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Cardiovascular health is a primary research focus, as it is a leading contributor
to mortality and morbidity worldwide, and is prohibitively costly for healthcare.
Atherosclerosis, the main driver of cardiovascular disease, is now recognized as
an inflammatory disorder. Physical activity (PA) may have a more important role in
cardiovascular health than previously expected. This review overviews the contribution
of PA to cardiovascular health, the inflammatory role of atherosclerosis, and the
emerging evidence of the microbiome as a regulator of inflammation.
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AN OVERVIEW OF ATHEROSCLEROTIC CARDIOVASCULAR
DISEASE

Cardiovascular disease (CVD) is the worldwide leading cause of death and is a global economic
burden (Cook et al., 2014). Most of the disease is driven by a process known as atherosclerosis—the
buildup of plaque which occludes arterial vessels (Rajamani and Fisher, 2017). Throughout disease
progression, the atherosclerotic plaque loses stability and becomes prone to rupture, a sudden event
that can lead to arterial thrombosis and cause deleterious acute ischemic events like myocardial
infarction (MI) and stroke (Gisterå and Hansson, 2017).

Atherosclerosis is influenced by a number of risk factors including, lifestyle choices (i.e.,
diet, physical activity, and cigarette smoking), advancing age, and associated disorders like
hypertension, diabetes, obesity, and dyslipidemia (Tegos et al., 2001). However, traditional risk
factors alone are inadequate at predicting atherosclerotic CVD. According to the Participants of
Early Subclinical Atherosclerosis (PESA) study, subclinical atherosclerosis was detected in almost
50% of participants that were free of the conventional cardiovascular risk factors (Fernández-
Friera et al., 2017). Statins, the gold standard treatment for lowering lipids (Grundy, 2016), have
proven effective at reducing cardiovascular events, yet their contribution to reducing mortality
remains questionable (Cholesterol Treatment Trialists’ [CTT] Collaborators, 2012; DuBroff and
de Lorgeril, 2015). The recently developed proprotein convertase subtilisin-kexin type 9 (PCSK9)
inhibitors effectively lowered cholesterol levels and reduced cardiovascular events when taken in
conjunction with statins (Waters and Hsue, 2017). However, some of these studies failed to meet
expectations based on the linear relationship between LDL reduction and percentage reduction of
cardiovascular events based on data from 14 clinical trials using statins (Waters and Hsue, 2017).
A possible explanation is that PCSK9 inhibitors failed to reduce C- reactive protein (CRP) levels, a
clinical biomarker of inflammation and cardiovascular risk (Waters and Hsue, 2017).
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Atherosclerosis is recognized as a chronic systemic
inflammatory disease with focal manifestations at the vascular
site (Ross, 1999; Conti and Shaik-Dasthagirisaeb, 2015). CVD is
often pronounced in other immune disorders such as rheumatoid
arthritis (RA) or systemic lupus erythematosus (SLE) (Gabriel,
2008; Abu-Shakra and Novack, 2012; Skeoch and Bruce, 2015;
Henrot et al., 2018). Recent studies propose the gut microbiome
as an emerging regulator of inflammatory conditions including
atherosclerosis (Ridaura et al., 2013; Romano et al., 2015;
Halfvarson et al., 2017; Kreznar et al., 2017; Slingerland et al.,
2017).

The World Health Organization, American Heart Association,
and European Society of Cardiology recommend several
significant behavioral changes for the preventative care of CVD
including smoking cessation, dietary changes, weight control,
alcohol intake, and physical activity (PA) (Goff et al., 2014; Piepoli
et al., 2016; Whelton et al., 2018). Of particular interest is the
contribution of PA to CVD (Lin et al., 2015; Murtagh et al.,
2015). Utilizing PA as therapy is particularly appealing because its
implementation is cost-effective for the patient and the benefits
can ease the global economic burden by reducing the cost of care
(Valero-Elizondo et al., 2016). Recently, PA has been the focus
of intense investigation for its ability to regulate the underlying
immune system. This review will focus on the impact of PA
as it relates to the regulation of systemic inflammation and the
contribution of the microbiome.

