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Abstract: Rapid and tremendous advances in wireless technology, miniaturization, and Internet of
things (IoT) technology have brought significant development to vehicular ad hoc networks (VANETs).
VANETs and IoT together play a vital role in the current intelligent transport system (ITS). However,
a VANET is highly vulnerable to various security attacks due to its highly dynamic, decentralized,
open-access medium, and protocol-design-related concerns. Regarding security concerns, a black
hole attack (BHA) is one such threat in which the control or data packets are dropped by the malicious
vehicle, converting a safe path/link into a compromised one. Dropping data packets has a severe
impact on a VANET’s performance and security and may cause road fatalities, accidents, and traffic
jams. In this study, a novel solution called detection and prevention of a BHA (DPBHA) is proposed
to secure and improve the overall security and performance of the VANETs by detecting BHA at
an early stage of the route discovery process. The proposed solution is based on calculating a
dynamic threshold value and generating a forged route request (RREQ) packet. The solution is
implemented and evaluated in the NS-2 simulator and its performance and efficacy are compared
with the benchmark schemes. The results showed that the proposed DPBHA outperformed the
benchmark schemes in terms of increasing the packet delivery ratio (PDR) by 3.0%, increasing
throughput by 6.15%, reducing the routing overhead by 3.69%, decreasing the end-to-end delay by
6.13%, and achieving a maximum detection rate of 94.66%.

Keywords: AODV; BHA; IoT; network security; VANET

1. Introduction

A vehicular ad hoc network (VANET) is a special type of mobile ad hoc network
(MANET) in which vehicles and roadside units (RSUs) are linked to create a safer and
more efficient driving environment [1]. A typical VANET architecture consists of three
primary components, namely, onboard units (OBUs), roadside units (RSUs), and trusted
authority (TA) [1–3]. Every vehicle has an OBU that collects, analyses, and transmits
information to other vehicles in the vicinity. An RSU is installed along the roadside that
is used to communicate with vehicles, infrastructure, and a TA. In essence, a TA is a
registration unit that manages the VANET system by registering the OBUs, RSUs, and
vehicle users. A VANET is the backbone of the intelligent transportation system (ITS) and
it plays a crucial role in supplying real-time and sensitive information to the drivers and
traffic authorities [4,5]. Another key component of an ITS is the IoT [6], which transforms
conventional VANETs into the Internet of vehicles (IoV), enabling data collection and
sharing data about infrastructures, vehicles, humans, and road conditions [7–9].

The primary distinction between a MANET and a VANET is their MAC addressing,
as a MANET operates on IEEE 802.11m and a VANET operates on IEEE 802.11p tech-
nology [10]. In a MANET, the movement of nodes is random, while in a VANET, some
nodes are fixed (RSUs) and others (vehicles) travel at high speed along the roadside. A
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VANET’s nodes have unlimited energy and processing power, whereas a MANET lacks
these features [11]. Within a VANET, communications are divided into three distinct
categories: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and infrastructure-to-
infrastructure (I2I) communications [12,13]. V2V communication is purely on an ad hoc
basis, which allows for the exchange of information between vehicles over a short range.
V2I communication provides information to vehicles and static infrastructures. Meanwhile,
I2I communication provides additional traffic information over 3G/4G channels, which is
important for driver assistance and vehicle tracking. The generic architecture of a VANET
is shown in Figure 1.

Figure 1. Generic architecture of a VANET.

The high mobility of vehicles, high dynamic network topology, non-centralized con-
trol, large scale network, time-critical communications, and open access to both legitimate
and illegitimate users are some of the distinguishing characteristics of VANETs [14–17].
In VANETs, data communication and routing are constantly vulnerable to many security
attacks due to these characteristics and constraints. As a result, one of the primary consid-
erations in VANET applications is to secure communications. However, in VANETs, data
transmission between two nodes requires the assistance of intermediate nodes to transfer
the data because the destination node is not often lying in the transmission range of the
source, hence routing protocols are used to establish the best route between nodes. Over
time, various routing protocols and security mechanisms have been developed [18]. Out
of these, the ad hoc on-demand distance vector (AODV) [19] was found to be one of the
most famous and commonly used routing protocols in VANETs [20,21]. AODV is also
known as a demand-driven protocol since it discovers a new route only when it is required,
rather than in advance. AODV provides a fast, dynamic network connection with little
processing overhead and memory requirements, making it an ideal choice for a highly
dynamic VANET [22,23]. However, there are several significant security vulnerabilities and
challenges with the AODV protocol that must be addressed. For instance, the source node
is always unaware of the intended destination. Such features of AODV make VANETs
more vulnerable to various security attacks, such as a wormhole attack, black hole attack
(BHA), and gray hole attack (GHA) [2,16,24,25].
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Secure and efficient communications in VANETs are very essential because the ve-
hicles are moving quickly, and the information is often safety related and time sensitive.
Ensuring the security of the messages generated by the vehicles is very crucial, as the
nodes in VANETs exchange them in the open wireless medium. Due to the presence of
the aforementioned attacks, the applications and services of VANETs are compromised.
One such kind of attack is a BHA in which a malicious node completely drops the packets
instead of forwarding them onto its final destination. These packets may contain important
emergency messages and warning alerts. A BHA drops such packets, which results in
degradation of the overall network security, performance, and disruption in the network
information-sharing process. Road accidents are a significant cause of deaths and physical
disabilities. Hence, dropping all such packets in a highly dynamic VANET could result in
road fatalities, accidents, traffic jams, and congestions. Motivated by this, in this study, we
proposed a novel and efficient solution for the detection and prevention of a well-known
security attack BHA in the AODV routing protocol to improve the overall security and
performance of VANETs. The solution was based on calculating a dynamic threshold value
from sequence numbers of RREPs and generating a forged RREQ packet. In a nutshell, the
proposed solution increased the PDR and network throughput while reducing the routing
overhead and end-to-end delay.

The rest of the manuscript is organized as follows: Section 2 provides a brief back-
ground of BHAs in VANETs, Section 3 describes the related work, Section 4 explains the
proposed work, Section 5 discusses the implementation and evaluation, and Section 6
concludes and gives future direction to the research work.

2. Black Hole Attacks (BHAs) in VANETs

The highly dynamic, open-access medium, distributed infrastructure, and protocol
designing issues have made VANETs vulnerable to many security attacks, such as a denial
of service (DoS) attack, Sybil attack, wormhole attack, flooding attack, impersonation
attack, jellyfish attack, GHA, and BHA [2,16,24,25]. Due to the presence of these attacks,
the applications and services of VANETs can be compromised.

