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Abstract

Motivation: A common strategy to infer and quantify interactions between components of a biological system is to
deduce them from the network’s response to targeted perturbations. Such perturbation experiments are often chal-
lenging and costly. Therefore, optimizing the experimental design is essential to achieve a meaningful characteriza-
tion of biological networks. However, it remains difficult to predict which combination of perturbations allows to
infer specific interaction strengths in a given network topology. Yet, such a description of identifiability is necessary
to select perturbations that maximize the number of inferable parameters.

Results: We show analytically that the identifiability of network parameters can be determined by an intuitive
maximum-flow problem. Furthermore, we used the theory of matroids to describe identifiability relationships be-
tween sets of parameters in order to build identifiable effective network models. Collectively, these results allowed
to device strategies for an optimal design of the perturbation experiments. We benchmarked these strategies on a
database of human pathways. Remarkably, full network identifiability was achieved, on average, with less than a
third of the perturbations that are needed in a random experimental design. Moreover, we determined perturbation
combinations that additionally decreased experimental effort compared to single-target perturbations. In summary,
we provide a framework that allows to infer a maximal number of interaction strengths with a minimal number of
perturbation experiments.

Availability and implementation: IdentiFlow is available at github.com/GrossTor/IdentiFlow.

Contact: nils.bluethgen@charite.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Rapid technological progress in experimental techniques allows to
quantify a multitude of cellular components in ever increasing level
of detail. Yet, to gain a mechanistic understanding of the cell
requires to map out causal relations between molecular entities. As
causality cannot be inferred from observational data alone (Pearl,
2009), a common approach is to observe the system’s response to a
set of localized perturbations (Sachs, 2005) and reconstruct a
directed interaction network from such data. Examples for such per-
turbations are ligands and small molecule inhibitors for the study of
signaling pathways, or siRNA knockdowns and CRISPR knockouts
of targets in gene regulatory networks.

A recurring idea within the large body of according network in-
ference methods (Marbach et al., 2010) is to conceive the system as
ordinary differential equations and describe edges in the directed
network by the entries of an inferred Jacobian matrix (Bonneau
et al., 2006; Bruggeman, 2002; Gardner, 2003; Kholodenko, 2007;
Tegner et al., 2003; Timme, 2007). Such methods have been success-
fully applied to describe various types of regulatory networks in dif-
ferent organisms (Arrieta-Ortiz et al., 2015; Brandt et al., 2019;
Ciofani et al., 2012; Klinger et al., 2013; Lorenz et al., 2009). They
are continuously improved, e.g. to reduce the effect of noise,

incorporate heterogeneous datasets, or allow for the analysis of
single-cell data (Dorel et al., 2018; Greenfield et al., 2013; Kang
et al., 2015; Klinger and Blüthgen, 2018; Santra et al., 2018, 2013)
and have thus become a standard research tool. Nevertheless, identi-
fiability (Godfrey and DiStefano, 1985; Hengl et al., 2007) of the
inferred network parameters within a specific perturbation setup
has not yet been rigorously analyzed, even though a limited number
of practically feasible perturbations renders many systems underde-
termined (Bonneau et al., 2006; De Smet and Marchal, 2010;
Meinshausen et al., 2016). Some inference methods do apply differ-
ent heuristics, such as network sparsity, to justify parameter regular-
ization (Bonneau et al., 2006; Gardner, 2003; Tegner et al., 2003),
or numerically analyze identifiability through an exploration of the
parameter space using a profile likelihood approach (Raue et al.,
2009). Yet, neither approach provides a structural understanding on
how parameter identifiability relates to network topology and the
targets of the perturbations. However, such structural understand-
ing is required to systematically define identifiable effective network
models and to optimize the sequence of applied perturbations. The
latter is of particular interest because perturbation experiments are
often costly and laborious, which demands to determine the minimal
set of perturbations that reveals a maximal number of network
parameters. To address these challenges, this work derives analytical
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results that explain the identifiability of network parameters in
terms of simple network properties, which allow to optimize the ex-
perimental design.

2 Materials and methods

We consider a network of n interacting nodes whose abundances, x,
evolve in time according to a set of (unknown) differential equations

_x ¼ f ðx;pÞ: (1)

The network can be experimentally manipulated by p different
types of perturbations, each represented by one of the p entries of
parameter vector p. We only consider binary perturbations that can
either be switched on or off. Without loss of generality, we define
f ðx; pÞ such that the k-th type of perturbation changes parameter pk

from its unperturbed state pk¼0 to a perturbed state pk¼1.
The main assumption is that after a perturbation the observed

system relaxes into stable steady state, uðpÞ, of Equation (1).
Stability arises when the real parts of the eigenvalue of the n� n
Jacobian matrix, Jijðx; pÞ ¼ @fiðx; pÞ=@xj, evaluated at these fixed
points, x ¼ uðpÞ, are all negative within the experimentally access-
ible perturbation space (no bifurcation points). This implies that
JðuðpÞ; pÞ is invertible, for which case the implicit function theorem
states that uðpÞ is unique and continuously differentiable, and

@uk

@pl
¼ �½J�1S�kl; (2)

where n� p Sensitivity matrix entry, Sij ¼ @fiðx;pÞ=@pj, quantifies
the effect of the j-th perturbation type on node i. Dropping func-
tions’ arguments is shorthand for the evaluation at the unperturbed
state, x ¼ uð0Þ and p ¼ 0.

