b–u) are presented as mean± SD, n = 3 independent experiments,
statistical significancewas assessedby a one-way ANOVA (b–m) or two-wayANOVA
(o–u). P values are indicated in the figure. Source data are provided as a Source
Data file.
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Fig. 3 | HDAC2 is responsible for SNAP47 deacetylation. a Co-IP analysis of
interactions between the indicated Flag-tagged individual histone deacetylases
withHA-SNAP47 inHEK293Tcells (n = 3 independent experiments).b, cAcetylation
of Flag-SNAP47 in HEK293T cells expressing Flag-SNAP47 and the indicated HA-
tagged individual histone deacetylases (b). The levels of Ace-lys were quantified by
ImageJ software andnormalizedwith Flag-SNAP47 (c).d, e Flag-SNAP47Acetylation
in HEK293T cells expressing Flag-SNAP47 after 48h incubation with siRNAs against
HDAC1 or HDAC2 (d). The levels of Ace-lys were quantified by ImageJ software and
normalized with Flag-SNAP47(e). f, g Flag-SNAP47 Acetylation in HEK293T cells

expressing Flag-SNAP47 transfected with HDAC2-HA after 48h incubation with
HDAC2 siRNA (f). The levels of Ace-lys were quantified by ImageJ software and
normalized with Flag-SNAP47 (g). h, i Acetylation of Flag-SNAP47 WT or 3KR in
HEK293T cells incubated with or without HDAC2 siRNA (h). The levels of Ace-lys
were quantified by ImageJ software and normalized with Flag-SNAP47 (i). Data in
(c– i) are presented as mean± SD, n = 3 independent experiments, statistical sig-
nificance was assessed by a one-way ANOVA (c–g) or two-way ANOVA (i). P values
are indicated in the figure. Source data are provided as a Source Data file.
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SNAP47/SNAP29 DKO cells, both SNAP47-WT and SNAP47-2QR
mutants recruit HOPS components to similar levels during
starvation-induced autophagy and OA-induced mitophagy (Supple-
mentary Fig. 2e, f), suggesting SNAP47 can recruit HOPS components
independently of the SNAP47-STX17 interaction and SNARE complex
formation. Collectively, these findings suggest that SNAP47 con-
tributes to the recruitment of HOPS components to

autophagosomes independently of STX17, SNAP47-STX17 interac-
tion, and ternary SNARE complex formation.

SNAP47 deacetylation promotes its interactions with the HOPS
complex components
Given that SNAP47 plays a role in recruiting HOPS components to
autophagosomes (Fig. 6), we investigated how acetylation of SNAP47
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affects this recruitment process. Co-IP experiments revealed that the
acetylation variants of SNAP47, namely SNAP47-3KR and SNAP47-3KQ,
exhibited increased anddecreased interactions, respectively,with both
endogenous and HA-tagged HOPS components (Figs. 7a–g and 5a).
Additionally, we observed a decrease in the levels of HOPS subunits
in autophagosome-enriched fractions (i.e., fractions 3–5) in SNAP47-
3KQ cells compared to SNAP47-WT, whereas SNAP47-3KR notably
increased the abundance of HOPS components in fraction 5
(Fig. 7h–k). Collectively, these findings suggest that deacetylation of
SNAP47 promotes the recruitment of HOPS components to
autophagosomes.

Discussion
STX17-SNAP47-VAMP7/VAMP8 complex is a recently identified dual-
role SNARE complex responsible for autophagosome-lysosome fusion
in both selective autophagy and bulk autophagy. However, the spa-
tiotemporal regulation mechanism on this SNARE is unknown. In this
study, we found SNAP47 is acetylated and undergoes deacetylation
during autophagy. The acetylation status of SNAP47 is regulated by
acetyltransferase CBP and deacetylase HDAC2. The spatiotemporal
regulatory dynamics of SNAP47 acetylation differ between bulk
autophagy and mitophagy. This disparity arises from distinct regula-
tion of acetyltransferase and deacetylase activity. SNAP47 acetylation
negatively regulates autophagosome-lysosome fusion in bulk autop-
hagy andmitophagy by indirectly inhibiting SNARE complex assembly
via inhibiting HOPS components recruitment to autophagic vacuoles.
Our study uncovers SNAP47 acetylation-based spatiotemporal reg-
ulation mechanism on autophagosome-lysosome fusion (Fig. S4).