PHYSICAL ACTIVITY AND
CARDIOVASCULAR HEALTH

Regular PA is associated with many health benefits, including
improving cholesterol levels, reducing body weight and blood
pressure, increasing insulin sensitivity, and neuroprotective
effects (Myers, 2003; Chieffi et al., 2017). Indeed, some of these
benefits have been attributed to in part by the small neuropeptides
called Orexins (Chieffi et al., 2017). Orexin A is released into
plasma upon exercise, and contributes to regulating energy
balance (Messina et al., 2016, 2017).

Numerous studies have established that PA is beneficial for
reducing the risk and effect of CVD (Diaz et al., 2016; Vella
et al., 2017; Florido et al., 2018). Physically fit individuals have
a reduced risk of developing CVD (Kokkinos, 2012). A 10 year
follow up study that surveyed senior participants found that
leisure time PA reduced the risk of CVD incidents and mortality
in a dose-dependent manner (Barengo et al., 2017). The Multi-
Ethnic Study of Atherosclerosis (MESA) suggests that moderate
to vigorous PA accompanies a more favorable inflammatory
marker profile (Vella et al., 2017). The Atherosclerotic Risk
in Communities (ARIC) Study evaluated participants with no
history of CVD, and found that maintenance and engagement
of PA were effective in decreasing heart failure risk (Florido
et al., 2018). Additionally, the HUNT Study (Nord-Trondelag
Health Study) showed that sustained PA, and not weight
loss, substantially improved survival at 30 years follow up
in individuals with coronary artery disease (Moholdt et al.,
2018).

Physical activity has profound effects on vascular function and
lumen dimension, and structural cardiac modifications (Green
and Smith, 2017; Francavilla et al., 2018). For example PA
regulates heart rate variability (HRV), a predictive factor for
sudden cardiac death and MI (Sessa et al., 2018). Elderly athletes
display less Carotid Intima Thickening and a more favorable
HRV compared to their sedentary counterparts (Galetta et al.,
2013; Soares-Miranda et al., 2016). Animal models have also
demonstrated that old rats subjected to exercise training had
reversed age-related microvascular dysfunction (Hotta et al.,
2017).

Sedentary behavior (SB) is described as the lowest energy
expenditure for waking activities (e.g., sitting or lying down),
and is measured by metabolic equivalents (METs). Although
uncoupling SB from associated illness and other risk factors like
obesity and RA is difficult, SB promotes a pro-inflammatory
status (Fenton et al., 2017). Biomarker analysis from a cross-
sectional study of senior men found that higher levels of SB
correlated with higher levels of pro-inflammatory markers IL-
6, CRP, and tPA (Parsons et al., 2017). There is evidence that
reallocation of SB with moderate to vigorous PA promotes a
better inflammatory profile, with increased adiponectin levels
and lower IL-6, C3, leptin, and leukocyte concentrations (Phillips
et al., 2017). Moreover, patients with an inflammatory disease
like RA, that have extended sedentary bouts have an increased
risk of developing cardiovascular events and could benefit by
interrupting sedentary time with leisurely PA (Fenton et al.,
2017). Long-term studies, like the 15-years long Tanushimaru
Study, confirm that decreased sitting time reduces the risk of
mortality (Sakaue et al., 2017).

INFLAMMATION AND
ATHEROSCLEROSIS

The first critical step of atherosclerosis development is
endothelial dysfunction and increased endothelial permeability
that facilitates the build-up and deposition of low-density
lipoproteins (LDLs) into the intima layer of the arterial wall
where they become oxidized (oxLDL) (Lusis, 2000). Monocytes
from the circulation infiltrate the arterial wall and differentiate
into macrophages that engulf oxLDL becoming foam cells. Foam
cells trapped in the intima layer become apoptotic and necrotic,
which form the basis of a necrotic core (Ross, 1999; Gisterå and
Hansson, 2017). Immune cells express cytokines and chemokines
that are critical modulators of inflammatory signaling during
atherogenesis (Turner et al., 2014; Ramji and Davies, 2015).
Cytokines are also highly regulated during and as a consequence
of exercise (Pedersen, 2017). Although there are many cytokines
implicated in atherosclerosis, we will address the top key players,
which are summarized in Table 1.