2.1 A linear response approximation
A perturbation experiment consists of q perturbations, each of
which involves a single or a combination of perturbation types, rep-
resented by binary vector p, which forms the columns of the p� q
design matrix P. The steady states after each perturbation, uðpÞ, are
measured and their differences to the unperturbed steady state form
the columns of the n� q global response matrix R. Assuming that
perturbations are sufficiently mild, the steady state function
becomes nearly linear within the relevant parameter domain

ukðpÞ � ukð0Þ �
Xp

l¼1

@uk

@pl
pl: (3)

Replacing the partial derivative with the help of Equation (2)
and writing the equation for all q perturbations yields

R � �J�1SP: (4)

This equation relates the known experimental design matrix, P,
and the measured global responses, R, to quantities that we wish to
infer: the nodes’ interaction strengths, J, and their sensitivity to per-
turbations, S.

A dynamic system defined by rates ~f ðx; pÞ ¼Wf ðx;pÞ, with any
full rank n� n matrix W, has the same steady states but different
Jacobian and sensitivity matrices, namely WJ and WS, as the origin-
al system, defined by Equation (1). It is thus impossible to uniquely
infer J or S from observations of the global response alone, and prior
knowledge in matrices J and S is required to further constrain the
problem. In the following, we assume that prior knowledge exists
about the network topology, i.e. about zero entries in J, as they cor-
respond to non-existent edges. Likewise, we assume that the targets
of the different types of perturbations are known, which implies
known zero entries in S for non-targeted nodes. In line with prior
studies (Kholodenko, 2007), we also fix the diagonal of the
Jacobian matrix

Jii ¼ �1:

Thus, for the i-th row of J, we can define index lists �li and l̂i to
identify its known and unknown entries. The first indicates missing
edges or the self loop and the second edges going into node i. These
lists have j�lij and jl̂ij entries, respectively, with

j�lij þ jl̂ij ¼ n: (5)

Analogously, for the i-th row of S, we define index lists �mi and m̂i,
with

j�mij þ jm̂ij ¼ p; (6)

to report its unknown and known entries. These describe the pertur-
bations that do not target or, respectively, target node i.

We show in Supplementary Material S1 that Equation (4) can be
repartitioned to obtain a system of linear equations for each row in J
and S, exclusively in the

ui ¼ jl̂ij þ jm̂ij

unknown parameters, which we collect in vector xi. Thus, there is a
ui � di matrix Vi, such that

xi ¼ Viwþ ~xi; 8w 2 R
di ; (7)

where ~x i is some specific solution to the equation system. We further
show in Supplementary Material S1 that Vi is a basis of the kernel of

Wi ¼
ŜiĴ
�1

i Ij�̂ i j
�SiĴ
�1

i 0j�� i j;j�̂ i
j

2
4

3
5; (8)

where Ijm̂i j and 0j�mi j;jm̂i j are the identity and zero matrix of annotated
dimensionality. The n� jl̂ij matrix Ĵ

�1

i consists of the columns of
ðJ�1ÞT that are selected by indices in li. Finally, j�mij � n matrix �S

i

and m̂i � n matrix Ŝ
i
shall be formed by taking rows of ST according

to indices in �mi and m̂i. These matrix partitionings are demonstrated
for a toy example in Supplementary Figure S1. Furthermore, in
Supplementary Material S1, we derive the following expression for
the solution space dimensionality

di ¼ jl̂ij � rankð�SiĴ
�1

i Þ:

2.2 Identifiability conditions
The system is underdetermined when di > 0. But independent of di, a
parameter is identifiable if the solution space is orthogonal to its accord-
ing axis direction. This idea can be expressed as algebraic identifiability
conditions. Accordingly, we show in Supplementary Material S1 that
the unknown interaction strength Jil̂ ij

is identifiable if and only if

1þ rankð�SiĴ
�1

inj Þ ¼ rankð�SiĴ
�1

i Þ; (9)

where Ĵ
�1

inj is matrix Ĵ
�1

i with the j-th column removed. Furthermore,
the unknown sensitivity Si�̂ ij

is identifiable if and only if

rank
�Si

Ŝ
j

i

" #
Ĵ
�1

i

 !
¼ rank �SiĴ

�1

i

� �
; (10)

where Ŝ
j

i denotes the j-th row of matrix Ŝi. However, the ranks de-
pend on the unknown network parameters themselves and can thus
not be directly computed. Yet, we can show how a reasonable as-
sumption makes this possible and allows to express the identifiabil-
ity conditions as an intuitive maximum-flow problem.