The HOPS complex was initially characterized for its role in facil-
itating homotypic fusion among lysosomes or heterotypic fusion
between late endosomes and lysosomes in yeast22–27. Subsequently, it
was discovered to tether autophagosomes to lysosomes, thereby
facilitating autophagosome-lysosome fusion17,18,20,28–30. It has been pro-
posed that the HOPS complex promotes autophagosome-lysosome
fusion through interaction with STX1717,18. In this study, we observed
interactions between all HOPS components and SNAP47, and further
demonstrated that SNAP47 contributes to the localization of HOPS
components on autophagosomes independently of STX17 and the
SNARE complex assembly. This suggests that both STX17 and SNAP47
functions in recruiting HOPS components to autophagosomes. Addi-
tionally, STX17may have aminor role in SNAP47’s recruitment of HOPS
components, as the interaction between SNAP47 and HOPS compo-
nents appears slightly reduced in the absence of STX17. Recent studies
have proposed that mammalian HOPS components can be categorized
into two sub-complexes: HOPS-2 (VPS39/VPS11) and HOPS-4 (VPS16/
VPS18/VPS33A/VPS41). These sub-complexes cooperate with specific
Rab GTPase pairs on opposing vesicles to facilitate membrane
tethering31. However, we observed all HOPS components on autopha-
gosomes, suggesting that two different assembly forms of the HOPS
complex (HOPS-2/HOPS-4 and HOPS-6) coexist in vivo.

Autophagosome-lysosome fusion is a critical step for fulfilling
autophagic function. Our previous study identified a default SNARE

complex (STX17-SNAP47-VAMP7/VAMP8) for bothbulk autophagy and
selective autophagy. In this study, we revealed another layer of spa-
tiotemporal regulation based on post-translationalmodification. Since
autophagy has been implicated inmany humandiseases, further study
is warranted to investigate the relationship between autophagosome-
lysosome fusion mediated by this SNARE complex and various human
diseases. It could provide a mechanistic basis for developing targeted
therapeutic interventions for diseases related to dysfunction of
autophagy.

Methods
Antibodies
Antibodies used in this study were as follows: Mouse monoclonal anti-
SNAP47 (Santa Cruz Biotechnology, sc-514428, Lot#C1615, western
blot (WB) 1:1,000), Rabbit polyclonal anti-Acetylated-lysine (Cell Sig-
naling Technology, 9441s, Lot#14, RRID:AB_331896, WB1:1,000), Rab-
bit polyclonal anti-CBP (Cell Signaling Technology, 7389s, Lot#5,
RRID:AB_11015158, WB 1: 2000), Mouse monoclonal anti-VPS11 (Santa
Cruz Biotechnology, sc-515094, Lot#H2517, RRID:AB_2687986, WB
1:1,000),Mousemonoclonal anti-VPS41 (Santa Cruz Biotechnology, sc-
377118, Lot#A0719, RRID:AB_2687987, WB 1:1,000), Rabbit polyclonal
anti-VPS16 (Proteintech, 17776-1-AP, Lot#00096872, RRI-
D:AB_2217085,WB 1:2,000), Rabbit polyclonal anti-VPS18 (Proteintech,
10901-1-AP, Lot#00084835, RRID:AB_2273089, WB 1:1,000), Rabbit
polyclonal anti-VPS33A (Proteintech, 16896-1-AP, Lot#00045470,
RRID:AB_2214916, WB 1:3,000), Rabbit polyclonal anti-COX2 (ABclo-
nal, A11522, Lot#1150910201, RRID:AB_2758591, WB 1:2,000), Rabbit
polyclonal anti-HDAC1 (ABclonal, A19571, Lot#4000000050, RRI-
D:AB_28626751,WB 1:4,000), Rabbit polyclonal anti-HDAC2 (ABclonal,
A2084, Lot#1000100101, RRID:AB_764104, WB 1:4,000), Rabbit poly-
clonal anti-PHB2 (Proteintech, 12295-1-AP, Lot#00049480, RRI-
D:AB_2164779, WB 1:3,000), Rabbit polyclonal anti-VAMP7 (Cell
Signaling Technology, 14811, Lot#1, RRID:AB_2798625, WB1:1,000),
Rabbit monoclonal anti-VAMP8 (Abcam, ab76021, Lot#GR3190214-2,
RRID:AB_1310798, WB 1:1,000), Rabbit polyclonal anti-STX17 (Sigma,
HPA001204, Lot#G107062, RRID:AB_1080118, WB 1:1,000), Rabbit
polyclonal anti-Flag (Sangon Biotech, D110005, Lot#G928AA0012-
0200,WB 1:10,000), Rabbit polyclonal anti-HA (Sigma-Aldrich, H6908,
Source#0000086963, RRID:AB_260070, WB 1:10,000), Mouse
monoclonal anti-LAMP2 (Santa Cruz Biotechnology, sc-18822,
Lot#L3216, RRID:AB_626858, IF 1:500), Rabbit polyclonal anti-LC3
(Sigma, L7543, Lot#084M4798V, RRID:AB_796155, WB 1:10,000, IF
1:500), Rabbit polyclonal anti-Actin (Service Bio, GB11001,
Lot#Ls192617, RRID: AB_2801259. WB 1:5,000), Rabbit polyclonal anti-
6×His (Sangon Biotech, D110002, Lot#F515AA0012, WB 1:1,000),
Mouse monoclonal anti-SQSTM1/p62 (Cell Signaling Technology,
88588, Lot#1, RRID: AB_2800125, WB 1:5,000), fluorescein (FITC)
AffiniPure goat anti-mouse IgG (H+ L) (Jackson, 115-095-003,
Lot#136596, RRID: AB_2338589, IF 1:500), fluorescein (FITC) AffiniPure
goat anti-rabbit IgG (H + L) (Jackson, 111-095-003, Lot#133027, RRID:
AB_2337972, IF 1:500), Cy3 AffiniPure goat anti-mouse IgG (H + L)
(Jackson, 115-165-003, Lot#117093, RRID: AB_2338680, IF 1:500), Cy3