A BHA is a type of DoS in which a malicious node completely drops packets from
the legitimate node. In a BHA, when a malicious node receives an RREQ packet from
the source node, it quickly responds with a fake RREP without checking its routing table.
This RREP packet contains a higher sequence number and minimum hop count value,
which is considered to be the freshest and shortest route in AODV [26,27]. Once the
source node receives the fake RREP packet, it deceptively considers it an optimized path
and starts transferring data packets toward the black hole node. A BHA drops such
packets instead of forwarding them to their final destination, which results in degradation
of the overall network security and performance, as well as disruption in the network
information-sharing process. These packets may contain critical information messages,
such as emergency notifications and warning alters, which must be delivered quickly and
within a specific time frame. Dropping such packets in a highly dynamic VANET could
result in road fatalities, accidents, traffic jams, and congestion. Our research focus in this
study was to address the BHA issue in VANETs and propose a new, more efficient solution.
Because a BHA is one of the most serious attacks in VANETs, it serves as the foundation for
DoS attacks in which the network service is unavailable to the intended users.

In the above Figure 2, a BHA in the AODV protocol is explained with the help of an
example scenario. For instance, source vehicle vs. wants to communicate with destination
vehicle VD. vs. broadcasts an RREQ packet to all its neighboring vehicles, i.e., V1, V2, and
V3. Upon receiving the RREQ, V1 quickly responds with a fake RREP containing a spoof
higher destination sequence number (DSN) value (4484). Meanwhile, vehicles V2 and V3
increase their hop count values by one in the RREQ packet and broadcast it further to their
next-hop vehicles. In the meantime, vs. receives the first RREP from V1. Therefore, source
vehicle vs. selects a route to destination VD that goes through V1 (i.e., black hole attacker)
and starts transferring data packets. Upon receiving the packets, V1 drops all these packets
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rather than forwarding them to VD. The RREP(s) that arrives later is discarded by the
source vehicle VS.

Figure 2. Black hole attack.

Figure 3 shows a visual representation of the impact of BHA on VANET. In this
figure, a collision occurs between two vehicles and a warning alert is sent by vehicle V3
to vehicle V4 (BHA vehicle). V4 drops the warning alert instead of forwarding it to the
approaching vehicles, i.e., V5 and V6. As a result, it could lead to more accidents, hazards,
and traffic jams.

Figure 3. A visual representation of the impact of a BHA on VANET.
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3. Related Work

Concerning the mitigation of BHA and eradication of malicious nodes in VANETs,
over time, many solutions were proposed and reported in the relevant literature. One such
notable related work was proposed by Hortelano et al. [28], which was a watchdog-based
intrusion detection system (IDS). In this scheme, when a source node A transmits packets
to an intermediate node B, then node A checks whether node B further forwarded the
packets or not to the next vehicle by continuously listening to node B’s transmission. Every
node maintains a table of its neighbors’ trust levels. If a malicious node drops the packets
repeatedly and exceeds the threshold level, then that node is declared malicious. The
scheme has proven to be effective in detecting selfish and malicious vehicles. However, due
to the periodic listening of nodes’ actions and maintaining an extra buffer for recording
other nodes’ trust levels, the scheme generates an additional routing overhead and end-to-
end delay. Similarly, in [29], Daeinabi et al. proposed an algorithm for the detection and
isolation of malicious vehicles in VANET called DMV (detecting malicious vehicle). In this
algorithm, vehicles are grouped into clusters led by a cluster head (CH). Whenever a new
vehicle enters the cluster, the verifier vehicle starts scanning the entered vehicle’s actions. If
the entered vehicle continuously drops the packets, then the verifier vehicle reports it to the
CH. The CH decreases the reported vehicle’s trust value. If the trust value of the reported
vehicle reaches a pre-defined threshold, then CH reports it to the certification authority
(CA). The CA then enters it into the blacklist and informs all other vehicles through alarms.
The simulation results show that the proposed approach is capable of detecting most of
the available attacks in VANETs. However, the approach takes longer to process and has
an impact on other performance metrics, including throughput, end-to-end delay, and
jitter [30].

In [30], Kadam et al. proposed the detection and prevention of malicious vehicles
(D&PMV) to address BHAs in VANETs. The authors made some improvements to the DMV
algorithm proposed in [29] by adding the cache mechanism for path construction during the
route discovery phase. This algorithm first scans all the existing paths for the availability
of BHA; if the path with a BHA is found, then it ignores the path and reconstructs a
new path. As compared to DMV, this algorithm can detect and prevent BHAs with high
mobility and reduce the impact of BHAs inside VANETs. However, this algorithm still
requires additional time for its processing, which results in high end-to-end delay [20].
In [31], Dhaka et al. proposed a scheme for the identification and removal of BHAs and
GHAs. The authors modified the original AODV routing protocol by adding two additional
control packets, i.e., the response sequence (Rseq) and the code sequence (Cseq). In this
scheme, a source node broadcasts the Cseq packet to all of its neighboring nodes. Upon
receiving the Cseq, each node responds with the Rseq packet. A connection is established
toward the destination if both packets’ IDs match a specific neighbor. Otherwise, the source
node discards the Rseq of the node and informs all other nodes about the malicious node.
The scheme provides a higher PDR and is applicable in other reactive routing protocols.
However, due to the usage of additional control packets, the technique causes substantial
routing overhead in the network.

In [32], Jahan and Suman proposed an acknowledgment-based model to detect BHA
in VANETs. In this model, each intermediate node informs the source node through an
acknowledgment that it has forwarded the packet to the next-hop node. This process
is continued until the destination is reached. This model generates excessive network
congestion due to the use of extra acknowledgments provided by each intermediary node,
causes substantial routing overhead, affects the PDR, and generates delay. In [33], Li et al.
proposed an attack-resistant trust (ART) management scheme based on evaluating the
trustworthiness of data and nodes to identify and detect malicious nodes. The scheme is
split into two phases: data analysis and trust management. First, the traffic data is collected
from vehicles and then analyzed using Dempster–Shafer theory. However, it is possible
that some malicious nodes forward packets correctly but later start acting maliciously (i.e.,
dropping data packets).
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In [34], Purohit et al. proposed a secure vehicular on-demand routing (SVODR) scheme
to mitigate BHAs in VANETs. A new field called an encrypted random number is inserted
into the RREQ packet and broadcast to all its neighboring nodes. Upon receiving the RREP,
the source node checks its own routing table’s destination sequence number (DSN) and the
RREP’s DSN and encrypted/decrypted random numbers. A node is genuine if its RREP’s
DSN is greater than the source vehicle’s routing table DSN and both functions’ random
numbers are equal. Otherwise, the vehicle is declared malicious. A downside of this
scheme is that it requires extra fields in the control packets for cryptographic algorithms
that need extra resources, resulting in a large routing overhead and end-to-end delay.
In [35], Tyagi et al. proposed a three-step BHA detection algorithm called enhanced secure
AODV (ES-AODV). In step 1, the RSU plays an additional role as the certificate authority
(CA), which manages public and private key pairs. In step 2, the source broadcasts the
RREQ packet along with the vehicle’s certificate, nonce encryption, and the public key of
the destination. In step 3, a BHA is detected based on the threshold value obtained from
the sequence number of RREP and verification of the nonce value. The technique is built
on public-key cryptography, which protects the network against external attacks, but an
internal BHA may create disruption. Second, to detect a BHA, the method requires the
presence of RSUs, which may not be applicable in all VANET scenarios.