First, we rewrite the identity J�1J ¼ In as

½J�1�kl ¼
X
m6¼l

½J�1�km½J�ml � dkl;

with dkl being the Kronecker delta (recall that Jll ¼ �1). We can
view this equation as a recurrence relation and repeatedly replace
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the ½J�1�km terms in the sum. The sum contains non-vanishing terms
for each edge that leaves node l. Therefore, each replacement leads
to the next downstream node, so that eventually one arrives at

½J�1�kl ¼ l�k ½J�1�kk; with

l�k ¼
X

x2Xl!k

Yjxj�1

m¼1

½J�xmþ1xm
;

where the set Xl!k contains elements, x, for every path from node l
to node k, each of which lists the nodes along that path. Strictly
speaking, these elements are walks rather than paths because some
nodes will appear multiple times if loops exist between l and k. In
fact, with loops, Xl!k contains an infinite number of walks of un-
bounded lengths. But as the real part of all eigenvalues of J is
assumed negative, the associated products of interaction strengths
converge to zero with increasing walk length.

To simplify our notation, we want to expand the network by con-
sidering perturbations �mi as additional nodes, each with edges that are
directed toward that perturbation’s targets. Furthermore, letting the
interaction strength associated with these new edges be given by the
appropriate entries in S we can rewrite the matrix product

½�SiĴ
�1

i �kl ¼ �� ik�l̂il ½J�1�l̂ il l̂ il
;

where l̂il and �� il denote the l-th entry in l̂i and �mi, respectively. As
every finite-dimensional matrix has a rank decomposition, we can
further write

�SiĴ
�1

i ¼ !iYi; (11)

where j�mij � rankð�SiĴ
�1

i Þ matrix !i and rankð�SiĴ
�1

i Þ � jl̂ij matrix Yi

have full rank. Finding such a decomposition therefore reveals the
rank of �SiĴ

�1

i . To this end, we propose

½!i�kn ¼ �� ik� yin; and ½Yi�nl ¼ yin� l̂il ½J�1�l̂ il l̂ il
;

where yin denotes the n-th component of a certain list of nodes yi. In
order for Equation (11) to hold, it must be possible to split each
path from any perturbation �� il to any node l̂il into a section that
leads from the perturbation to a node in yi and a subsequent section
that leads from this node to l̂il. For an extended graph that includes
an additional source node, with outgoing edges to each perturbation
in �mi, and an additional sink node, with incoming edges from all
nodes in l̂i (see Fig. 1B), yi thus constitutes a vertex cut whose re-
moval disconnects the graph and separates the source and the sink
node into distinct connected components. Next, we want to show
that if yi is a minimum vertex cut, the rank of �SiĴ

�1

i equals the size
of yi. Because Equation (11) is a rank decomposition this is equiva-
lent to showing that the according matrices !i and Yi have full rank.
To do so, we apply Menger’s theorem (Menger, 1927), which states
that the minimal size of yi equals the maximum number of vertex-
disjoint paths from the source to the sink node. This also implies
that each of these vertex-disjoint paths goes through a different
node of the vertex cut yi. Recall that entries in !i constitute sums
over paths from perturbation to vertex cut nodes, so that we could
write

!i ¼ �! i þ !̂ i;

where �! i only contains the vertex-disjoint paths and !̂ i the sums
over the remaining paths. As each of these vertex-disjoint paths ends
in a different vertex cut node, any column in �! i can contain no more
than a single non-zero entry. Furthermore, as a consequence of
Menger’s theorem there are exactly jyij non-zero columns. Because
these paths are indeed vertex disjoint also no row in �!i has more
than a single non-zero entry. Thus, the non-zero columns are inde-
pendent, showing that �! i has full rank. We further assume that add-
ing !̂ i does not reduce rank, which also gives !i full rank. In the
context of biological networks, there are two different scenarios
that could lead to a violation of this non-cancellation assumption.
The first is that network parameters are perfectly tuned to lie inside

a specific algebraic variety (a manifold in parameter space) such that
certain columns (or rows) of !i become linearly dependent or zero.
This would e.g. be the case if, for a given vertex-disjoint path, there
also is an alternative path whose associated product of interaction
strengths has the same magnitude as that of the vertex-disjoint path
but opposite sign, making their sum vanish. However, we consider it
implausible for biological networks to be fine-tuned to such a degree
that they could achieve such perfect self-compensation of perturba-
tions, and rule out this possibility. A more realistic scenario is that
network parameters are zero and thereby lead to zero columns or
rows in !i or Yi, which make these matrices rank deficient. In prac-
tice, such zero-parameters can occur e.g. if a perturbation is not
effective on (one of) its target(s), or if robustness effects (Fritsche-
Guenther et al., 2011) obstruct the propagation of the perturbation
signal at a certain link. But essentially, this means that our prior
knowledge about the network included practically non-existing links
or perturbation targets. If the network topology and perturbation
targets are correctly stated and take these effects into consideration,
there will be no zero-parameters and therefore the non-cancellation
assumption holds. We explore the consequences of incomplete or
flawed prior knowledge in Supplementary Material S5.