Fig. 4 | Deacetylation of SNAP47 is required for autophagosome-lysosome
fusion. a–d WT, SNAP47 KO, and Flag-SNAP47 (WT, 3KR or 3KQ) complemented
SNAP47 KO HeLa/Parkin cells treated with or without OA for 18 h and immuno-
blotting was then performed with the indicated antibodies (a). Quantification of
normalizedTOM20,PHB2andCOX2by ImageJ software (b–d). e, fWT,SNAP47KO,
and Flag-SNAP47 (WT, 3KR or 3KQ) complemented SNAP47 KO HeLa/Parkin stably
expressing mito-Keima cells were treated with or without OA for 18 h. Living cells
were then imaged for mito-keima 448 nm and 552 nm laser excitation by confocal
microscope (e). Scale bar, 10μm.Quantificationof the relative ratio offluorescence
intensity (552 nm: 448nm) by ImageJ software (f). n = 3, 50 cells from three inde-
pendent experiments were quantified. g–iWT, SNAP47 KO, and Flag-SNAP47 (WT,

3KR or 3KQ) complemented SNAP47 KO HeLa cells were treated with or without
EBSS for 2 h and immunoblottingwas thenperformedwith the indicated antibodies
(g). The intensity of LC3-II and p62 bands was normalized to actin (h, i). j, k WT,
SNAP47 KO, and Flag-SNAP47 (WT, 3KR or 3KQ) complemented SNAP47 KO HeLa
cells stably expressing RFP-GFP-LC3 were cultured in EBSS for 2 h (j). Scale bar,
5μm. Quantification of the percentage of RFP+GFP- LC3 puncta among total LC3
puncta (k). n = 3, 100 cells from three independent experiments. Data in (b–k) are
presented asmean± SD,n = 3 independent experiments, statistical significancewas
assessedby a two-wayANOVA (b–i) or one-wayANOVA (k).P values are indicated in
the figure. Source data are provided as a Source Data file.
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AffiniPure goat anti-rabbit IgG (H + L) (Jackson, 111-165-003,
Lot#128284, RRID: AB_2338000, IF 1:500), Alexa FluroTM647 goat anti-
mouse IgG (H + L)(Invitrogen, A21235, Lot#2482945, RRID:
AB_2535804, IF 1:500), Alexa FluroTM 647 goat anti-Rabbit IgG (H + L)
(Invitrogen, A21244, Lot#2433883, RRID: AB_2535812, IF1:500), goat
anti-mouse IgG(H + L)-HRP (Southern Biotech, 1036-05, Lot#D1912-
SL7113, RRID: AB_2794348, WB 1:500), goat anti-rabbit IgG(H + L)-HRP

(Southern Biotech, 403005, Lot#A2718-TA21, RRID: AB_2687483,
WB 1:500).