In [36], Zardari et al. proposed a dual-attack detection of BHA and GHA (DDBG)
scheme based on a connected dominating set (CDS) and IDS to detect malicious nodes. In
this scheme, the IDS node broadcasts a status packet and starts waiting for its response.
On receiving all the replies, the IDS node checks which node has not sent a reply properly
and why. If any node does not respond or sends a bogus reply, that node is declared as a
malicious node. The key problem with this scheme is that it periodically broadcasts a status
packet to detect malicious nodes in the network, which results in a huge routing overhead.
In [4], Cherkaoui et al. proposed a novel method to detect BHAs in VANETs based on using
a variable control chart. The method is implemented in each receiving vehicle to detect
the BHA through the supervision of the throughput and end-to-end delay metrics. Each
vehicle calculates the parameters of the chart and transforms the received packets into a
graphical representation. A node is declared malicious when the metrics curves oscillate
outside of the chart limits. However, deploying the monitoring system on each receiving
individual node causes unnecessary processing overload. Second, the techniques are often
used in industrial fields to monitor the quality of a particular system; therefore, using a
variable control chart in the VANET context is impracticable.

In [20], Hassan et al. proposed an intelligent detection BHA (IDBA) scheme in au-
tonomous and connected vehicles (ACVs). The scheme pre-calculates four threshold values
from the four key metrics: sequence number, hop count, PDR, and end-to-end delay (i.e.,
Th1, Th2, Th3, and Th4, respectively). According to this scheme, when a node receives
a new RREP packet, it checks whether the RREP’s sequence number is greater than Th1
and the hops count is equal to Th2; if so, it adds such a node into the gray-list. Then, the
node checks whether the PDR is greater than Th3 and the end-to-end delay is less than Th4;
if so, the gray-listed node is assigned to the black-list. An alarm message is flooded into
the network to isolate the BHA node. The scheme is completely based on pre-calculated
threshold values generated from old data so that the traffic condition, such as congestion,
may be changed from time to time. Thus, threshold values generated in advance may
consider a malicious node genuine and vice versa. In addition to that, calculating four
key thresholds on each node results in high end-to-end delay and processing overhead.
In [10], Kumar et al. proposed a secure AODV (SAODV) with improvements made in
the RREQ and RREP control packets. To detect a BHA, first, a message is forwarded to
the neighboring nodes to know their status. Second, an encrypted packet is forwarded to
all its neighboring nodes to calculate their reputation. Third, the forwarded packets are
verified for reputation. Fourth, a secret key is forwarded to the known neighbors. Finally,
the RREQ and RREP are verified and start forwarding data packets. The source node
appends an encrypted value (sequence number) in the RREQ and broadcasts it to all the
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neighboring vehicles. On receiving the RREP, the source node declares a node as malicious
if the encrypted value of the routing table and the decrypted value of the RREP are not
equal. The approach uses extra fields in the control packets for cryptographic functions,
which needs extra resources, resulting in a heavy routing overhead. Second, it contains five
different phases to identify and detect BHA, which is quite complex and generates extra
processing overhead, resulting in high end-to-end delay.

The details, pros, and cons of each of these schemes are given in Table 1. In VANETs, a
BHA is a major security threat in which a malicious node drops all the data packets and
does not forward them to other nodes in routing, which leads to degradation of the overall
security and performance of the VANET. To stop this attack, many solutions are presented
in the literature. From the critical analysis of the related literature shown in Table 1 above,
it is evident that the existing schemes have many limitations. For example, most of these
schemes [8,20,28–32,34,36] employed some extra DPS/IDS nodes and exchanged additional
control packets, which increased the routing overhead and end-to-end delay. The PDR
decreases whenever the network is denser, and the higher the end-to-end delay in the
network leads to lower average throughput. These limitations cause the consumption
of valuable network bandwidth and compromise network performance and security. To
address these challenges, we present a novel solution for detecting and preventing a
BHA with a small routing overhead and end-to-end delay in this study. Furthermore, the
proposed solution improves VANET security and performance by increasing the PDR and
throughput while eliminating false positive and false negative rates. The proposed solution
used a new approach based on calculating a dynamic threshold value from sequence
numbers and generating a forged RREQ packet.

Table 1. Summarized literature review.

Author (s) and Citation Solutions/Schemes Strengths Performance Metrics Limitations

Hortelano et al. [28] Watchdog-based IDS

Easy to implement and
applicable in any routing
protocol;
detects selfish and greedy
nodes efficiently

False positive and false
negative

The technique fails when
two malicious nodes work
together; a high false
detection rate in a short
time; generates a huge
routing overhead and
end-to-end (E2E) delay

Daeinabi et al. [29] Detecting malicious vehicle
(DMV)

Detect any kind of
malicious node with high
promptness

PDR and packets dropped High jitter and high E2E
delay; low throughput

Kadam et al. [30] Detection and prevention of
malicious vehicles (D&PMV)

Provides lower jitter and
higher throughput
compared to DMV
method

Packets dropped, E2E
delay, throughput, and
jitter

Requires more time for
processing; results in high
E2E delay

Dhaka et al. [31] Based on new control
packets: Cseq and Rseq

Provides higher PDR and
is applicable in other
reactive routing protocols

PDR and E2E delay
Huge routing overhead
due to use of additional
control packets

Jahan and Suman [32] Acknowledgment-based
model

The model is capable of
detecting any kind of
malicious node

Packets dropped,
throughput, packets
received, and PDR

Heavy routing overhead
and E2E delay; low
throughput and PDR

Li et al. [33]

Attack-resistant trust (ART)
management scheme based
on evaluating
trustworthiness

Accurately evaluates the
trustworthiness of data
and nodes in VANETs;
capable of detecting
various DoS attacks

Precision, recall, and
communication overhead

High processing overhead
when the number of
malicious nodes increases;
cannot detect a smart BHA

Purohit et al. [34] Secure vehicular on-demand
routing (SVODR)

The modified AODV can
mitigate the impact of
BHAs in VANETs

PDR, throughput,
normalized routing load
(NRL), E2E delay, and
average path length

It cannot be employed
with other protocols; using
extra fields for
cryptographic functions
leads to a heavy routing
overhead and E2E delay
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Table 1. Cont.