Having shown !i to be of full rank, the same line of reasoning
will demonstrate a full rank for matrix Yi as well, which implies that
indeed

rankð�SiĴ
�1

i Þ ¼ jyij; (12)

where yi is a minimum vertex cut between source and sink node.
This equation has the crucial benefit that jyij does not depend on
any unknown parameters and can be computed as the maximum
flow from source to sink node with all nodes having unit capacity
(Ahuja et al., 1993), as detailed in Figure 1B. A flow is defined as a
mapping from a network edge to a positive real number that is
smaller than the edge’s capacity. Additionally, the sum of flows
entering a node must equal the sum of the flows exiting a node, ex-
cept for the source and the sink nodes. The maximum-flow problem
is to attribute (permissible) flow values to all edges, such that the
sum of flows leaving the source (which is equal to the sum of flows
entering the sink) is maximal. In our case, however, we did not de-
fine edge but node capacities, meaning that the sum of flows passing
through any node must not exceed one. Yet, we can express such
unit node capacities as unit edge capacities in an extended flow net-
work. It is defined by replacing every node by an in- and an out-
node, where all incoming edges target the in-node, all outgoing
edges start from the out-node, and the in-node has an edge to the
out-node.

This maximum-flow problem allows to express the algebraic
identifiability conditions (9) and (10) in terms of network proper-
ties, providing an intuitive relationship between network topology,
perturbation targets and identifiability. Specifically, Jil̂ ij

is identifi-
able if and only if the removal of the edge from node l̂ij to the
sink node reduces the maximum flow of the network, see
Figure 1C, and Si�̂ ij

is identifiable if and only if the maximum
flow does not increase when an additional edge connects the
source node with perturbation node �̂ ij, see Figure 1D. In
Supplementary Material S5, we simulate a perturbation experi-
ment to numerically verify these findings.

2.3 Identifiability relationships
Often, network inference is an underdetermined problem (De Smet
and Marchal, 2010; Gross et al., 2019). Thus, to achieve identifiable
effective network models, certain parameters have to be set to con-
stant values, such that the remaining parameters become uniquely
determinable. This requires an understanding of the identifiability
relationships between parameters, i.e. we need to know which par-
ameter becomes identifiable when other parameters are fixed.
Supplementary Equation (18) formally relates these relationships to
the ranks of certain linear subspaces of the range of VT

i as defined in
Equation (7). It shows that for each network node there is a set of
parameters amongst which identifiability relationships can exist.
Such a set contains those interaction strengths that quantify the
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edges, which target the associated node, and the associated node’s
sensitivities to perturbations. Furthermore, we show in
Supplementary Material S2 that the identifiability relationships of
such parameter groups can be described as a matroid (Whitney,
1935). Matroids can be defined in terms of their circuits. Here, a cir-
cuit is a set of parameters with the property that any of its parame-
ters becomes identifiable if and only if all others are fixed.
Therefore, circuits describe all minimal parameter subsets that could
be fixed to obtain an identifiable network.

We enumerated the set of circuits with an incremental
polynomial-time algorithm (Boros et al., 2003). This algorithm
requires an independence oracle that indicates linear dependence of
subsets of columns of VT

i . Supplementary Material S2 shows that
we can construct such an oracle by considering linear dependence
within the dual matroid, which amounts to determining

rank
~PT

2 Ŝi

�Si

2
4

3
5Ĵ
�1

i P1

0
@

1
A:

Matrices P2 and P1 are truncated identity matrices defined in
Supplementary Equations (19) and (20). Yet, the crucial point of
this expression is that it has the same form as the left-hand side of
Equation (12). We can therefore conveniently determine it by solv-
ing a simple maximum-flow problem.

Supplementary Material S2 shows how to transform the cir-
cuits into cyclic flats. These provide a more convenient represen-
tation of the identifiability relationships, which we clarify at an
example in Figure 2. Finally, certain scenarios constrain the
choice of fixable parameters, e.g. when quantifying multiple iso-
genic cell lines (Bosdriesz et al., 2018). Supplementary Material
S2 describes a greedy algorithm that takes such preferences into
consideration.

2.4 Experimental design strategies
We assume that we are given a set of p perturbations, each of which
targets a different subset of nodes. In the following, we will define
different experimental design strategies that suggest different
sequences in which these perturbations should be applied. By means
of our understanding of identifiability, we can determine ni, the
number of identifiable edges after having performed the first i per-
turbations in such a sequence. Our goal is to find a strategy for
which this number of identifiable edges increases fastest. Thus, as a
measure of a sequence’s optimality, we can define an identifiability
area under the curve (AUC)

1

p

Xp

i¼1

ni

n
; (13)

where n is the number of edges in the network. For any network and
perturbation sequence, this score ranges between 0 and 1.

Consider a directed graph with 2p nodes, each of which repre-
sents a different subset of the p perturbations. Each edge in this
graph shall connect such a perturbation subset to one of its proper
supersets that contains one additional perturbation. Then, we can
view perturbation sequences as paths on this graph, starting from
the empty perturbation subset. We shall define design strategies as
rules that describe which perturbation(s) could be performed next,
given the perturbations that have already been applied. These rules
thus represent edges on the graph and will therefore determine
which perturbation sequences are associated with a given strategy.
To enumerate these perturbation sequences, we implemented a
depth-first search. The details of our algorithm are described in
Supplementary Material S3. Here, we provide an overview over the
different implemented strategies.

