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Abstract: Bitter pit is one of the most important disorders in apples. Some of the fresh market apple
varieties are susceptible to bitter pit disorder. In this study, visible–near-infrared spectrometry-based
reflectance spectral data (350–2500 nm) were acquired from 2014, 2015 and 2016 harvest produce after
63 days of storage at 5 ◦C. Selected spectral features from 2014 season were used to classify the healthy
and bitter pit samples from three years. In addition, these spectral features were also validated using
hyperspectral imagery data collected on 2016 harvest produce after storage in a commercial storage
facility for 5 months. The hyperspectral images were captured from either sides of apples in the range
of 550–1700 nm. These images were analyzed to extract additional set of spectral features that were
effective in bitter pit detection. Based on these features, an automated spatial data analysis algorithm
was developed to detect bitter pit points. The pit area was extracted, and logistic regression was used
to define the categorizing threshold. This method was able to classify the healthy and bitter pit apples
with an accuracy of 85%. Finally, hyperspectral imagery derived spectral features were re-evaluated
on the visible–near-infrared reflectance data acquired with spectrometer. The pertinent partial least
square regression classification accuracies were in the range of 90–100%. Overall, the study identified
salient spectral features based on both hyperspectral spectrometry and imaging techniques that can
be used to develop a sensing solution to sort the fruit on the packaging lines.
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1. Introduction

Bitter pit is a physiological disorder in fruits such as apples and pears that develops before harvest
and during storage. Bitter pit produces dark-brown, corky and roundish lesions, which appear and
grow on the skin or in the flesh of the fruit. The bitter pits are prominent in the calyx end of the
fruit [1,2]. Bitter pit was recognized as an important disorder when it resulted in severe economic
issues during export and storage [2]. This disorder reduces marketability and product utilization value
and causes significant post-harvest losses in apples [3]. Bitter pit occurs in certain varieties of apple
cultivars and some research studies have reported 30% loss in Honeycrisp apples caused by bitter
pit [4].

Miqueloto et al. [4], do Amarante et al. [5], and de Freitas et al. [6] suggested that bitter pit
occurrence is related to the ratios of mineral nutrients such as calcium, magnesium and potassium
in apples. These studies indicate that fruits with low calcium concentration, where the calcium is
partially replaced by magnesium in calcium compounds, result in apple bitter pit formation. Calcium
contributes to the membrane structure, but magnesium cannot satisfy a similar role in support as
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calcium does in the cell structure. Without enough cell support, the plasma membrane structure can
be weakened, which can lead to cell death [6] and the collapsed cells appear as brown spots, known as
bitter pit, on the fruit.

Sensing techniques have been used in food-quality inspection such as fluorescence [7–10], X-ray
imaging [11–13], near-infrared spectroscopy [14–17], electronic nose [18,19], electronic tongue [20,21],
thermal imaging [22,23], and hyperspectral imaging [24–26]. Fluorescence sensing [7,8], near-infrared
spectroscopy [14,15], and computed tomography imaging [11] have been used in particular for apple
bitter pit detection. Over the past few years, hyperspectral imaging has developed as a more reliable
tool to inspect food quality [27–31] because of the spatial as well as the spectral information that
it provides. Each pixel in the hyperspectral image contains the full spectrum that can be used to
characterize that particular pixel [32]. Reflectance hyperspectral imaging in the range of visible to
near-infrared measures the reflectance of the tissue beyond the visible spectrum. The spectral profile
alters based on the changes in the chemical and physical properties [33], thus serving as a valuable
tool for characterizing the disorder on the fruit. In this study, we investigate hyperspectral imaging for
detecting bitter pit in apples.

In our previous studies [14,15], spectral features were selected from visible–near-infrared spectral
reflectance data (350–2500 nm) that could be used to detect bitter pit presence with the high accuracy.
In this study, the overall goal was to validate these extracted spectral features using hyperspectral
imaging systems (550–1700 nm). The reason for this imaging-based validation is that the multispectral
and hyperspectral imaging systems offer pixelated spectral information, which could be integrated
with fruit sorting units for identification of bitter pit apples before storage.