Author (s) and Citation Solutions/Schemes Strengths Performance Metrics Limitations

Tyagi et al. [35]

Enhanced secure AODV
(ES-AODV) based on
asymmetric public-key
cryptography

The algorithm is simple,
fast, and has a lower
storage cost

Packets dropped, packet
collision, E2E delay,
throughput, routing
overhead, and PDR

Provides security against
external attacks but
internal attacks may inflict
havoc on the network

Zardari et al. [36] Dual-attack detection for a
BHA and GHA (DDBG)

Provides a fast
propagation rate of data
and only trustworthy
nodes can interact across
the network

Detection rate, PDR,
throughput, routing
overhead, and E2E delay

Generates a huge routing
overhead, which affects
the throughput and PDR

Cherkaoui et al. [4] Use of variable control chart
to detect BHA

Easy to implement and
does not need any
modification in the
routing protocols

Throughput and E2E
delay

High processing overhead
and may not apply in the
VANET’s environment

Hassan et al. [20] Intelligent detection of a
black hole attack (IDBA)

Capable of detecting a
BHA and the results
revealed better
performance compared to
benchmark schemes

PDR, throughput E2E
delay, packet loss ratio,
and routing overhead

Generates four thresholds,
which causes a high
processing and routing
overhead

Kumar et al. [10] Secure AODV
Capable of detecting
malicious nodes in
VANETs

PDR, throughput, and E2E
delay

High routing overhead
and E2E delay, resulting in
a decreased throughput
and PDR

Proposed DPBHA
Use of dynamic threshold
value and forged RREQ
packet

Efficiently detects and
prevents a BHA in terms
of reduced routing
overhead and E2E delay,
increased throughput, and
PDR; eliminates the false
positive and false negative
rates with 98% accuracy;
no additional hardware
and IDS/DPS nodes are
required

PDR, throughput, E2E
delay, packet loss ratio,
routing overhead, and
detection ratio

The proposed DPBHA
addresses BHA only and it
is incapable of addressing
other DoS attacks, such as
cooperative BHA and
GHA, which will be
addressed in future
research work

4. Proposed Work

In this section, we elaborate and discuss the proposed detection and presentation
of a black hole attack (DPBHA). The proposed DPBHA exploits the two main malicious
properties of a BHA. First, the RREP of the attacker node contains a higher sequence
number and minimum hop count value since it pretends to have a fresh route toward
the destination. Second, the attacker node always responds first to every RREQ without
going to check its routing table. Fair modifications are made in the default operations
of the AODV routing protocol to take advantage of these two properties to detect and
prevent BHAs in VANETs. The proposed DPBHA operates mainly in three phases, i.e., the
connectivity phase, detection phase, and prevention phase, as shown in Figure 4.

In the connectivity phase, the network under consideration is initiated, the topology is
established and communication between vehicles (nodes) is assumed to be started. The
suspected malicious node that tends to be a black hole (with a 50% likelihood) is found in
the second phase. The suspected malicious node is 100% proven to be a black hole node in
the third phase, and it should be removed from the network.
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Figure 4. The framework of DPBHA.

4.1. Connectivity Phase

A highly dynamic VANET in which N number of nodes (vehicles and RSUs) are
randomly deployed across the road segment in an urban traffic area. All vehicles are
assumed to be intelligent, i.e., embedded with onboard units (OBUs). Each vehicle’s OBU
has radio equipment, such as a global positioning system (GPS) for location tracking
and IEEE 802.11p for communication purposes. Furthermore, RSUs are deployed along
roadsides at equal distances to cover the urban traffic area. In traffic management theory,
the free-flow state denotes low traffic density and weak vehicle interaction. We investigated
the connectivity of VANETs in the free flow state in this research work. According to
empirical studies, the Poisson distribution is an excellent model for the vehicle arrival rate
in the free-flow state [37,38]. The speeds of different vehicles in a free-flow state follow a
normal distribution [39,40]. We suppose that each vehicle is given a random speed from a
normal distribution and maintains that speed while traveling on the highway.

Graph theory is a promising approach for modeling and representing the connectivity
analysis of vehicular networks [41,42]. A random geometric graph (RGG) is a particular
model of traditional graph theory that accurately characterizes randomly deployed net-
works, such as wireless sensor networks [43–47] or VANETs [48]. In an RGG, the nodes are
independently distributed at random according to some spatial probability distribution,
and two nodes can be connected by an edge if and only if the distance between them is
less than the transmission range (TR). The topology of a VANET is represented by an RGG,
where nodes in such a graph are independently deployed according to a Poisson distri-
bution with a transmission range TR ≥ 0 [49]. Let us assume that a graph G = (N, E, C),
where N indicates a set of nodes (vehicles and RSUs), E represents a set of edges (links), and
C represents a set of connections among nodes. The graphical representation of VANET’s
topology is given by Equation (1).

A =


Cij, If (Vi , Vj) ∈ C and 0 < Cij < 1
1, if i = j
0, otherwise

(1)

where A is the affinity matrix and (Vi , Vj) ε C signifies that Vi and Vj are connected. To
compute the vehicular network’s adjacency matrix, we employed three conditions:
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(1) If vehicles Vi and Vj are connected, the value of the link connectivity is added to the
ijth position of the adjacency matrix Adj.

(2) If a link Cij has the same connectivity in both directions (i = j), 1 is added to the
connectivity. However, a node can be connected to itself through other nodes in a
multi-hop manner, for instance, V1→V3→V4→V1.

(3) When the above two conditions fail, the term “otherwise” is evaluated in Equation
(1). When two vehicles are not connected, we add zero. The adjacency matrix Adj,
which represents vehicle interconnectivity, is given by Equation (2).

Adj =


C11 C12 C13 . . . C1n
C21 C22 C23 . . . C2n

...
...

...
. . .

...
Cn1 Cn2 Cn3 . . . Cnn

 (2)

where C denotes the connection reliability between two vehicles. Suppose a segment of a
unidirectional two-lane highway of length L kilometers is labeled by interval M = [0, L].
Each node enters the highway at X = 0 with a random speed and exits at X = L. We
assumed that the process of vehicles entering the highway follows a Poisson distribution.
As shown in Figure 5, Xi denotes the location of the ith vehicle from the origin and the
headway is represented as Yi = Xi+1 − Xi and Y0 = X1 for i = 1, 2, 3, . . . , n− 1.

Figure 5. The mobility model of vehicles.

If a vehicle Vi is lying within the transmission range (TR) of another vehicle Vj ,
i.e.,

(
(distance between Vi and Vj

)
≤ TR ), then they are presumed to be connected by a

unidirectional link li ε E. Whenever Vi transmits a packet, it is directly received by Vj via
an edge li. An edge E = ( Vi, Vj ) exists between two vehicles if the Euclidean distance [50]
between them is less than or equal to their TR, as given in Equation (3).