An obvious approach to design an optimal strategy is to simply
consider all remaining perturbations as next possible perturbations.
This exhaustive strategy is therefore associated with the entire set of
possible perturbation sequences. We are therefore guaranteed to
find those sequences amongst them that maximize the identifiability
AUC. On the downside, this strategy quickly becomes

computationally intractable when the set of perturbations becomes
large (we analyze computational complexity of the different strat-
egies in Supplementary Material S3). Therefore, we also imple-
mented strategies with more restrictive rules. A random strategy
will, at each step, randomly choose one of the remaining perturba-
tions. This will thus result in a single random perturbation sequence.
A naive strategy is based on the notion that perturbations should be
more informative if they cause a response at a large number of
nodes. Thus, this strategy considers the perturbed nodes for each of
the remaining perturbations and computes the number of network
nodes to which these are connected to by a path. It then selects those
perturbations as possible next perturbations, which maximize this
number. In contrast, the single-target strategy makes use of the
maximum-flow approach, as it selects perturbations that will, first,
maximize the number of identifiable edges, and second, minimize
the overall dimensionality of the solution space,

P
i di. Finally, the

multi-target strategy is similar to the single-target approach, except
that it not only considers single but combinations of perturbations.
That is, we allow any perturbation combination to be considered as
a single perturbation experiment, which will then perturb all targets
of the combined perturbations. Clearly, this can open an excessively
large search space, when the number of possible perturbations is
big. We therefore implemented a tractable, step-wise procedure to
build up perturbation combinations, which is described in
Supplementary Material S3.

As these strategies allow for multiple perturbations to be con-
sidered next in the sequence, they are associated not only to a
single but to many sequences (which we enumerate by the depth-
first search). Amongst them, we can then choose the ones that
maximize the optimality score defined in Equation (13).
However, for large systems, the number of these strategy-
associated sequences can become too large to be completely
enumerated. We therefore also implemented an approach to ran-
domly sample from this sequence set, as follows. For a given
strategy, instead of considering the entire set of possible next per-
turbations, we only randomly pick a single one. The strategy will
then be associated with a single sequence. Every time we repeat
this procedure, we randomly sample from the (original) strategy-
associated sequences.

3 Results

3.1 Identifiability and identifiability relationships
Perturbation experiments are frequently used to infer and quantify
interactions in biological networks. But whether a given network
edge can indeed be uniquely quantified from experimentally
observed perturbation responses depends on the specific targets of
the perturbations and the topology of the network. In order to build
interpretable network models and guide experimental design, we
need to elucidate this identifiability status of the network parame-
ters. Here, we view a biological system as a weighted directed net-
work, and assume that perturbations are sufficiently mild to cause a
linear steady state response. This allows to relate the interaction
strengths between nodes (i.e. the entries in the Jacobian matrix J)
and the sensitivity to perturbations (i.e. the entries in the sensitivity
matrix S) to the measured responses [Equation (4)], an approach
that is widely known as modular response analysis (Kholodenko,
2007). We derived analytical identifiability conditions [Equations
(9) and (10)] that describe whether this relation allows to uniquely
determine the network parameters for the given network topology
and the experimental setting. However, these conditions cannot be
directly evaluated, as they depend on the (unknown) network
parameters themselves. But instead, they can be reformulated as in-
tuitive maximum-flow problems, if one disregards singular condi-
tions of self-cancelling perturbations.

The derivation and details are given in Section 2 but briefly, to
determine the identifiability of either the interaction strength from
node j to node i, or the sensitivity of node i to perturbation p, the
following flow network is considered: The original network is
extended by (i) adding a node for each perturbation that does not
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target node i and connecting it to the respective perturbation’s tar-
get(s), (ii) adding a ‘source’ node that connects to all those perturb-
ation nodes and (iii) having all nodes that target node i connect to
an additional ‘sink’ node, see Figure 1B. Furthermore, all nodes (ex-
cept source and sink) and all edges have a flow capacity of one. To
reveal identifiability, we need to determine the network’s maximum
flow from source to sink. This is a classic problem in computer sci-
ence, which we solve using the Edmonds–Karp algorithm (Dinic,
1970; Edmonds and Karp, 1972) as implemented in the Networkx
package (Hagberg et al., 2008). Then, the interaction strength from
node j to node i is identifiable if and only if the removal of the edge
from node j to the sink node reduces the maximum flow, see
Figure 1C. Similarly, node i’s sensitivity to perturbation p is identifi-
able if and only if the maximum flow does not increase after linking
the source to an additional node that is in turn connected to all tar-
gets of perturbation p, see Figure 1D.

Often, experimental settings do not allow determining all un-
known parameters (De Smet and Marchal, 2010; Gross et al.,
2019). Nevertheless, they constrain the solution space such that
after fixing one or multiple parameters, others become identifiable.
We found that such identifiability relationships can be described by
matroids, which are combinatorial structures that generalize the no-
tion of linear dependence (see Section 2). This is demonstrated for
an example perturbation experiment on the network displayed in
Figure 2A.

