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Abstract: Predicting novel uses for drugs using their chemical, pharmacological, and indication
information contributes to minimizing costs and development periods. Most previous prediction
methods focused on integrating the similarity and association information of drugs and diseases.
However, they tended to construct shallow prediction models to predict drug-associated diseases,
which make deeply integrating the information difficult. Further, path information between drugs and
diseases is important auxiliary information for association prediction, while it is not deeply integrated.
We present a deep learning-based method, CGARDP, for predicting drug-related candidate disease
indications. CGARDP establishes a feature matrix by exploiting a variety of biological premises
related to drugs and diseases. A novel model based on convolutional neural network (CNN) and
gated recurrent unit (GRU) is constructed to learn the local and path representations for a drug-disease
pair. The CNN-based framework on the left of the model learns the local representation of the
drug-disease pair from their feature matrix. As the different paths have discriminative contributions
to the drug-disease association prediction, we construct an attention mechanism at the path level to
learn the informative paths. In the right part, a GRU-based framework learns the path representation
based on path information between the drug and the disease. Cross-validation results indicate
that CGARDP performs better than several state-of-the-art methods. Further, CGARDP retrieves
more real drug-disease associations in the top part of the prediction result that are of concern to
biologists. Case studies on five drugs demonstrate that CGARDP can discover potential drug-related
disease indications.

Keywords: drug-disease association prediction; convolutional neural network; gated recurrent unit;
attention mechanism at path level; drug repositioning

1. Introduction

In the past decades, there has been a gradual increase in new molecular entity research and
development, but the number of new molecular entities approved by the Food and Drug Administration
(FDA) has been decreasing [1–3]. Traditional drug development often requires 10–15 years and an
investment of $1.5 billion [4–6]. Because FDA-approved drugs undergo biological experiments, clinical
trials, and are evaluated for safety, drugs are often repositioned. Repositioning existing drugs for new
indications or uses requires only 6.5 years, and the cost is $300 million, which is far less than the cost of
developing a new drug [7–9].

Based on different biological premises and assumptions, researchers use different data types and
biological preconditions to study drug repositioning. Research methods include retargeting based on

Molecules 2019, 24, 2712; doi:10.3390/molecules24152712 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/1420-3049/24/15/2712?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24152712
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 2712 2 of 15

drug targets [10,11], relocation based on drug side effects [12–14], and heterogeneity based on drug
diseases [15–18]. Most drug targets are directly linked to the pathogenesis of the diseases. Li et al.
constructed a drug-target heterogeneous network using similarities between the targets and the drugs
to integrate information between the target and the drug for drug repositioning. Zhao et al. [19] used
target gene information and disease-causing gene information to calculate drug similarities and disease
similarities, and they finally identified a gene-disease relationship through the Bayesian method.
Wang et al. [20] proposed a three-layer heterogeneous network that integrates drug similarities, disease
similarities, drug-disease associations, and drug-target interactions to disseminate information for
predicting the relationship between the drugs and the diseases. However, drugs can cause off-target
phenomena in the living environment and produce unexpected side effects; therefore, drug side effects
are also one of the essential factors for repositioning drugs. Campillos et al. [16] proposed a drug side
effect similarity to determine whether two drugs are involved in the same target. Gottlieb et al. [21]
and Zhang et al. [22] used drug chemical substructure, side effects, etc. to calculate drug similarities
using logistic regression and collaborative filtering algorithms to predict potential drug-diseases
relationship. However, these methods are not suitable for drugs and diseases that do not have a
common gene or target.

Most advanced methods are predictive for drug–disease networks. Liang et al. [23] used drug
chemical substructure information, drug target domain information, and drug target annotation
information to calculate drug similarities; the drug-disease associations were predicted through
Laplacian regularized sparse subspace learning (LRSSL). Luo et al. [24] used drug chemical substructure
information to calculate drug similarities, and they used disease semantics to calculate disease
similarities. Then, they constructed a drug-disease two-layer heterogeneous network using a bi-random
walk with a restart algorithm to reposition drugs. Zhang et al. [25] also used drug similarity and disease
similarity to design drug–disease heterogeneous networks for repositioning drugs based on matrix
decomposition with similarity constraints. Xuan et al. [26] proposed a matrix-based decomposition
method for integrating drug similarity and disease similarity to predict drug–disease associations.
However, these methods are shallow learning methods that cannot accommodate complex and
non-linear information on drug similarity, disease similarity, and drug–disease associations. In addition,
the paths of drugs and diseases as important auxiliary information were not deeply integrated in these
previous methods. Therefore, a deep-learning-based prediction method must be developed to integrate
the similarity, association information, and path information of drug–disease pairs. We propose a
prediction method based on a convolutional neural network (CNN) and gated recurrent unit (GRU)
called CGARDP for predicting drug-disease associations. The left part of CGARDP’s prediction model
focuses on local information related to a drug-disease pair, and the right part of the model learns
the path information between drug-disease pairs. Experimental cross-validation results clearly show
that CGARDP performs better than several of the most advanced prediction methods. Case studies
involving five drugs show that CGARDP can detect potential candidate disease indications.