E =
{
( Vi, Vj )

∣∣( POSi − POSj) ≤ TR
}

(3)

where POSi and POSj are the coordinates for vehicle Vi. and vehicle Vj, denoted by (Xi, Yi)
and

(
Xj, Yj

)
, respectively at time t0. The equation leads to an undirected graph that may

be connected or unconnected based on the Euclidean distance (d) between Vi and Vj, as
calculated using Equation (4).

d =
√(

Xi − Xj
)2

+
(
Yi − Yj

)2 (4)
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If the distance between two nodes is greater than their transmission range, then
the packets are exchanged between them indirectly in a multi-hop fashion. Consider
(Xs, Ys) and

(
X NN , Y NN

)
as the coordinates of a source node S and a neighboring node

NN, respectively, with their corresponding speeds denoted by Vs and VNN , respectively,
and TR is the transmission range. Therefore, the link (E) lifetime between the S and NN
nodes are calculated using Equation (5).

Es,NN =
TR −

√(
X NN − Xs

)2
+
(
Y NN − Ys

)2

Vs − VNN

(5)

Assume that there are N number of nodes, which are randomly distributed in an
urban area of w× l square meters, TR is the transmission range, S is the source, and D
is the destination node. The probability (P) of a neighboring node NN being within the
transmission range of node S is calculated using Equation (6).

P =
π TR

2

w× l
(6)

The two most important metrics for measuring the performance of highly dynamic
networks are link reliability [40] and connectivity [38]. The truncated Gaussian probability
density function (PDF) of the vehicle’s velocity is given by Equation (7).

fv(v) =
1

σ
√

2π
e−(

(v−µ)2

2σ2 ) (7)

where µ is the average speed and σ is the standard deviation of the vehicle speed. On the
road segment, two vehicles are said to be connected if and only if they are lying within
each other’s transmission range (TR). Vehicle connection is determined by the generalized
speed factor (GSF) in [38], which indicates the number of vehicles on a certain road segment
in units of km/h and the effect of relative velocity with inter-vehicle spacing. The normal
distribution of relative speed and the exponential distribution of inter-vehicle spacing are
used to define the GSF [38,39]. Therefore, the definition of the GSF is a truncated Gaussian
PDF [39], as given by Equation (8).

GSF =
∫ vmax

vmin

f̂v(v)
v

dv (8)

where

f̂v(v) =
fv(v)∫ vmax

vmin
1
µe−

−s
µ ds

(9)

where fv(v) is the Gaussian PDF of the vehicle’s velocity defined in Equation (7), vmin is
the minimum speed, and vmax is the maximum speed of a vehicle. Moreover, v denotes the
speed and s denotes the inter-vehicle spacing, where they have an indirectly proportional
relationship to each other. According to the definition of the GSF, the probability of the
connectivity of N number of vehicles at time can be obtained using Equation (10).

Pc(N)t =
N−1

∏
i=1

(
1− e−(p)(GSF)(TR)

)
=
(

1− e−(p)(GSF)(TR)
)N−1

(10)

where p denotes the density of vehicles and TR is the V2V transmission range. Equation (10)
indicates that the speed, density, and transmission range of inter-vehicle communication
significantly affects the vehicle connectivity process on a free-flow highway. The notations
used in this paper and their descriptions are tabulated in Table 2.
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Table 2. Notations and their descriptions.

Symbol Description

N Node: vehicle or RSU
S Source node
D Destination node
E Edge
T Timer
V Vehicle
NN Neighboring node
NHN Next-hop node
RT Routing table
VNN Speed of neighboring node
ID Identity of a node
G Gray list
B Black list
RREQ Route request
RREP Route reply
TR Transmission range
σ Standard deviation
FV(V) Probability density function of a vehicle’s velocity
DSN Destinationsequence number
µ Mean value
P The density of vehicles
Λ Threshold value (sequence numbers)
I and j Variables i and j range from 1, 2, 3, . . . , n

Assumptions—For the development of our proposed DPBHA and its operations to
work, some assumptions were necessary in order to provide a consistent scenario within
which to work. These assumptions are reasonable and useful to consider in accordance
with the design consideration of VANETs. These assumptions are:

(1) We assumed that the black hole node is a malicious node that always exploits its
harmful properties to each requesting node and that all other nodes are genuine nodes
that act normally.

(2) All the network nodes should be uniquely identifiable, and only BHA will exist in
the network. Other network attacks, such as a GHA, Sybil attack, or impersonation
attack, will not exist.

(3) The solution assumed that multiple RREPs will arrive at the source node during the
route discovery process and they will be stored in an additional response analysis
table (RAT).

(4) All the network nodes have the same features, and it was assumed that if node A is
lying in the transmission range of node B, then node B will also lie in the transmission
range of node A.

(5) All the nodes were assumed to be healthy and they must participate in the route
discovery process according to assumption (1).

4.2. Detection Phase

In this phase, a dynamic threshold value is generated to identify the malicious node
(black hole node) in the network. Upon receiving all possible RREPs within a time t
( rrep_time_out), the source node stores them in the RAT. To calculate the threshold
value (λ), the source node sorts out all the received RREPs in descending order with
respect to destination sequence number (DSN). Then, S calculates the average of all the
received RREPs’ DSN values with the difference of the last RREP’s DSN from its routing
table’s DSN. The calculation procedure of the λ is presented in the following Equation (11).
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λ = Average


(DSN(RREP1)− (DSN(RREPn)−DSN( RT)))

+(DSN(RREP2)− (DSN(RREPn)−DSN( RT)))+
(DSN(RREP3)− (DSN(RREPn)−DSN( RT))) + . . .
+(DSN(RREPn)− (DSN(RREPn)−DSN( RT)))

+ n(DSN(RREPn)−DSN(RT))

=
∑n

i=1 DSN(RREPi)− (DSN(RREPn)−DSN( RT))

n
+ n(DSN(RREPn)−DSN( RT)) (11)

The difference between the last RREP’s DSN and its routing table’s DSN is calculated
using (12).

∆ = DSN(RREPn)−DSN( RT) (12)

where ∆ denotes the difference between the sequence number of the last RREP and
existing RT. To further simplify the above formula for calculating the threshold value
(λ), the equation can be written as Equation (13).

λ =

∣∣∣∣∣µ
(

n

∑
i=1

DSN(RREPi)− ∆

)
+ n∆

∣∣∣∣∣ (13)

The source node checks each RREP’s DSN with the calculated threshold value (λ)
shown in Equation (14). The RREP with a higher DSN than the threshold value (λ) will be
considered as a malicious node.

NID (RREPk) =

{
G, if

(
DSN(RREPk) > λth

)
,

N, otherwise
(14)

Figure 6 illustrates an experimental scenario of the detection phase. In this experiment,
we assumed that node S is the source node, node D is the destination node, node 1 is the
black hole attacker node, and all the remaining nodes are intermediate nodes.

Figure 6. A scenario demonstrating the detection phase.