Each node is associated with a set of parameters amongst which
identifiability relationships can exist. Such a set contains those inter-
action strengths, which quantify the edges that target the associated
node, and that node’s sensitivities to perturbations. Here, nodes 4
and 5 are associated with sets of non-identifiable parameters. For
example, for node 5, these are J56 and S53. We represent the matroid
for such a parameter set as a hierarchy (lattice) of cyclic flats, as
shown in Figure 2B. A cyclic flat is a set of parameters with an asso-
ciated rank r. It has the property that all of its parameters become
identifiable, if amongst them at least r independent parameters are
fixed. Parameters are independent if none of them becomes identifi-
able after fixing the others. For node 5, parameters J56 and S53 only

form a single cyclic flat with r¼1, and thus fixing either one param-
eter makes the other identifiable. The identifiability relationships
among the six parameters associated with node 4 are more complex.
For example, J43 and S41 form a cyclic flat with r¼1 and thus fixing
one, fixes the other. Yet together with J45 and S43, they form a cyclic
flat with r¼2, thus fixing e.g. S41 and S43 will allow unique deter-
mination of J43 and J45. In contrast, fixing J43 and S41 does not ren-
der any other parameter identifiable because they are not
independent. This illustrates how the matroid description allows to
generate effective models, i.e. models where a minimum number of
parameters has to be set to fixed values to allow for a unique estima-
tion of all other parameters. Importantly, the lattice of cyclic flats
can be derived without specifying unknown parameters by solving a
sequence of maximum-flow problems (see Section 2).

Collectively, our results provide a concise framework to algorith-
mically determine identifiability of network parameters and to con-
struct identifiable effective networks when the experimental setting
does not suffice to uniquely determine the original network
structure.

3.2 Experimental design
Next, we applied our identifiability analysis to optimize experimen-
tal design, i.e. to minimize the number of perturbation experiments
that is required to uniquely determine a network’s interaction
strengths. For this, we designed the following strategies to determine
an optimal sequence from a set of available perturbations: The ex-
haustive strategy considers all possible sequences and selects the best
performing amongst them. As this approach entails a prohibitive
computational effort for larger networks, we also designed
approaches that select perturbation sequences in a step-wise man-
ner: The single-target strategy chooses next perturbations such that
they increases the number of identifiable edges most. The multi-tar-
get strategy is similar to the single-target strategy except that it not
only considers a single but any combination of perturbations. In
contrast, the naive strategy does not use our identifiability analysis.
Rather, it chooses perturbations first that cause a response at the
largest possible number of nodes (see Section 2 for details).

We first scrutinized the proposed experimental design strategies
on the example network shown in Figure 2. We defined six different
types of perturbations, each of which targets a (different) single
node, or any combination of such for the multi-target strategy.
Figure 3A shows how the number of identifiable edges increases
with the number of performed perturbations for each strategy. A
single strategy is associated with multiple sequences, as described in
Section 2. Accordingly, Figure 3A shows the performance distribu-
tion over all these sequences. In practice, we would only select the
best performing sequence amongst them. Nevertheless, the depicted
distributions are informative because for larger networks we can no
longer enumerate all but only a (random) subset of conforming
sequences, as described in Section 2.

Fig. 2. (A) An example network with three perturbations (yellow squares), where

nodes 4 and 5 are associated with non-identifiable parameters (grey). (B) Their iden-

tifiability relationships are represented by the lattices of cyclic flats of rank r. Each

cyclic flat consists of the annotated elements in addition to elements from its preced-

ing cyclic flats. All parameters of a cyclic flat with rank r become identifiable if at

least r independent flat parameters are fixed
Fig. 1. A maximum-flow problem determines the identifiability of interaction strengths

and perturbation sensitivities when reconstructing a network from perturbation data. (A)

Example network with three perturbations (yellow squares) to illustrate the algorithm.

(B) The corresponding flow network to determine the identifiability of the edges into

node 3 and the sensitivity of node 3 to perturbations. The flow passing through any node

(besides source and sink) must not exceed one. A path carrying the resulting maximal

flow of one is denoted in red (note that it is not unique). (C) The interaction strength be-

tween a given node and node 3 is identifiable if and only if the maximum flow is reduced

after removing that node’s edge to the sink node. In this example, there are alternative

max-flow paths that re-establish a unit-flow after removal of the according edges. Thus,

the respective interaction strengths are non-identifiable. (D) Similarly, the sensitivity of

node 3 to perturbation 3 is identifiable, if and only if the depicted extension of the flow

network does not increase the maximum flow. In this example, the maximum flow is

increased by one, again revealing non-identifiability. Note that such flow representations

provide an intuitive understanding on how alterations in the network or perturbation set-

ting affect identifiability. For example, it is obvious that if the toy model would not con-

tain an edge from node 3 to 4, the edge from 2 to 3 would become identifiable
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When comparing the methods, we found that each strategy’s
average performance is higher than the average performance of all
possible sequences.