Reagents and treatment
The chemicals were used as follows unless indicated otherwise: oli-
gomycin (Santa Cruz Biotechnology, sc-203342; 2.5μM) and
antimycin-A (Santa Cruz Biotechnology, sc-202467A; 250 nM) was
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added to the medium for 2 h, 4 h or 18 h. Trichostatin A (TSA, MCE,
58880-19-6; 400nM) was added to the culture medium for 16 h.
Nicotinamide (NAM, MCE, 98-92-0; 5mM) was added to the medium
for 8 h. CTB (Sigma-Aldrich, C6499; 50μM) was added to the medium
for 6 h. C646 (MCE, 328968-36-1; 10μM) were added to the medium
for 4 h. For starvation treatment, cells were washed three times with
PBS (Hyclone) and then incubated with EBSS (Solarbio, H2020) for the
indicated time.

Cell culture and transfection
HEK293T and HeLa cells were generous gifts from Dr. Qing Zhong
(Shanghai Jiao Tong University, Shanghai, China). HEK293T and HeLa
cells were cultured in DMEM (Hyclone) supplemented with 10% FBS
(Gibco) and 1% Penicillin-Streptomycin Solution (Beyotime) at 37 °C
with 5% CO2. HeLa cells were transiently transfected using Lipofecta-
mine 3000 (Invitrogen) according to the manufacturer’s instructions.
Transient transfection of plasmid in HEK293T cells was performed
using PEI according to the manufaturer’s protocol. The stealth RNAi
oligonucleotides were transfected into cells using Lipofectamine
RNAiMAX (Invitrogen) according to the manufacturer’s instructions.
2 d after transfection, cells were harvested for analysis.

The following siRNAs were used: CBP,5′-AAUCAACUCCUGU-
GUCGUCUUUU-3′, 5′-AAUCCACAGUACCGAGAAAUGUU-3′; HDAC1,5′-
CGUUCUUAACUUUGAACCAUA-3′; HDAC2,5′-CAGUCUCACCAAUUU-
CAGAAA-3′. CRISPR guide RNA (gRNA) sequences targeting the human
SNAP47 and STX17 genes were cloned into the lentiCRISPR v2-Blast
vector (Addgene #83480). The target sequences for human STX17
were 5′-TCTGGATAGCTGGTTCAAGA-3′, and for human SNAP47, 5′-
TCCATCACCATCCTGGAGAA-3′. Expression plasmids for SNAP47,
SNAP29, PCAF, GCN5, and TIP60 were constructed by cloning the
corresponding genes from human cDNA (prepared from 293 T cells)
into the pMRXIP vector, which includes enhanced GFP, 3 × Flag, or
3 ×HA tags for eukaryotic expression. The cDNAs of SNAP47, VAMP7,
and VAMP8 were cloned into pGEX-4T-1 or pET-28a vectors for pro-
karyotic expression. The CBP-HA, p300-HA, VPS11-HA, VPS16-HA,
VPS18-HA, VPS33A-HA, VPS39-HA, and VPS41-HA constructs were
kindly provided by Dr. Qiming Sun from Zhejiang University. The
HDAC family of deacetylases was generously gifted by Dr.Wei Liu, also
from Zhejiang University.

Immunostaining assays
Cells grown on coverslips were washed with PBS and fixed in 4%
paraformaldehyde in PBS for 15min at room temperature. After
washing three times with PBS, Cells were permeabilized with 0.1%
saponin in PBS for 10min, blocked with 10% FBS in PBS for 1 h. Then,
the cells were incubated with primary antibodies for 1 h or overnight
at 4 °C. After washing three times with PBS, cells were incubated with
appropriate secondary antibodies at room temperature for 1 h, and
washed three times with PBS. The slides were mounted and images
were acquired under a laser scanning confocal microscope (FV3000,
Olympus).