The initial injury to endothelial cells (ECs) by LDL
typically occurs at the arterial branching points where laminar
flow becomes disturbed, which results in morphological and
functional changes that promote the permeability of the EC
layer and allow retention of LDL (Moore et al., 2013). Activated
ECs recruit immune cells by enhancing expression of adhesion
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TABLE 1 | Regulation of key chemokines and cytokines in atherosclerosis and physical activity.

Cytokine CVD effect Regulation in
atherosclerosis

Reference PA effect Regulation in physical
activity

Reference

CCL2/MCP-1 ↑ Upregulated in atherosclerosis Lin et al., 2014 ↓ Low intensity training for
8 weeks decreased mRNA
levels of MCP-1 in
leukocytes

Yakeu et al., 2010

CCL5 ↑ Blocking receptor binding
reduces Atherosclerotic
Plaque Formation

Veillard et al., 2004 ↓ Circulating CCL5 was
decreased in obese
patients subjected to
3 months of physical
activity

Baturcam et al., 2014

CX3CL1 ↑ Upregulated on Monocytes
from Coronary Artery Disease
patients

Apostolakis et al., 2007 ↑ Increased after a single
bout of exercise

Strömberg et al., 2016

IFN- γ ↑ Induces macrophage gene
expression. Mice lacking
IFN-gamma receptor have
reduced atherosclerotic
plaque

Gupta et al., 1997 ↑ Moderate exercise
increased levels on
mononuclear cells

Zamani et al., 2017

IL-10 ↓ Overexpression inhibits
plaque progression in mice
and decreases cholesterol
levels

Eefting et al., 2007 ↑ Increased by 940% on
mononuclear cells in
high-risk CVD patients
subjected to long term
exercise

Smith et al., 1999

IL-1b ↑ Inhibition decreases severity
of atherosclerosis in mice and
in humans

Kirii et al., 2003; Taylor et al.,
2011; Shah et al., 2018

↑ Plasma concentrations
increase immediately
following exercise and
remain elevated for 24 h

Moldoveanu et al., 2000

IL-2 ↑ Blocking antibodies reduce
atherosclerosis

Upadhya et al., 2004 ↓ Levels decrease following
strenuous exercise

Shephard and Shek, 1994

IL-4 ↑ Conflicting Reports. IL-4
deficiency in mice reduces
atherosclerosis, but
exogenous delivery showed
no involvement in the disease

Davenport and Tipping,
2003; King et al., 2007

↑ Increased by 94% on
mononuclear cells in
high-risk CVD patients
subjected to long term
exercise

Smith et al., 1999

IL-5 ↓ Macrophage expression of
IL-5 in mice reduced lesion
size by 43%

Zhao et al., 2015 ↑ Higher expression in the
plasma profile of exercise
trained individuals

Schild et al., 2016

IL-6 ↑ Upregulated in cardiovascular
disease. Exogenous
expression of IL-6 increases
plaque size

Huber et al., 1999 ↑ 100-fold increase after
acute exercise

Pedersen et al., 2001

TGF-b ↓ Reduces atherosclerosis by
weakening T cell activation

Robertson et al., 2003 ↑ Increased by 43% on
mononuclear cells in
high-risk CVD patients
subjected to long term
exercise

Smith et al., 1999

TNF-α ↑ Inhibition reduces
atherosclerosis in ApoE−/−
mice

Branen et al., 2004 ↓ Reduces circulating levels
in patients with metabolic
syndrome

Palomo et al., 2010

molecules (e.g., VCAM and ICAM) and chemokines (Gimbrone
and García-Cardeña, 2016). Pro-inflammatory chemokines are
crucial for atherogenesis, for example, inhibition of a three
chemokine axis (CCL2, CCL5, and CX3CL1) in mouse models
leads to almost a complete attenuation of atherosclerosis (Ramji
and Davies, 2015). Although chemokine pathways have been
exploited as therapeutic targets (Sheikine and Hansson, 2006),
few drugs have been FDA approved, but none for the treatment
of atherosclerosis. For instance, the CCR5 antagonist Maraviroc

was developed for the treatment of HIV and the low molecular
weight CXCR4 antagonist Plerixafor (AMD3100) for stem cell
mobilization (Koenen and Weber, 2011). In fact, modulating
these pathways in complex disorders like CVD may be difficult
due to the high risk of side effects like increased infection rate
(Koenen and Weber, 2010).