Moreover, the ‘naive’ strategy that did not use our framework
mostly required all six perturbations to fully identify all parameters,
whereas the single-target and exhaustive strategies only needed five,
and the multi-target strategy only four perturbations. Figure 3B and
C display all perturbation sequences associated with the single-
target strategy, and one sequence associated with the multi-target
strategy, respectively, and illustrate which network edge becomes
identifiable at which step in the sequence.

To systematically analyze if and how our approach improves
experimental design, we benchmarked the different strategies on
all 267 non-trivial human KEGG (Kanehisa et al., 2019) path-
ways, ranging from 5 to 120 nodes (see Supplementary Material
S4 for details). Again, we assumed that perturbations can target
(all) single nodes. For each network, we sampled 10 conforming
sequences per strategy (as described in Section 2) and compared
against the performance of 10 randomly chosen sequences. As a
performance measure of each sequence, we considered the num-
ber of identifiable edges as a function of the number of perturba-
tions and computed a normalized AUC, as defined in Equation
(13). Figure 4A shows the result of this benchmark, and confirms
the trend already observed for the example in Figure 3A: com-
pared to choosing perturbations randomly, the naive strategy
improved identifiability. Performance was further increased when
we applied our single-target strategy, yet the multi-target strategy
clearly performed best. An exhaustive enumeration of all sequen-
ces is not feasible for all KEGG networks. However, we found
for a subset of small networks that there is no performance differ-
ence between the exhaustive and the single-target strategy, as
shown in Supplementary Figure S5A.

Furthermore, we determined the number of perturbations that is
required for full network identifiability (shown in Supplementary
Fig. S6) and computed the fraction between a given strategy and the
random sequences, see Figure 4B. We found that the average num-
ber of required perturbations can be reduced to less than one-third

Fig. 3. (A) The same network topology as in Figure 2 was subjected to a set of perturbations that target each node individually. Shown are distributions of numbers of identifi-

able edges for different experimental design strategies and an increasing number of perturbations. (B) All perturbation sequences associated with the single-target strategy and

(C) one sequence associated with the multi-target sequence

Fig. 4. Performance of different experimental design strategies on 267 human

KEGG pathways. (A) Identifiability AUC, defined as area under the number of iden-

tified nodes versus number of perturbation curve, see Equation (13). (B) For each

network and strategy, the average number of perturbations required for full identifi-

ability is shown relative to the average number required for a random strategy. (C)

The fraction of required perturbations correlated against the isolation score of a net-

work [Equation (14)], r: Spearman’s rank correlation. (D) The fraction between

multi-target perturbations with a specific number of targets and all multi-target per-

turbations (experiments) in KEGG networks of the annotated size range
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or even less than a quarter, when using a single-target or multi-
target strategy, respectively. To verify that the performance of the
multi-target strategy is not only due to its much larger set of perturb-
ation choices, we also measured the performance of random sequen-
ces of perturbation combinations, shown in Supplementary Figure
S7. While such a multi-random strategy increases the performance
compared to the random strategy, it is still inferior to the single- and
multi-target approach.

We next investigated which network properties led to a perform-
ance increase using our strategies. Intuitively, perturbations might
be more informative if their response propagates to large parts of
the network. We therefore hypothesized that a careful experimental
design is particularly beneficial when networks contain many iso-
lated nodes with little connection to the rest of the network because,
in contrast to a random choice, a good strategy could then avoid
perturbing such non-informative targets. On the contrary, the se-
quence of perturbations is irrelevant in the extreme case of a fully
connected network. To investigate this hypothesis we defined a net-
work’s isolation score as

1�
Xn

ij

pij

nðn� 1Þ ; with pij ¼
1; 9 path i! j
0; @ path i! j

:

�
(14)

Figure 4C shows that indeed the isolation score negatively corre-
lates with the previously defined fraction of perturbations required
for full network identifiability. Furthermore, we also observed a
positive correlation between isolation score and the difference in the
identifiability AUC between non-random and random strategies, as
shown in Supplementary Figure S5B. This suggests that indeed our
experimental design strategies increase their performance with
increasing network isolation.

When response signals converge at a node, the individual contri-
bution from each incoming edge cannot be distinguished. Thus, the
advantage of a multi-target perturbation to potentially track signal
propagation through larger parts of the network is counter-balanced
if it leads to more convergent signal propagation. This is prevented
when the (combined) perturbations target isolated parts of the net-
work. Therefore, the strongest correlation in Figure 4C is found for
the multi-target strategy because with higher isolation score we can
expect to find more such isolated subnetworks. And indeed,
Figure 4D shows that the multi-target strategy typically suggest
combinations of multiple single-target perturbations, especially in
larger networks.

In summary, we have developed an algorithmic approach to de-
termine structural identifiability for a given network. This approach
allows to derive experimental design strategies that drastically re-
duce experimental effort in perturbation studies. In particular, the
multi-target strategy proved most efficient. Potentially, this finding
has practical relevance because in many experimental contexts it
easy to combine perturbations, e.g. by multiplexed CRISPR knock-
outs (Minkenberg et al., 2017).