2. Materials and Methods

2.1. Samples

Table 1 shows the details on harvested apple samples from 2014 to 2016 as well as the fruits
collected from the storage facility (2016 harvest, data collected in 2017). In the 2014, 2015 and 2016
harvest seasons, healthy and bitter pit Honeycrisp apple samples were harvested and stored in a
controlled environment at 5 ◦C for 63 days to avoid samples appearing to be healthy that may develop
bitter pit during storage. The visible–near-infrared spectral reflectance data (350–2500 nm) were
collected from these samples. In addition, Honeycrisp apple samples were collected from Borton
Fruit storage facility in February 2017. The samples were kept in the commercial storage condition
from the harvest season in September 2016. In the apple harvest season, bitter pit apples were not
picked, and apples that developed bitter pit during approximately five months of storage were visually
selected for this study. The visual selection (independent of severity) allowed data collection with
balanced sample size. The samples were transported to the Center for Precision and Automated
Agricultural Systems (CPASS) in Prosser, WA, USA, in boxes for visible–near-infrared spectral data
(350–2500 nm) and image (550–1700 nm) acquisition. Bitter pit apples were separated from the healthy
ones based on two harvest locations in the facility.

2.2. Visible–Near-Infrared Spectra Acquisition and Analysis

The spectral reflectance of each set of apples was acquired using a spectroradiometer (Spectra
Vista Corporation, SVC HR-1024i, Poughkeepsie, NY, USA). The fiber optic probe was used to collect
spectra from three sides of the apple around the stem-calyx axis. The captured spectra ranged between
350–2500 nm and were radiometrically calibrated using the reference panel (Spectralon Reflectance
Target, Labsphere®, North Sutton, NH, USA) mounted on the reflectance probe. The probe field of
view covered the area of a circle with a diameter of 12 mm.

The captured spectra from the 2014 season were used to select spectral features to identify bitter
pit [14,15] based on partial least square regression (PLSR), stepwise discriminant analysis (SDA),
stepwise regression analysis, and rank features technique. Using some of these spectral features,
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in addition to water absorption, -OH bond, and red edge spectral features, the final set of spectral
features were determined as 730, 980, 1135, 1250, and 1450 nm, which were evaluated on 2014,
2015, 2016, and 2017 (2016 after storage) datasets. For this purpose, the classification accuracy of
the datasets with the selected features was estimated using PLSR and k-nearest neighbors (KNN).
PLSR is used to construct predictive models in case of a considerable number of features. It reduces the
predictors to a smaller number of components and applies least square regression on these uncorrelated
components [34]. KNN classifies based on the majority vote of its nearest neighbors in the feature
space. The closer neighbors get higher weight and the class is assigned according to the most common
class among its KNN [35]. Later, these spectral features were also evaluated using images from the
hyperspectral imaging system.

Table 1. Details of fruit samples used for spectral evaluation in this study.

Year of Data Collection Produce Type Location (in WA State)
Number of Samples

Healthy Bitter Pit

2017 From storage facility * Bergnoff 30 30
Horsey Jump 30 30

2016 63 days after field harvest Prescott 30 30
Burbank 30 30

2015 63 days after field harvest Prescott 30 30
Quincy 30 30

2014 63 days after field harvest Prescott 20 20
Burbank 20 20

* 2016 produce was stored in controlled atmospheric conditions by a commercial facility for 5 months prior to
sampling for analysis.

2.3. Hyperspectral Image Acquisition

Data collection using a hyperspectral camera (Hyperspec Extended VNIR, Headwall Photonics Inc.,
Fitchburg, MA, USA) was performed after the fruit temperature was brought to room temperature.
This line-scan camera has a spectral and spatial resolution of 12 nm and 320 pixels, respectively.
The wavelength ranged between 550–1700 nm with 148 channels. Images were captured from the
samples along the stem–calyx axis. Each apple was set individually on a black surface on the moving
platform. The illumination source (halogen tungsten) was fixed on two sides of the fruit at 45◦

from the vertical axis to prevent shadows resulting from the shape of the fruit. The apples were
placed on a small round base holder for stability during imaging, and the holder was not visible
in the image. Images were captured from two sides of the sample with 180◦ of the apple central
vector. For optimizing illumination without specular reflectance spots, different halogen tungsten
light sources and light diffusers were evaluated. This noise from light sources on the surface of
the sample has been reported in literature [36–39]. Although the light diffusers were successful in
eliminating saturated (specular reflectance) points, the light intensity for reflectance capture was
reduced considerably. Keresztes et al. [28] recommended elimination of such spots during image
processing as the most efficient way for removing such noise. The images were acquired by the
Hyperspec III® software (Headwall Photonics Inc., Fitchburg, MA, USA). Before imaging, dark and
white references were collected and the reflectance was calibrated internally. Later, these images were
further processed in Matlab® (Mathworks, Natick, MA, USA) for image analysis.