Interferon-γ (IFN-γ) is a pro-inflammatory cytokine that
functions as the primary activator of macrophages and
has been shown to influence many stages of atherogenesis
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(Gupta et al., 1997; Voloshyna et al., 2014). IFN-γ enhances
Monocyte Chemotactic Protein-1 (MCP-1) levels, a chemokine
that recruits monocytes (Struyf et al., 1998) and the expression
of Interferon-induced protein 35 (IFI35), a protein that
contributes to EC proliferation and migration (Jian et al.,
2018). Moreover, IFN-γ acts synergistically with other pro-
inflammatory cytokines, like TNF-α to enhance chemokine
production in monocytes and T-cells (Mehta et al., 2017).

Interleukin-1β (IL-1β) is a pro-inflammatory cytokine and
a prime mediator of inflammation in CVD (Moss and Ramji,
2016). Therapeutic targeting of IL-1β in the Canakinumab Anti-
inflammatory Thrombosis Outcomes Study (CANTOS) trial has
provided the first proof-of-concept that inflammation is a key
driver of cardiovascular events in high risk populations (Ridker
et al., 2017). Inhibition of IL-1β reduced the risk of non-fatal
CV events by 17% in patients with recent MI and elevated high
sensitivity CRP (hs-CRP) (Ridker et al., 2017). Remarkably, a
subgroup analysis of the CANTOS revealed that patients who
achieved hs-CRP levels less than 2 mg/dl had a 25% reduction
in major adverse cardiovascular events (Ridker et al., 2018),
suggesting that the residual CV risk in this subpopulation was
due to inflammation.

Interleukin-6 is a pleiotropic cytokine that is induced by IL-
1β (Cahill and Rogers, 2008) and modulated by Canakinumab
(Ridker et al., 2012). IL-6 can act as both a pro- or anti-
inflammatory molecule, and thus its function is context
dependent (Reiss et al., 2017). It participates in two distinct
signaling mechanisms, binding to either the membrane-tethered
IL-6 receptor (classical pathway) or a soluble form of the IL-6
receptor (trans-pathway). Trans-signaling is regarded as pro-
inflammatory, while classical signaling is as anti-inflammatory
(Scheller et al., 2011). Coronary artery disease patients have
high levels of IL-6 which are also a predictive biomarker of the
disease (Wainstein et al., 2017). However, mouse studies show
that IL-6 depletion in ApoE−/− mice promotes atherosclerosis
(Schieffer et al., 2004). Physical activity regulates IL-6 levels
and acute exercise induces the release of IL-6 from the skeletal
muscles into the circulatory system (Pedersen, 2017). Of note,
IL-6 induced during exercise stimulates the release of anti-
inflammatory cytokines IL-10 and IL-1ra (Pedersen, 2006, 2017).
IL-6 is also a mediator of lipid metabolism that stimulates
lipolysis and fat oxidation (van Hall et al., 2003) and has been
shown to increase after a meal (Payette et al., 2009).

IMMUNE CELLS AND PHYSICAL
ACTIVITY

Exercise has a profound effect on both the adaptive and innate
immune system by regulating immune cell populations.

On the innate arm, natural killer (NK) cells, neutrophils,
and monocyte are all regulated by exercise (Koelwyn et al.,
2015). NK cells are modulated during exercise by increasing in
number and cytotoxic activity (Pedersen and Ullum, 1994; Na
et al., 2000) and increased NK cell infiltration of tumors was
observed upon exercise (Pedersen et al., 2016). Neutrophils, a
hallmark of acute inflammation, in aging become dysfunctional

(Jackaman et al., 2017). One study showed that PA promotes
the migratory function of neutrophils in older adults (Bartlett
et al., 2016). PA can also influence monocyte polarization with a
decrease of classical monocytes, and an increase of intermediate
and non-classical monocytes (Slusher et al., 2017). Another
study found that strenuous, anaerobic exercise leads to the acute
mobilization of intermediate monocytes by a catecholamine-
dependent mechanism (Steppich et al., 2000). Particularly,
acute exercise was associated with a reduction of monocyte-
platelets aggregates, which are associated with increased risk of
cardiovascular clinical events (Michelson et al., 2001).