After broadcasting an RREQ packet, node S receives four RREP packets and sorts
them in descending order with respect to DSN in its RAT, as shown in Table 3. To calculate
the threshold value (λ), first, node S calculates the difference (∆) between the last RREP’s
DSN and its routing table’s DSN by putting the values into Equation (12), which gives
∆ = 75 − 65 = 10. Now, node S calculates the threshold value from all the received RREPs
by putting the values into Equation (13), i.e., λ = ((390 + 85 + 70 + 65)/4) + 40 = 193.
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Next, node S compares each received RREP’s DSN value with λ. Node S finds that node 1
has a higher DSN (400) than the threshold value (λ = 193). Node S marks it as a suspicious
node with a 50% probability and moves it into the gray list.

Table 3. RAT with the normal and malicious nodes’ RREPs.

NID (RREPi) DSN Hop Count

1 400 1
D 95 1
8 80 4
5 75 2

Furthermore, to confirm whether the suspected node that claims a higher DSN is really
malicious or it is a genuine node, the source node pledges to the next phase.

4.3. Prevention Phase

In this phase, the source node modifies the format of the RREQ packet by replacing
a non-existing IP address over the destination node IP address field. The new forged
RREQ packet format is shown in Table 4. The source node broadcasts the forged RREQ
packet in the network. Only a malicious node can give a response, as it does not search
the routing table for the route toward the destination and produces an RREP packet. If the
same node that is marked as a 50% suspected in the previous phase responds to a forged
RREQ, then that particular suspicious node will be confirmed and marked as a 100% black
hole node, shown in Equation (15). The source node immediately enlists it to the black list
and broadcasts the alarm message into the network by inserting the identity of the black
hole node in the RREQ.

f(NID, (RREPk)) =



G← [NID], if DSN(RREPk) > λth

S → RREQforged

B← G, if
(

NID(RREPf)
= G

(
NID(RREPk)

))
S → Alarmmessage to NN

N← G, Otherwise;
S → Packets to D

(15)

Table 4. The format of a forged RREQ packet.

Packet Type Flags Reserved Hop Count
RREQ (Broadcast) ID

(Non-existing Destination IP Address)
Destination Sequence Number

Originator IP Address

The next RREP’s route with the highest DSN below or equal to the threshold value
and minimum hop count will be selected for routing data packets. Figure 7 depicts an
experimental scenario of the prevention phase with the generation of a forged RREQ packet.
In Figure 7, the source node broadcasts the forged RREQ with a destination IP address K in
the network. Here, a genuine node will not reply as the forged RREQ has an IP address
that does not exist in the network. Only a malicious node can give a response, as it does
not search the routing table for the route toward the destination; therefore, node 1 unicasts
the RREP. Upon receiving the RREP, the source node confirms and marks it as a black hole
node. Figure 8 illustrates a complete flowchart for the proposed DPBHA, along with the
internal data flow processes of the three core phases. Algorithm 1 illustrates the complete
step-by-step process of the proposed DPBHA solution.
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Figure 7. A scenario demonstrating the prevention phase.

Figure 8. Flowchart of the proposed DPBHA.
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Algorithm 1: Black Hole Attack Detection and Prevention

Input: RREQ, RREP, G, B, Forged-RREQ
Output: BHA Detection and Prevention, Best and Secure Path Selection

1. Initialization: i = 0, 1, 2, 3, . . . , n
2. S → RREQ to NN and sets t
3. if route to D in RT

4. goto step 11

5. else
6. do
7. NN → RREQ to NHN
8. while(NN = D)
9. end
10. end
11. D v NN → RREP to S
12. S [RAT] ← RREPi till t
13. Quicksort(S [RAT(DSN(RREPi))], start, end, pivot)
14. ∆ = DSN(RREPn)−DSN( RT)

15. λ =

∣∣∣∣µ( n
∑

i=1
DSN(RREPi)− ∆

)
+ n∆

∣∣∣∣
16. ∀ each RREPi−n ∈ [RAT]
17. if (DSN(RREPk) > λth)
18. G ← NID (RREPk)
19. else
20. Selects RREPk+1(Max DSN <= λth and Min HC)
21. goto step 30
22. end
23. S → RREQforged to NN
24. S← RREPf
25. if

(
NID(RREPf) = G

(
NID(RREPk)

))
26. B ← G [NID]
27. S → Alarmmessage to NN
28. goto step 20
29. else
30. S → Packets to D
31. end

5. Implementation and Result Evaluation

The proposed DPBHA was implemented and evaluated in a simulation-based en-
vironment (NS-2 Simulator v2.35) and its performance and efficacy were compared to
the benchmark schemes. NS-2 allows for a wide range of simulation settings, making
simulation more practical and realistic. The results were compared with the most relevant
schemes that exist in the literature, namely, AODV [19], SAODV [10], and IDBA [20]. The
parameters used in the simulation experiments are tabulated in Table 5.

For the performance evaluation, a general urban traffic scenario was selected with
a variable traffic density of 25 to 150 nodes (vehicles, RSUs, and black hole nodes). Each
simulation experiment contained 8% malicious nodes (black hole nodes).

Figure 9 demonstrates one of the initial states of the first experiment performed with
25 nodes comprising 21 normal vehicles (with black circles), 2 black hole nodes (with red
circles), and 2 RSUs (with blue circles). Before performing the statistical analysis, each
simulation experiment was run 10 times in the simulator and the average values were
obtained after aggregating the results. The following performance metrics were used to
evaluate the proposed solution:

• Routing overhead;
• Packet delivery ratio (PDR);
• End-to-end delay;



Sensors 2022, 22, 1897 17 of 27

• Throughput;
• Packet loss ratio;
• Confusion metrics.

Figure 9. Initial state of the first experiment.

Table 5. Simulation parameters.

S. No. Parameters Values

1. Simulation tool NS-2.35
2. Simulation area 1000 m × 1000 m
3. Number of nodes 25, 50, 75, 100, 125, 150
4. Simulation time 900 s
5. Vehicle mobility 1 km/h–100 km/h
6. Routing protocols AODV
7. Standard protocol 802.11p
8. Black hole nodes 2, 4, 6, 8, 10, 12
9. Transport protocol UDP
10. Packet size (bytes) 512 b/s
11. Type of traffic CBR (1 Mbps)
12. Antenna Omni-directional

5.1. Routing Overhead

The routing overhead (ROH) represents the ratio of the total number of control packets
transmitted to the total number of data packets, as given in Equation (16).