4 Discussion

We have shown analytically that the identifiability of parameters in
linear perturbation networks can be described as a simple
maximum-flow problem (summarized in Fig. 1). All that is required
to perform this analysis is an accurate specification of the (directed)
network topology and the targets of the perturbations. This includes
the consideration of e.g. robustness or perturbation off-target effects
that are specific to the experimental setup and that can influence the
wiring of the network. A failure to do so might break the non-
cancellation assumption (discussed in Section 2) and thereby lead to
flawed identifiability statements, as shown in Supplementary
Material S5.

Our intuitive description of identifiability not only explains how
to achieve fully identifiable effective network models (Fig. 2), but
also enables us to optimize the design of perturbation experiments
(Fig. 3). As a test case, we examined all human KEGG pathways
and found that our method typically allows to cut down the number
of perturbations required for full identifiability to one fourth

compared to choosing perturbation targets randomly (Fig. 4). We
provide a python implementation of our results at github.com/
GrossTor/IdentiFlow, which allows to determine identifiability, per-
form matroid computations that display identifiability relationships
between parameters and optimize experimental design. The package
relies on standard maximum-flow algorithms from the Networkx
package (Hagberg et al., 2008).

Technically, it would be possible to cope with non-identifiable
parameters numerically, as was done previously (Bonneau et al.,
2006; Dorel et al., 2018; Gardner, 2003; Tegner et al., 2003). Yet,
these procedures tend to be computationally expensive, might de-
pend on heuristic thresholds and are thus not guaranteed to work, in
general, which makes them inadequate tools for experimental de-
sign. Even more importantly, the benefit of the maximum-flow per-
spective is that identifiability can be intuitively understood in
relation to the network topology and the targets of the perturba-
tions. This means that instead of requiring numerical procedures on
a case by case basis, our approach uses intuitively understandable
flow networks to link identifiability to the network topology and
perturbation setup. This provides a comprehensive overview on
which edges become identifiable under which perturbations. For
one, this permits a straightforward optimization of the experimental
design, as shown before. But even in a situation where the set of per-
turbations is a priori fixed because of experimental constraints, our
approach concisely reveals which network topologies are in prin-
ciple amenable to a meaningful analysis. Thereby, it maps out the
range of answerable biological questions. For example, for the toy
network depicted in Figure 1A, we could ask whether node 2 or
node 4 activates node 3 more strongly, which would be an import-
ant question if the activity of node 3 is associated with a certain
phenotype that we try to influence by inhibiting either node 2 or
node 4. Figure 1C showed that this is not answerable because both
edges are non-identifiable. However, the maximum-flow approach
makes it obvious that the question could indeed be addressed if there
was another edge from node 1 to node 3 (as this creates an addition-
al edge from node 1 to the source node in the flow net in Figure 1B
that increases the maximum flow to two).

Our analysis describes the identifiability of parameters in a net-
work model whose steady state changes linearly with the magnitude
of a perturbation. But clearly, biological systems generally break lin-
earity assumptions in varying degrees, which bears asking how use-
ful our description is. In principle, we could expand the steady state
function Equation (3) to higher orders and attempt to also infer
non-linear rate terms, which are products of different node and per-
turbation magnitudes. However such products no longer have any
meaningful network interpretation, as they cannot be reasonably
assigned to any edge. Therefore we argue that the linearity assump-
tion is essential to derive a useful effective network description, if
we choose to interpret the biological systems in terms of ordinary
differential equations. On the downside, the biological meaning of
interaction strengths becomes increasingly obscure the more the sys-
tem violates the linearity assumption (Prabakaran et al., 2014).
Even though our method could still correctly reveal which linear
network parameters are uniquely determined by the data, it is ques-
tionable how useful this information is, if this value no longer holds
a biological meaning. In particular, this could diminish the benefit
of a multi-target experimental design strategy, as combined pertur-
bations might push the system into saturation. Hence, even though
our maximum-flow approach is independent of the actual measured
response data, a strongly non-linear behavior of the underlying bio-
logical system can render it irrelevant. We therefore need to careful-
ly consider when a linear network model is an adequate description.

Importantly, our approach described in this article solely
addresses the problem of structural identifiability. In contrast, prob-
lems with so-called practical identifiability arise from insufficient
quality of experimental data (Raue et al., 2011). Thus, even when
the structural identifiability condition for a specific parameter holds,
it does not necessarily mean that its value can be reliably estimated.
The maximum-flow approach can be used before experiments are
conducted, and thus is agnostic to information about noise that
could potentially render a structurally identifiable parameter
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practically non-identifiable. Similarly, it cannot cope with missing
measurements of a node’s steady state response, which is a common
challenge in novel single-cell perturbation studies (Datlinger et al.,
2017; Jaitin et al., 2016). Yet, in these scenarios, our approach can
provide an experimental strategy to construct a structurally identifi-
able model. And subsequently, established methods can be used effi-
ciently to handle practical non-identifiability (Dorel et al., 2018;
Raue et al., 2009).
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