2.3.1. Hyperspectral Image Processing

Image datasets were analyzed using a custom algorithm developed in Matlab image-processing
toolbox (Figure 1). The batch of data was loaded into the software, and the mean spectral image
(MSI) was extracted. MSI was used to eliminate specular reflection spots from each apple image
(Figure 1b). The saturated spots showed 3–12 times higher reflectance than apple tissue depending
on the wavelength range. This property was used to define a threshold range larger or equal to
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three times the reflectance of MSI and the resulting image was used to mask hyperspectral images.
After thresholding to eliminate the saturated spots, each of 240 hypercubes (2 images per sample)
was normalized using Equation (1).

Rn(i) =
Ri√

(R 2
i +R2

i+1+ . . . + R2
n

) (1)

Rn(i) is the normalized reflectance for each wavelength, Ri is the reflectance of the same
wavelength in the captured spectra, and n is the number of features within the spectral acquisition
range. The images of the selected spectral features (730, 980, 1135, 1250 and 1405 nm) from
visible–near-infrared spectral reflectance analysis were extracted. However, only 730, 1250 and 1410 nm
spectral reflectance images were able to identify the bitter pit locations on the fruit with minimal noise.
Therefore, all the spectral images acquired from the hyperspectral system were re-examined to select
the best spectral features to classify apple healthy tissue and bitter pit.
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Figure 1. Automated hyperspectral image-processing algorithm process flow to detect area of bitter
pitted spots: (a) normalized spectral value of each image pixel; (b) extracted mean spectral image (MSI)
with elimination of saturation points; (c) extraction of spectral image features with potential for bitter pit
detection; (d) above and below images generated by summing 665, 731 and 797 nm images (<1000 nm),
and by summing 1217, 1283, 1349 and 1410 nm images (>1000 nm), respectively; (e) thresholding
of corresponding above and below summed images individually; (f) noise removal, binarization,
and masking with corresponding MSI image of corresponding above and below images; (g) detection
and edge removal corresponding to above and below images; (h) addition of both processed summed
images (above and below images shown in g); and (i) computation of number of bitter pits.

The ranges showing the best discrimination between healthy and bitter pit tissues were
determined. The selected wavelengths were in the ranges of 665–797 nm and 1217–1410 nm. The new
set of the selected image features from hyperspectral image data were 665, 731, 797, 1217, 1283, 1349,
and 1410 nm (Figure 1c). As each of the wavelength ranges showed slightly different defects on
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the fruit, one separate image was created for each range by averaging the reflectance spectra in that
range (Figure 1d), and a threshold was set to detect the bitter pit spots (Figure 1e). For image processing,
the images were transformed into a grayscale binary image. In this way, the white pixels represented
the healthy portion, while the black pixels represented bitter pits. Filtering was applied to remove
noise from the images. Morphological operations were used to enhance image segmentation and the
MSI image was masked on the spectral image (Figure 1f). Due to the curvature at the edge of the
fruit, the spectral reflectance intensities at different wavelengths were lower compared to the tissue.
As this could lead to noisy data that may have features similar to bitter pit, an edge detection operation
was applied to the images, and edges (border pixels) were removed from each image (Figure 1g).
Finally, the two images were binarized and the thresholded image was masked on it for background
removal. The resulting image only contained bitter pit spots (Figure 1h). In the absence of bitter pit,
the algorithm reported the result as zero. In the presence of bitter pit, these points were calculated,
and the number and area of bitter pits were reported (Figure 1i). All the processes of the algorithm
were operated automatically on each batch of the dataset. The processing time for each image with the
spatial resolution of the line scan camera was approximately 20 s. Parallel computing and multispectral
imaging with specific wavelengths can reduce both of the processing and imaging time for applications
in the packaging facility.

2.3.2. Logistic Regression

Logistic regression was used to predict the threshold of the disorder in apples. Logistic regression
is a statistical method that predicts the probability of each sample falling in either of the binary classes
(healthy or bitter pit). It serves as a probability model to determine the threshold to classify the
categorical data. This method is described thoroughly in Jarolmasjed et al. [11]. It is possible to
estimate the optimized threshold for classification using this method. The threshold of the pit area
is extracted from the model when the odds of the fruit being bitter pitted is 50%. This threshold is
logarithmic in the model and equals 22.38 pixels when converted (Figure 2). This threshold was used
as a feature to classify bitter pit and healthy apples. The distribution of the bitter pit area on apples
was analyzed to categorize the apples in severely, moderately, and mildly affected fruit. Logistic
regression was applied to the data from 665–797 nm and 1217–1410 nm separately, and the thresholds
were determined as 5.10 and 1.99, respectively.
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Figure 2. Logistic regression (logarithmic) to define the threshold of the pit area between healthy and
bitter pit apples using the images.