Mito-Keima mitophagy assay
HeLa SNAP47 KO cells, which stably expressed Parkin, were infected
with a lentivirus carrying the mito-Keima vector. Following this, the
cells were treated with or without OA in fresh growth medium for 18 h,
and were then analyzed using confocal microscopy. Live cells were
cultured in glass-bottom dishes. After OA treatment, the cells were
scanned, and images were acquired using a laser scanning confocal
microscope (FV3000, Olympus) with argon lasers (at 448 nm for mito-
Keima at neutral pH and 552 nm for mito-Keima at acidic pH). Ratio-
metric analysis (552 nm:448 nm) was performed using ImageJ software.

Immunoprecipitation assays
HEK293T cells were washed in ice-cold PBS and lysed in lysis buffer
(20mM Tris-HCl, pH 7.5, 150mM NaCl, 1mM EDTA, 0.5%
NP-40, 1 ug/ml Aprotinin, 1 ug/ml Pepstatin A, 1 ug/ml Leupeptin,
200mMNaF, 200mMNa3VO3) for 30min at 4 °C. After centrifugation
at 12,000 g for 10min at 4 °C, the supernatants were subjected to
immunoprecipitation using anti-Flag M2 (A2220; Sigma-Aldrich) or
anti-HA Affinity Gel (A2095; Sigma-Aldrich) for 12 h at 4 °C. Pre-
cipitated immunocomplexes were washed three times in lysis buffer
and boiled in 2× sample buffer. Then samples were subjected to SDS-
PAGE and analyzed by Western Blotting.

Western Blotting
Cells were harvested and lysedwith sodiumdodecyl sulfate (SDS) buffer.
Samples extracted from cells were subjected to SDS-PAGE electrophor-
esis and immobilized on a polyvinylidene fluoride (PVDF) membrane
(BIO-RAD, 162-0177). After blocking with 5% nonfat milk in PBST, mem-
brane was incubated with the primary antibodies, followed incubated
with HRP-conjugated secondary antibody for 1 h at room temperature.

Recombinant protein purification and in vitro acetylation assay
GST-SNAP47 was expressed in Escherichia coli BL21. Bacteria were
treated with 0.4mM IPTG at 16 °C to induce protein expression and
were harvested and resuspended in PBS containing 0.5% Triton X-100,
2mM EDTA, and 1mM PMSF, followed by ultrasonication. The
recombinant SNAP47 proteins were purified using by glutathione-
Sepharose 4B beads (GE healthcare, 17-0756-04), eluted with glu-
tathione at 4 °C for 4 h to release the proteins.

CBP-HA protein was purified from HEK293T cells 48h after
transfection by immunoprecipitation with anti-HA affinity beads
(A2095; Sigma-Aldrich). For in vitro acetylation assay, GST-SNAP47
protein (10μg)was incubated with CBP-HA immunoprecipitated from
cell lysate in the presence of acetyl-coenzyme A (4μg; Sigma-
Aldrich,10101893001) and 10μl 5 ×HAT assay buffer(250mM
Tris–HCl, pH 8.0, 50% glycerol, 0.5mMEDTA, 5mMdithiothreitol) in a
total volume of 50μl. The contents were mixed gently and placed in a
30 °C shaking incubator for 4 h. Then 2 × sodiumdodecyl sulfate (SDS)
buffer (50μl) was added to the reaction and themixturewas boiled for
5min. The reaction products were separated by SDS-PAGE and
immunoblotted with anti-acetyl-lysine.

Fig. 5 | Acetylationof SNAP47 inhibits the SNARE complex assembly indirectly.
a, b Co-IP analysis of the endogenous HOPS subunits, STX17, VAMP7 and VAMP8
withHA-SNAP47 (WT, 3KRor3KQ) inSNAP47KOHeLa/Parkin cells (a). This result is
part of Supplementary Fig S2a. The proteins levels were quantified by ImageJ
software andnormalizedwithHA-SNAP47 (b). c,dHeLa cells stably expressingGFP-
SNAP47 (WT, 3KR or 3KQ)were cultured in EBSS for 2 h, then stainedwith antibody
against LC3 (c). Scale bar, 5μm. The percentage of GFP-SNAP47-positive LC3
puncta in total LC3 puncta is shown (d). n = 3, 100 cells from three independent
experiments. e, f HeLa/Parkin cells stably expressing mito-BFP and GFP-SNAP47
(WT, 3KR or 3KQ) were treated with OA for 4 h, then stained with with antibody
against LC3 (e). Scale bar, 5μm. The percentage of GFP-SNAP47+ LC3+ mito-BFP+