ROH =
∑ control packets transmitted

∑ data packetstransmitted
(16)

Figure 10 shows the simulation results, indicating the number of nodes on the x-axis
and the routing overhead (in the number of packets) on the y-axis. The routing overhead
increased with respect to an increase in the number of nodes. As the network became more
congested, path breakages and packet drop rates became more common. The presence
of more malicious nodes caused more RREPs to be sent to the desired route, resulting in
increased routing overhead. The routing overhead behavior for the proposed DPBHA was
plotted in comparison to benchmark schemes, namely, classic AODV, SAODV, and IDBA.
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By detecting the malicious nodes instantaneously from the network, the routing overhead
was reduced in the proposed DPBHA as compared to the benchmark schemes. In the case of
classic AODV, more replies were generated in the network due to the presence of malicious
nodes, resulting in a huge routing overhead of 28.57%. Similarly, in the case of SAODV,
more control packets were generated in its five-step detection mechanism such that its
routing overhead was 26.59%, which was also very high. In the case of IDBA, the average
routing overhead was 23.52% which was close to the proposed DPBHA. Figure 10 indicates
that in most of the points in DPBHA, the average routing overhead was 21.30%, which
was the minimum among all the schemes. Therefore, the proposed DPBHA decreased the
average routing overhead by 3.69%.

Figure 10. Graphical representation of routing overhead.

5.2. Packet Delivery Ratio

The packet delivery ratio (PDR) represents the ratio of the total number of packets
received at a destination node to the total number of packets originated at the source node,
as shown in Equation (17).

PDR =
∑ Number of packets received

∑ Number of packets sent
(17)

Figure 11 shows the simulation results, indicating the PDR in terms of percentage
on the y-axis and the number of nodes on the x-axis. It can be observed that as the
number of nodes increased, the PDR decreased due to the presence of more malicious
nodes and packet collision occurrences in the network. When a malicious node performs
a packet-dropping attack, it badly affects the PDR. The proposed DPBHA first identifies
the malicious node with the help of a dynamic threshold value and then confirms it as
malicious by broadcasting a forged RREQ.
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Figure 11. Graphical representation of packet delivery ratio.

In Figure 11, it can be observed that the proposed DPBHA had the best performance
results in PDR compared to the rest of the schemes. The PDR decreased significantly in
the case of the classic AODV, with an average of 20.44%, while the PDR of other schemes
showed less of a decrease due to the presence of some security mechanisms. The average
PDRs for the SAODV and IDBA schemes were recorded as 25.06% and 26.48%, respectively.
The classic AODV severely suffered from the presence of a BHA: as the number of malicious
nodes in the network grew, its PDR dropped drastically. The average PDR of our proposed
DPBHA was 28%, which was a 3.0% improvement above the total average PDR.

5.3. Throughput

Throughput represents the average rate of successful data packet delivery to the final
destination by the source node, as given in Equation (18). Throughput can be measured in
packets per second (pps), bits per second (bps), or packets per time slot.

Throughput = ∑(Received Packets ∗ Packet Size)
Simulation Time

(18)

Figure 12 shows the performance of the throughput metric (in kbps) for the proposed
DPBHA and benchmark schemes. The throughput of the classic AODV had the lowest
significant values on each point because of the presence of BHAs and the destination node
received extremely few packets. Another reason for the throughput degradation was the
high speed of the vehicles, causing frequent link breakages, which led to a decrease in
throughput. The average throughput of the classic AODV was recorded as 17.68%, which
drastically suffered from the increase in the number of malicious nodes in the network.
The average throughputs of the SADOV and IDBA schemes were recorded as 23.36% and
27.78%, respectively. These schemes achieved a certain level of better performance in
throughput because both of them employed some security mechanisms that detect a BHA
instantly. In terms of throughput, the proposed DPBHA outperformed the existing schemes.
The average throughput of the proposed DPBHA was recorded as 31.15%, which was the
highest among all the schemes. Therefore, the proposed DPBHA improved the overall
average throughput by 6.15%.
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Figure 12. Graphical representation of average throughput.

5.4. End-To-End Delay

The end-to-end delay describes the time between when the packet is generated at the
source node to when the packet is received by the destination node. It is the average time
needed for the data packets to be transmitted from the source node to the destination node,
as given in Equation (19).

E2E Delay =
∑n

i=1(Received Packet Timer− Sent Packet Timer) ∗ 1000(ms)
Total Number of Packets Delivered Successfully

(19)

Figure 13 plots the performance metric of E2E delay (in seconds) for the DPBHA and
benchmark schemes. Here, the E2E delay was high when the density of nodes was high.
It can be observed that the average E2E delay of the proposed DPBHA was lower than
the other schemes. A high PDR leads to a lower E2E delay and optimal throughput due
to a large number of packets being delivered to the destination node with less amount of
time. The classic AODV shows a significant hike in E2E delay when the number of nodes
increased from 25 to 150. The average E2E delay of the conventional AODV was 30.93%;
this was because of the presence of more malicious nodes and packet collision events in
the network. When the target destination was not reached, a new route discovery process
needed to be initiated. Using a combination of the dynamic threshold value and a forged
RREQ mechanism, the speed of data transmission increased and the delay decreases in the
proposed DPBHA, as shown in Figure 13. This was because the DPBHA quickly detected
the malicious nodes from the network and selected the best and most secure route for data
transmission. The average E2E delay of the proposed DPBHA was recorded as 18.86%,
which is the lowest among all the schemes. Similarly, the average E2E delays of the SADOV
and IDBA were recorded as 27.04% and 23.15%, respectively. Hence, the proposed DPBHA
reduced the overall average E2E delay by 6.13%.
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Figure 13. Graphical representation of end-to-end delay.

5.5. Packet Loss Rate (PLR)

The packet loss rate (PLR) is the difference between the total number of data packets
sent by the source node and the total number of data packets successfully received by the
destination node, as given in Equation (20). Usually, packets are lost by malicious nodes or
due to increased congestion in the network.

PLR = ∑ Number of packets sent−∑ Number of packets received (20)

Figure 14 illustrates the simulation results, indicating the PLR in terms of percentage
on the y-axis and the number of nodes on the x-axis. It can be observed that as the number of
nodes increased, the PLR increased due to the presence of more malicious nodes and packet
collision occurrences in the network. When a malicious node performs a packet-dropping
attack, it badly affects the PLR. The classic AODV severely suffered from the presence of a
BHA, where an average of 37.33% of packets were lost due to a lack of security mechanisms.
It was further observed that the average PLRs for SAODV and IDBA were recorded as
24.77% and 20.14%, respectively. These schemes achieved a good level of performance
regarding the PLR because both of them employed some security mechanisms that detect
a BHA instantly. Similarly, the proposed DPBHA first identifies the malicious node with
the help of a dynamic threshold value and then makes confirms it as BHA by broadcasting
a forged RREQ. The PLR for the proposed DPBHA was recorded as 15.15% due to the
instant elimination of BHAs. Thus, the proposed DPBHA reduced the overall average PLR
by 9.84%.
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Figure 14. Graphical representation of packet loss rate.

5.6. Confusion Matrix

Intrusion detection systems (IDSs) are usually evaluated based on the following
measures of confusion matrix shown in Table 6. The columns of the table represent
instances in the predicted class. Similarly, the rows of the table represent instances in the
actual class.

Table 6. Confusion matrix.