2.3.3. Re-evaluation of the Spectral Features in Visible–Near-Infrared Reflectance Spectral Data

The spectral reflectance data of the selected wavelengths extracted from hyperspectral images
were re-analyzed using visible–near-infrared spectral reflectance data with PLSR and KNN.
The classification methods were applied to the spectral reflectance data that were separated into
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training and testing datasets (3:1). The classifier performance was evaluated by randomizing
the datasets three times. The algorithms were developed in Matlab software using the statistics
and machine learning toolbox, and cross-validation of 5 was applied in each run during
model development.

2.4. Statistical Analysis

Logistic regression and all statistical analysis were performed using R Studio (ver. 0.99.451,
R Studio Inc., Boston, MA, USA). Results were inferred at 5% level of significance.

3. Results and Discussion

3.1. Classification using Selected Visible—Near-Infrared Reflectance Spectral Features

Table 2 shows the classification accuracies of all four datasets using the selected
visible–near-infrared spectral features (730, 980, 1135, 1250 and 1405 nm). These spectral features
could classify visible–near-infrared reflectance data with an overall accuracy of 75–97%. The images
associated with these spectral features were extracted from the hyperspectral data. However, except
for 730, 1250 and 1410 nm, other images were unable to provide distinctions of bitter pit locations in
the spatial level (Figure 3).
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Figure 3. Hyperspectral images extracted from the selected visible–near-infrared reflectance spectral
features: (a) 730 nm; (b) 980 nm; (c) 1130 nm; (d) 1250 nm; and (e) 1410 nm, and from the selected
hyperspectral imaging features: (f) 665 nm; (g) 797 nm; (h) 1217 nm; (i) 1283 nm; and (j) 1349 nm in
addition to 730 and 1410 nm.

The hyperspectral images were examined to select spectral features capable of discriminating
healthy and bitter pit tissues, and re-evaluated with visible–near-infrared spectral reflectance data.
The selected features were 665, 731, 797, 1217, 1283, 1349, and 1410 nm. PLSR and KNN were applied
to these features extracted from the visible–near-infrared spectral reflectance data (Table 2). Bitter pit
creates internal breakdown of the flesh below the skin, and later it appears on the skin. Therefore
using the near-infrared range of imaging can help in detecting the pits below the skin as it penetrates
into the fruit’s flesh [40,41]. The fruit skin reduces light penetration into the fruit [42], and depending
on the wavelength, the penetration depth can be different [40]. Lammertyn et al. [40] concluded that
near-infrared light can penetrate 2–4 mm in Jonagold apple tissue in the range of 500–1900 nm. Their
results showed that the depth is higher between 700–900 nm and lower at the chlorophyll absorption
peak (692 nm) and water absorption band (1490 nm). With this information, it is possible to postulate
that the wavelengths can potentially detect pre-symptomatic bitter pit in the subsurface of the fruit.

Literature also suggests that these wavelengths could be indicators of other fruit properties.
Yang et al. [43] reported 665 and 793 nm as a couple of the most effective wavelengths that define
blueberry fruit maturity. Yang et al. [44] described a steep rise between 640 and 683 nm that could
describe the presence of frass on mature tomato. Barbin et al. [45] also observed efficient regression
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models of total viable count at 1344 and 1211 nm. They also concluded that 1211, 1241 and 1388 nm
are the best features for psychrotrophic plate count in meat microbial contamination. In similar
studies [46,47], the chosen wavelength for total viable counts in chicken breast included 1218 and
1345 nm. The discussed bands chosen in different research studies are in the close neighborhood of the
bands selected in this study. Overall, the features of the hyperspectral image performed better in the
PLSR classification of visible–near-infrared data specifically in reducing false positive.

3.2. Hyperspectral Image Data

3.2.1. Classification Results Based on Bitter Pit Area

The bitter pit area was used to classify the apples into two groups of healthy and bitter pit.
The threshold was determined by logistic regression for using the entire selected wavelength as well as
using 3 features and 4 features. The classification results are shown in Table 3. Although using a lower
number of features does not significantly affect the accuracy, results indicate that using 7 features is
effective in reducing the false positive that can prevent healthy apples being identified as bitter pit.
Misclassification due to false positives may have occurred because of the slight defects on the healthy
apple skin. To eliminate this error, future work can identify the size of each pit and remove them if
smaller than a certain pixel number. Nicolai et al. [31] also showed that bitter pit was detectable using
near-infrared hyperspectral imaging even without visible symptoms on the surface.