puncta in total LC3+ mito-BFP+ puncta is shown (f). n = 3, 100 cells from three
independent experiments. g Schematic for the experimental procedures used in

the reconstituted fusion reactions. h, i The effect of SNAP47 acetylation on fusion
activity between proteoliposomes reconstituted with STX17 and VAMP8 (h).
neg.ctrl. denotes no addition of SNAP29 and SNAP47. Statistics of the liposome
fusion in (h) at 2400 s was shown (i). j, k The in vitro interaction of purified GST-
SNAP47 (WT or mutants) with His-STX17 and VAMP8 (j) or His-STX17 and His-
VAMP7 (k). l Schematic for the experimental procedures used in the SNARE com-
plex assembly assay. m-o Assembly of the SNARE complex containing STX17,
SNAP47 (WT, 3KR or 3KQ), and VAMP7/VAMP8 analyzed by FRET assays (m, n).
Statistics of EPR (relative proximity ratio of FRET) at 2,500 swere shown (o). Data in
(b–o) are presented as mean± SD, n = 3 independent experiments, statistical sig-
nificancewas assessed by a two-wayANOVA (b,o) orone-wayANOVA (d, f).P values
are indicated in the figure. Source data are provided as a Source Data file.
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In vitro binding assay
Genes were cloned into pGEX-4T-1 or pET-28a vector for expression in
E. coli BL21 (DE3). The recombinant proteins were purified by
glutathione-sepharose resin or Ni-affinity resin. In GST pull-down
assays, GST and GST tagged proteins were applied to GST resin, then
were incubatedwith 1μgHis-taggedproteins in binding buffer (20mM
Tris-HCl, pH 7.4, 150mMNaCl, 1mM EDTA, 0.5% NP40) supplemented

with protease inhibitor cocktail (Roche) for 2 h at 4 °C. After three
washes, proteins were eluted and dissolved in sample buffer for
SDS–PAGE and immunoblotting.

Liposome Fusion
Lipids were mixed at the proper ratio as indicated below to a final
concentration of 1mM.Donor liposome (reconstitutedwith full-length
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VAMP7 or VAMP8) contains 75.5 % POPC, 20 % POPE, 3 % PI-3-P, and 1.5
% DiI (molar ratio). Acceptor liposome (reconstituted with full-length
Syx17) contains 75.5%POPC, 20%POPE, 3%PI-3-P, and 1.5%DiD (molar
ratio). Lipid mixtures were dried under nitrogen flow and further
incubating in vacuum for 1 h at room temperature in the dark. Lipid
films were resuspended in TBS150 supplied with 0.2mM TCEP and 1%
3-[(3-Cholamidopropyl) dimethylammonio]-1-propane sulfate (w/v,
CHAPS) (VWR, #0465). Purified proteins were added to resuspended
lipids with a protein-to-lipid ratio of 1:500. After incubation on the ice
for 20min, lipid-protein mixtures were desalted using PD-10 desalting
column. Prepared proteoliposomes were stored at 4 °C in the dark
before using. Liposome fusion assays were carried out using FluoDia
T70 fluorescence plate reader (PTI) equipped with 530/10 excitation
filter, 580/10 and 667/10 emission filters at 37 °C. Donor and acceptor
liposomes were mixed at a concentration of 100μM (total lipids) with
addition of 2μM recombinant SNAP-29 or SNAP-47. Donor (DiI) and
acceptor (DiD) fluorescence were monitored every 20 s. Liposome
fusion signals were interpreted as the FRET efficiency between the
donor (DiI) and acceptor (DiD): Equation (1)

EPR =
IDiD

IDiD + IDiI

Where the IDiD and IDiI are the fluorescence intensities of DiD and DiI
under the 530/10 excitation filter, respectively. All the experiments
were independently repeated for three times.