Actual Reality Class

Test Result Class
Class Attack Normal

Attack True positive (TP) False positive (FP)
Normal False negative (FN) True negative (TN)

5.6.1. True Positive Rate (TPR)

When the model correctly identifies and detects an attacker in a network, it is said
to be true positive. The sensitivity or detection ratio is another name for the TPR (DR). It
is calculated as the ratio between the predicted attacks and the total number of attacks.
Mathematically, the TPR can be calculated using Equation (21).

TPR =
TP

TP + FN
(21)

5.6.2. False Positive Rate (FPR)

When the model misidentifies a legitimate node as an attacker, it is said to be a false
positive. FPR is calculated as the ratio of the total number of normal instances that are
wrongly classified as an attacker to the overall number of normal instances. Mathematically,
the FPR can be expressed using Equation (22).

FPR =
FP

FP + TN
(22)
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5.6.3. False Negative Rate (FNR)

A false negative occurs when there are attacker nodes that are incorrectly classified as
legitimate or normal nodes. It means that an anomaly is not being detected by the model
and is labeled as normal. Mathematically, the FNR can be calculated using Equation (23).

FNR =
FN

FN + TP
(23)

5.6.4. True Negative Rate (TNR)

A true negative occurs when there is no attacker node and the model identifies it as
a normal node. It means that the scheme successfully labels legitimate nodes as normal
nodes. Mathematically, the TNR can be expressed using Equation (24).

TNR =
TN

TN + FP
(24)

5.6.5. Detection Rate

The detection ratio is an important metric to examine the accuracy of a model when
identifying and detecting the malicious nodes in a network. Table 7 illustrates the statistical
analysis of the detection ratio of the proposed DPBHA and its comparison to the benchmark
schemes with the various number of normal and malicious nodes.

Table 7. Detection ratio evaluation values.

No. of
Nodes

Malicious
Nodes

TPR of
AODV

TPR of
SAODV

TPR of
IDBA

TPR of
DPBHA

25 2 00.0% 90.0% 95.0% 100%
50 4 00.0% 87.5% 92.5% 97.5%
75 6 00.0% 85.0% 90.0% 95.0%

100 8 00.0% 82.5% 87.5% 93.7%
125 10 00.0% 80.0% 85.0% 91.0%
150 12 00.0% 76.6% 83.3% 90.8%

Figure 15 depicts the simulation results of the detection ratio of the proposed DPBHA
and its comparison to the benchmark schemes. The results showed that the average
detection ratio of the proposed DPBHA was reported as 94.66%, which was the highest
detection rate across all schemes. The main reason for the highest detection rate was the fact
that the proposed DPBHA first checks each RREP’s sequence number with the calculated
dynamic threshold value. If the received RREP’s sequence number is higher than the
threshold value, then that node is detected as a suspicious node with a 50% probability.
Further, in the next phase, the suspected malicious node is 100% confirmed that it is a
black hole node if it replies to the forged RREQ. This means that the proposed DPBHA
can detect and prevent the malicious node instantly and accurately by performing the
two-stage approach. As soon as the number of legitimate and malicious nodes increased
in the network, the chances of malicious node detection decreased due to an increase in
congestion and packet collision occurrences. However, the proposed DPBHA could detect
and prevent the BHA more accurately and rapidly than other benchmark schemes. The
classic AODV was designed with no security mechanism; therefore, its detection rate was
recorded as 0.0%, as shown in Figure 15. The average detection rates for SAODV and
IDBA were recorded as 83.6% and 88.88%, respectively. Figure 15 reveals that the proposed
DPBHA’s detection ratio was high for a majority of points, with an average of 94.66%.
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Figure 15. Graphical representation of detection rate.

5.6.6. Accuracy Rate

The accuracy metric measures how accurate the model is in detecting malicious or
normal node behavior. It is defined as the percentage of all those correctly predicted
instances to the overall instances calculated using Equation (25). In order to maximize
the performance of a model, FPR and FNR must be minimized, while TPR and TNR must
be maximized.

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

Table 8 demonstrates one of the experiments of the proposed DPBHA performed with a
total number of 75 nodes comprising 69 normal and 6 malicious nodes. After performing the
simulation, the model successfully detected five out of six targeted malicious nodes, giving
an 83.3% sensitivity. In Table 8, the positive predictive value (PPV) means the probability
that the model successfully detected the true attacker nodes and is calculated using PPV =
TP/(TP + FP)× 100 = 5/(5 + 0)× 100 = 100%. Similarly, the negative predictive value
(NPV) means the probability that the model correctly identifies a negative test as a non-
attacker node. Mathematically, the NPV is represented by NPV = TN/(TN + FN)× 100 =
69/(69 + 1) × 100 = 98.5%. Finally, the accuracy rate for the proposed DPBHA was
calculated as 98.6%, which is a high accuracy rate for any given model.

Table 8. Example of an accuracy rate calculation.

Total No. of Nodes = 75
Real Class

Predictive Value
Attacker = 06 Normal = 69

Test Results Class
Attacker = 5 True Positive = 5 False Positive = 0 Positive Predictive Value

(5/5) = 100%

Normal = 70 False Negative = 5 True Negative = 69 Negative Predictive Value
(69/70) = 98.5%

Results Sensitivity
(5/6) = 83.3%

Specificity
(69/69) = 100%

Accuracy = 5+69
5+69+0+1 × 100

= 98.6%
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6. Conclusions and Future Work

Safety and security are the major concerns in VANET applications. Many road ap-
plications, such as traffic reports and accident notifications, can strongly support safety
requirements. However, VANETs are vulnerable to a variety of security threats and attacks
because of their highly dynamic, decentralized nature and protocol design concerns. As
a result, VANET applications and services are jeopardized. There is the possibility that
VANET applications will have certain security requirements. However, life and safety-
critical messages must be sent from V2V in a secure and timely way. Because vehicles
exchange messages at fast speeds over an open wireless medium, ensuring the security of
these messages is critical. The security aspect of VANETs was the focus of this research
work. To protect and improve the overall performance of VANETs, an innovative and
effective solution was proposed called DPBHA, which could detect and prevent black hole
security attacks in the AODV routing protocol. The solution was based on calculating a
dynamic threshold value and generating a forged RREQ packet. The proposed DPBHA
was implemented and evaluated in the NS-2 simulator, and its performance and efficacy
were compared to the benchmark schemes. In conclusion, we showed that the proposed
DPBHA outperformed the benchmark schemes in terms of improved PDR by 3.0%, in-
creased throughput by 6.15%, reduced routing overhead by 3.69%, decreased E2E delay by
6.13%, reduced PLR by 9.84%, and achieved a maximum detection rate of 94.66%.

Future research includes detecting and preventing gray hole security attacks, which
are considered to be some of the severe attacks on VANETs. Similarly, more efforts will
be made in the future to explore state-of-the-art advancements in the field and address
various security issues associated with vehicular networks.
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