Table 2. Partial least square regression (PLSR) and k-nearest neighbor (KNN)-derived percent
classification accuracies for visible–near-infrared spectrometry (730, 980, 1135, 1250, and 1450 nm),
and hyperspectral imaging (665, 731, 797, 1217, 1283, 1349, and 1410 nm) data derived selected features.

Spectral
Features (nm)

Year of Data
Collection

Classification Accuracy (Average ± Standard Deviation, %)

PLSR KNN

Overall Accuracy False Negative False Positive Overall Accuracy False Negative False Positive

730, 980, 1135,
1250, 1450

2017 90 ± 3 10 ± 3 0 ± 0 97 ± 0 0 ± 0 3 ± 0
2016 97 ± 0 3 ± 0 0 ± 0 100 ± 0 0 ± 0 0 ± 0
2015 76 ± 6 7 ± 4 17 ± 7 71 ± 2 17 ± 4 12 ± 2
2014 75 ± 5 0 ± 0 25 ± 5 75 ± 10 8 ± 6 17 ± 6

665, 731, 797,
1217, 1283,
1349, 1410

2017 90 ± 0 12 ± 3 2 ± 3 88 ± 9 8 ± 9 9 ± 5
2016 100 ± 0 0 ± 0 0 ± 0 100 ± 0 0 ± 0 0 ± 0
2015 93 ± 4 2 ± 3 6 ± 7 67 ± 9 15 ± 9 18 ± 12
2014 92 ± 3 3 ± 3 11 ± 10 80 ± 5 5 ± 5 14 ± 8

Table 3. Classification accuracy using the area threshold estimated using hyperspectral feature analysis.

Number of Spectral Features Overall Accuracy (%) False Negative (%) False Positive (%)

7 features 85.0 5.0 10.0
3 features (665, 731, 797 nm) 82.0 6.0 12.5

4 features (1217, 1283, 1349, 1410 nm) 81.0 3.0 16.0

3.2.2. Bitter Pit Area Distribution in Healthy and Bitter Pit Apples

The bitter pit area was useful in assessing the apple samples and distinguishing the bitter pit on
the fruit surface. However, some bitter pit apples showed such a low bitter pit occurrence that it could
be compared to selected anomalies on healthy apples. Figure 4 shows the distribution of the bitter
pit area on apples when all of the features, as well as 3 and 4 features, were used. When all 7 selected
features were used, the area was larger compared to the other two regions. This suggests that each
of the 3 and 4 features are contributing to the selection of the bitter pit area. This result showed that
using all 7 features provides better detection, although not significantly different.

Figure 5 shows sample apples with different bitter pit intensities and number of bitter pit apples
in three bitter pit apple categories. This result helps in defining the extent of bitter pit disorder on
each apple in order to make management decisions in the sorting facilities by categorizing severely,
moderately and mildly bitter pitted apples. The mildly and moderately bitter pit apples were separated
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according to the threshold obtained in the logistic regression for distinguishing between healthy and
bitter pit apples. For categorizing moderate and severe bitter pit, the appearance of the apple was
taken into account. This categorization can have a great impact on apple production and wholesale
marketing, as it prevents the packaging of fruits with bitter pit disorder and helps decisions about
the use of such apples in processing rather than the fresh market. The proposed algorithm enables
the industry to implement this method for other injuries as well as bitter pit on different apple
varieties. This proves that having spatial information in hyperspectral imaging can help in food
inspection applications.
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4. Conclusions

Apple bitter pit detection in early to non-symptomatic stages can prevent packaging of affected
produce, thereby reducing associated labor and transportation costs. Based on the spectral dataset
analysis of the four seasons, it can be concluded that the spectral bands of 730, 980, 1135, 1250 and
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1405 nm have the potential to detect bitter pit. The PLSR and KNN classifiers confirmed the validity of
the above bands with accuracies in the ranges of 71–100%. The hyperspectral imaging system of the
produce samples had four additional spectral bands (665, 731, 797, 1217, 1283, 1349, and 1410 nm) that
can be applied to bitter pit detection. These salient spectral features based on both the hyperspectral
spectrometry and imaging techniques can be integrated with imaging tools on the packaging lines in
order to sort fruits.
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