FRET assay for SNARE complex assembly
Purified STX17 SNARE domain (residues 161−231, E198C), VAMP7
SNARE domain (residues 123−187, E152C), and VAMP8 SNARE domain
(10−74, E39C) were conjugated with 3-fold molar ratio of ATTO647
maleimide (ATTO-TEC GmbH, #AD 550-45) and ATTO550 maleimide
(ATTO-TEC GmbH, #AD 647N-45), respectively, according to the
manufacturer’s instruction. The conjugatedmixtures were desalted by
using PD-10 desalting column (Cytiva, #17085101) with TBS300 buffer.
The concentrations of fluorescent conjugated proteins were analyzed
by using UV-visible spectrophotometer (Shimazu UV-2450) according
to the manufacturer’s instruction.

SNARE complex assembly assays were carried out using FluoDia
T70 fluorescence plate reader (PTI) equipped with 530/10 excitation
filter, 580/10 and 667/10 emission filters at 37 °C. ATTO647N-STX17,
ATTO550-VAMP7, and ATTO550-VAMP8 were added to 0.5μM;
SNAP47(WT or mutant) was added to 2μM. The raw FRET efficiency,
proximity ratio (EPR), which indicates SNARE complex assembly, was
calculated according to Equation (2):

EPR =
IATTO647N

IATTO647N + IATTO550

Where IATTO647N and IATTO550are the rawfluorescent intensities of
acceptor (ATTO647N) and donor (ATTO550). Each experiment was
repeated 3 times independently.

In-Gel Digestion
Bands of interest were excised, cut into small pieces (1mm× 1mm),
rinsed with water and 2 × 30min washed in 50mM ammonium bicar-
bonate (AmBic) at 37 °C. The gel pieces were then shrunk in 100 %
acetonitrile (ACN) and shaken for 5min. Solvent was removed, and gel
pieces rehydrated in 10mMDTT in 50mM AmBic, followed by 40min
incubation at60 °C. Thegel pieceswereagain shrunk in 100%ACNand
shaken for 30min. Solvent was removed, and gel pieces rehydrated in
55mM iodoacetamide in 50mMAmBic, followedby40min incubation
at room temperature. The gel pieces were again shrunk in 100 % ACN
and shaken for 15min. The solvent was removed, gel pieces briefly
rinsed with 50mM AmBic and rehydrated in a small volume (10μL) of
50mM AmBic supplemented with Trypsin at 37 °C for 18 hrs. Peptides
were stage-tip purified, dried, and reconstituted in 10μL of 0.1 % for-
mic acid prior to analysis.

Protein acetylation identification by LC-MS/MS
The peptides were first separated with a Vanquish™ Neo UHPLC
LC system using trap-elute mode and then emitted into a Thermo
Scientific Orbitrap Ascend Tribrid mass spectrometer (Thermo
Fisher, San Jose) for identification. C18 column (Thermo Scien-
tific™ Acclaim™ PepMap™ 100 C18, 75 μm * 25 cm, 2 μm, 100 Å)
was used for the LC separation, and the column temperature was
maintained at 55 °C.

The mobile phases A and B were water and 80% acetonitrile
containing 0.1% formic acid, respectively. The elution gradient was set
as follows: 0–3min= 4% B to 4.5% B with a flow rate of 0.7 uLmin-1,
3–71min = 4.5% B to 20% B with a flow rate of 0.7 to 0.3 uLmin-1,
71–111min = 20% B to 35% B with a flow rate of 0.3 uLmin-1,
111–112min = 35% B – 55% B with a flow rate of 0.3 uLmin-1,
112–113min = 55%B to 99% Bwith a flow rate from0.3–0.7 uLmin-1 and
113–120min = 99% B with a flow rate of 0.7 uLmin-1. For single-shot
proteomics with data-dependent acquisition (DDA), the MS1 scan
resolution was set to 240, 000 andmaximum injection timewas set to
507ms. For the ITMS2 scans the ion trap scan ratewas set toTurbo, the
isolation window was set to 1.6, the AGC target was set to custom, the
normalized ACG target was set to 300%, and maximum injection time
was set to auto.