Physical activity also regulates the expression of inflammatory
markers and this effect is dependent on the exercise intensity. For
example, studies in obese individuals subjected to either medium
or high intensity exercise regimes demonstrated that the training
intensity can modulate differently the expression of chemokine
receptors. Moderate training promoted expression of CCR2 and
CXCR2 on monocytes, while higher intensity training promoted
CCR5 expression on monocytes, neutrophils, and T-cells (Barry
et al., 2017).

On the adaptive side, either prolonged or strenuous exercise
affects the balance of types of T-cells. Exercise promotes the
predominance of Th2 cells versus Th1 cells. Th1 cells produce IL-
2 and IFN-γ, while Th2 cells produce IL-4, IL-5, IL-6, and IL-10
(Sharif et al., 2018). Regulatory T-cells (Treg) belong to a subset
of T-helper cells, are anti-inflammatory, atheroprotective (Foks
et al., 2015), and are also affected by exercise. A study of elite
Olympic athletes from various disciplines, found that athletes
displayed higher frequencies of Tregs compared to age and sex-
matched controls and this effect was associated with PA intensity
(Weinhold et al., 2016). Tregs release immunosuppressive
cytokines like IL-10, IL-35, and TGF-β (Olson et al., 2013),
and decrease the production of pro-inflammatory cytokines like
IFN-γ (Mallat et al., 2003; Ou et al., 2018).

THE MICROBIOME AND CVD: THE ROLE
OF PHYSICAL ACTIVITY AND LINKS TO
INFLAMMATION

There is growing evidence indicating that the gut microbiome
is a critical player in modulating host physiology (Clemente
et al., 2012). Deviations from microbial homeostasis have been
associated with various diseases, such as inflammatory bowel
disease (Berg et al., 2015), arthritis (Clemente et al., 2018), or food
allergies (Bunyavanich et al., 2016). Importantly, the microbiome
has also been shown to play a critical role in obesity (Karlsson
et al., 2012), atherosclerosis (Karlsson et al., 2012), and in the
pathogenesis and progression of CVD (Kelly et al., 2016; Jie et al.,
2017).

Karlsson et al. (2012) demonstrated that the genus Collinsella
was enriched in patients with symptomatic atherosclerosis, while
Roseburia and Eubacterium were enriched in healthy controls.
These changes in bacterial composition were paralleled by
enrichment in patients of bacterial genes encoding peptidoglycan
synthesis (which might contribute to atherosclerosis by
enhancing neutrophil function) and depletion of phytoene
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FIGURE 1 | Visual Summary. Atherosclerosis is an inflammatory disease that is regulated by systemic inflammation. Physical activity can have beneficial effects
(green arrows) by regulating systemic inflammation directly, and through behavioral and environmental factors that cause inflammation, like sedentary behavior,
obesity, hypertension, and the microbiome. These risk factors contribute to deleterious effects (red arrows) and promote atherosclerosis development. The impact of
the microbiome on atherogenesis is an emerging field, and the mechanism of how physical activity regulates the microbiome is not completely understood.
Inflammation may also regulate the microbiome (van den Elsen et al., 2017; Chen et al., 2018).

dehydrogenase and serum levels of b-carotene (hypothesized
to have beneficial health effects) (Karlsson et al., 2012).
A more recent study examined the association between
gut microbiota and lifetime CVD risk in 112 participants
in the Bogalusa Heart Study (Kelly et al., 2016). High risk
participants had lower microbial diversity, as well as an
increase in the abundance of Prevotella and Tyzzerella, and
a decrease in Alloprevotella and Catenibacterium. A study
in a cohort of 405 Chinese subjects found an enrichment in
Enterobacteriaceae and Streptococcus spp. in atherosclerosis
patients, suggesting that at least some of the associations between
the gut microbiome and CVD might be population-specific (Jie
et al., 2017).