Database searching
The generated MS/MS spectra were searched against the human
SNAP47 protein with an uniport number of Q5SQN1 using the
SEQUEST searching engine in Proteome Discoverer 2.5 software. The
search criteria were as follows: full tryptic specificity was required, two
missed cleavage was allowed, carbamidomethyl on cysteine was set as

Fig. 6 | SNAP47 contributes to the HOPS complex recruitment to autophagic
vacuoles. a Co-IP analysis of interactions between the Flag-tagged HOPS subunits
with HA-SNAP47 or HA-SNAP29 in HEK293T cells. PI line is for indicating the
position of HA-SNAP47 and HA-SNAP29. n = 3 independent experiments. b Co-IP
analysis of interactions between the endogenous HOPS subunits with Flag-SNAP47
or Flag-SNAP29 in HEK293T cells. n = 3 independent experiments. c In vitro inter-
actions of purified GST-SNAP47 with His-tagged HOPS subunits. n = 3 independent
experiments. d The central ionic layer of SNAP47 was identified through sequence
alignment, participating residues glutamine-143 and glutamine-390 in SNAP47 are
indicated by red color. The PH domain, SNARE motif, and second SNAREmotif are
colored by blue, green, and laurel-green, respectively. e, f Co-IP analysis of the
endogenous HOPS subunits, STX17, VAMP7 and VAMP8 with HA-SNAP47 (WT or
2QR-Q143R/Q390R) in SNAP47 KO HeLa/Parkin cells (e). This result is part of
Supplementary Fig S2c. The proteins levels were quantified by ImageJ software and

normalized with HA-SNAP47 (f). g–j WT and SNAP47 KO HeLa/Parkin cells were
treated with OA for 4 h. Following separation via OptiPrep membrane flotation,
autophagosome-enriched fractions (light-density fractions 3–5) were analyzed by
immunoblotting using the indicated antibodies (g). The proteins levels were
quantified by ImageJ software and normalized with LC3 (h–j). k–nWT, SNAP47 KO,
and SNAP47 WT or Flag-SNAP47 LIR mutant complemented SNAP47 KO HeLa/
Parkin cells were treated with OA for 4 h. Following separation via the OptiPrep
membrane flotation, autophagosome-enriched fractions (light-density fractions
3–5) were analyzed by immunoblotting using the indicated antibodies (k). The
proteins levels were quantified by ImageJ software and normalized with LC3 (l–n).
Data in (f–n) arepresented asmean ± SD,n = 3 independent experiments, statistical
significance was assessed by a two-way ANOVA. P values are indicated in the figure.
Source data are provided as a Source Data file.
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Fig. 7 | Acetylation of SNAP47 inhibits its interaction with the HOPS complex.
a–gCo-IP analysis of interactions between Flag-SNAP47 (WT, 3KR or 3KQ) with HA-
tagged HOPS subunits in HEK293T cells (a–f). The levels of HA-tagged HOPS sub-
units were quantified by ImageJ software and normalized with Flag-SNAP47 (g).
h–k SNAP47 KO, and SNAP47 WT, SNAP47 3KR or SNAP47 3KQ mutant com-
plemented SNAP47 KO HeLa/Parkin cells were treated with OA for 4 h. Following
separation via the OptiPrep membrane flotation, autophagosome-enriched

fractions (light-density fractions 3–5) were analyzed by immunoblotting using the
indicated antibodies (h). The proteins levels were quantified by ImageJ software
and normalized with LC3 (i–k). Data in (g–k) are presented as mean ± SD, n = 3
independent experiments, statistical significance was assessed by a two-way
ANOVA. P values are indicated in the figure. Source data are provided as a Source
Data file.
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the fixed modifications, oxidation on methionine was set as the vari-
able modification, acetylation on lysine was set as the variable mod-
ification. Precursor ion mass tolerances were set at 10 ppm, and the
fragment ion mass tolerance was set to 0.6 Da for all MS2 spectra
acquired. Peptide spectral matches (PSM) were validated using the
Percolator provided by Proteome Discoverer software based on
q-values at a 1% false discovery rate (FDR). The MS/MS spectra were
manually checked to confirm the exact acetylation sites according to
the b- or y-characteristic fragments.

Statistical analysis and reproducibility
Statistical analysis was carried out on the data from at least three
independent experiments using Prism 8 (GraphPad software). Data
were presented as mean± SD, and statistical significance was deter-
mined by one-way ANOVA or two-way ANOVA. n values and P values
are indicated in the figure. Purposeful statistical subjects varied across
experiments, and each experiment are independently repeated three
times. No data were excluded from the analysis. Source data are pro-
vided as a Source Data file.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the main text or the supplementary materials.
The proteomics data have been deposited in the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identi-
fiers PXD052239. Source data are provided with this paper.
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