The mechanisms by which the microbiome plays a role
in CVD are however still poorly understood. One possible
mechanism is the production of bacterial metabolites that induce
the differentiation of pro- and anti-inflammatory cytokines,
which has been demonstrated to be of critical importance in
mouse models of colitis (Atarashi et al., 2013). Alternatively,
the gut microbiota has also been shown to contribute to
atherosclerosis through the conversion of choline or L-carnitine
into TMAO (trimethylamine-N-oxide) (Koeth et al., 2013).
Plasma TMAO is a biomarker of CVD risk associated with
increased atherosclerotic stenosis, risk of major cardiovascular
events, and mortality (Senthong et al., 2016). The deleterious
effects of TMAO are hypothesized to be due to its promotion
of platelet aggregation (Ridaura et al., 2013; Romano et al., 2015;
Kreznar et al., 2017; Chen et al., 2018).

Given the reported associations between microbiome and
CVD, several groups have investigated whether the beneficial

effects of PA in CVD risk could be partially mediated by
the changes induced in microbial composition. A study of
professional rugby athletes and matched controls found that
athletes had lower inflammatory status, and enrichment in
bacterial diversity (Clarke et al., 2014). Differences were also
observed in the abundance of 48 bacterial taxa, with notable
enrichment in Ruminococcaceae, Succinivibrio, and Akkermansia
in athletes compared to controls. However, diet was significantly
distinct between the groups, and so the differences in microbial
diversity and composition might be attributable both to PA and
nutritional intake.

A more recent study aimed at disentangling the correlation
between exercise, diet, and obesity status in shaping the gut
microbiome. Eighteen lean and 14 obese subjects underwent
6 weeks of supervised endurance-based exercise training,
followed by a washout period of 6 weeks in which they returned
to a sedentary lifestyle (Allen et al., 2018b). Interestingly, changes
in gut microbiome were dependent on obesity status, and
short-chain fatty acids concentrations increased in lean but not
in obese participants. Additionally, gut microbiome alterations
disappeared once exercise ceased, suggesting that sustainment of
PA is required for these changes to persist.

The causality of these associations is difficult to assess
in human studies. Germ-free (GF) animals provide a
suitable model to determine whether exercise-mediated
changes in gut microbiome can induce specific phenotypes.
Allen et al. (2018a) showed that transplanting the gut
microbiome from either exercised or not exercised mice
to GF mice induced specific distinct changes in the
microbiome, metabolome, colonic inflammation, and body
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mass of the recipient mice (Allen et al., 2018a). Furthermore,
colonization from exercised mice resulted in an attenuated
response to DSS-induced colitis. These results demonstrate that
exercise can alter gut microbiome and that those changes can
result in beneficial health outcomes for the host.

Overall, current evidence points to an association between
CVD and gut microbiome through the production of bacterial
metabolites that induce potent host pro- or anti-inflammatory
responses. Strategies to alter bacterial content are therefore of
high interest for their potential therapeutic value. Together with
diet (Llewellyn et al., 2017) and fecal transplants (Paramsothy
et al., 2017), PA represents an additional approach through
which the beneficial effects of gut microbiome modulation can
be achieved.

CONCLUSION

Ongoing research focusing on the immune system and CVD
continues to probe the molecular intricacies that contribute
to atherosclerosis, including the individual contribution of
immune cells, cytokines, and the microbiome (summarized in
Figure 1). While an association between systemic inflammation,
gut microbiome, and CVD is emerging, there is a great need to
further our understanding of what constitutes normal biological
variation versus pathological changes.

Immune modulatory therapeutics like Canakinumab show
great promise to aid in the treatment of atherosclerosis,

yet, the development of molecularly targeted pharmacological
intervention is a challenging process due to the multifactorial
nature of atherosclerosis. Additionally, the use of drugs to control
atherosclerosis can be very costly posing a growing economic
burden on the society. PA has proven to be a general modulator
of systemic inflammation with some emerging effects on the
gut microbiome that may be beneficial to overall cardiovascular
health. While more research is needed to understand the
implications of these changes, improving healthy behaviors by
incorporating PA as part of a healthy lifestyle is a promising way
to combat CVD.
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