2. Materials and Methods

2.1. Dataset

We obtained drug-disease association data from study [26], which involved 763 drugs and
681 diseases. The chemical fingerprints extracted from the PubChem database [27] were used for
representing the chemical substructures of drugs. Disease information can be obtained from the MeSH
database [28]. We obtained drug similarity and disease similarity data from a work published on
LRSSL [23].

2.2. Construction of Drug-Disease Network

The more similar the chemical substructures of two drugs are, the more likely the drugs are
to act on similar functions. The chemical substructure vector Si of a drug ri is an 869-dimensional
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binary vector. We defined Si =
{
subi,1, subi,2, . . . , subi, j, . . . , subi,869

}
, where subi, j is the j-th chemical

substructure of the i-th drug. LRSSL [23] measured the drug similarities by calculating the cosine
similarities between the chemical substructures of drugs. We also use R = R[i, j] ∈ R

Nr×Nr , which
represents drug similarity, where R[i, j] is in the range of [0, 1] and is the similarity of ri and r j, and Nr

denotes the number of drugs.
To evaluate the similarity between diseases, we establish directed acyclic graphs (DAG) of

semantic terms for corresponding diseases, which contain all semantic terms related to that disease.
Wang et al. [28] successfully calculated the semantic similarity between diseases using their related
terms in the DAG graph. LRSSL computed the similarities between diseases by using Wang’s method,
and we obtained the disease similarity from LRSSL. Let D = D[i, j] ∈ RNd×Nd be a similarity matrix of
diseases such that each element is between 0 and 1.

In light of the relationship between drugs and diseases, we add an edge between the corresponding
drug and disease (Figure 1). Matrix A ∈ RNr×Nd denotes the edge set; if Ai j = 1, drug ri is associated
with the disease d j, otherwise, Ai j = 0.

Figure 1. Construction of a drug-disease heterogeneous network based on the similarity calculation.

2.3. Prediction Model Based on CNN and GRU

To predict the potential representation of the association between a drug and a disease, we propose
a novel prediction model based on a CNN and GRU. We apply the CNN module in the left part to learn
the combinatorial representation of drug ri and disease d j; further, we apply GRU in the right part to
capture the path representation between ri and d j. Finally, the two representations were integrated by
a combined strategy to achieve the final correlation scores of ri and d j. We take drug r1 and disease d3

as an example to describe the learning framework for the left and right parts, and we use x, x, X to
represent the scalar, vector, and matrix, respectively.

The probability that a drug is associated with a disease is higher when there are more drugs
similar to another drug associated with a disease, such as r1 and d3. As shown in Figure 2, drugs
similar to r1 are {r2, r3, r6}, and the drugs associated with d3 are {r2, r6}. The drugs associated with d3

are similar to r1, and therefore, the probability of d3 being associated with r1 is very high. The first row
of matrix R denotes the similarity between r1 and all drugs, and the third row of the matrix AT denotes
as the associations between d3 and all drugs.

A drug is associated with more diseases that are similar to a disease, so the more likely the drug is
associated with the disease, such as r1 and d3. As shown in Figure 2, diseases similar to d3 are {d1, d2, d5}
and the r1 associated with {d1, d2}; therefore, r1 and d3 are more likely to be related. The third row of
the matrix D denotes the similarity between d3 and all diseases, and the first row of matrix A denotes
the association between r1 and all diseases.
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Therefore, we combine the left and right feature representations into the feature matrix X = X[i, j] ∈

R2×(Nr+Nd) of r1 and d3, Nr is the number of drugs and Nd is the number of diseases. The first row of the
matrix X denotes the eigenvector of drug r1, and the second row denotes the eigenvector of disease d3.

Figure 2. Construction of the feature matrix by integrating the similarities and associations.

2.3.1. Convolution Module on the Left

Convolutional Layer

As shown in Figure 3, to capture the boundary information of X, we first apply a padding operation
obtain a new matrix named X′. Then, we use X′ as an input to the left convolution module [29] to learn
the potential representation of a drug-disease pair. We assume that the size of the filter is set as W f and
Wh for each layer of convolution. When there are nconv filters, the convolution filter Wconv ∈ RW f×Wh×nconv

is applied to X′. Then, we obtain the feature matrix Zconv ∈ R(2−Wh+2p+1)×(d−W f +2p+1)×nconv , where p
is the number of padding layer in the feature matrix of the CNN model, and d is the length of X′.
X′conv(i, j) is the element at the i-th row and the j-th column of X′, and X′conv(k, i, j) represents a region
within the filter when the k-th filter slides to the X′conv(i, j). The formal definitions of X′conv(k, i, j) and
Zconv,k(i, j) are as follows:

X′conv(k, i, j) = X′conv

(
i : i + w f , j : j + wh

)
, X′conv ∈ RWf×Wh , (1)

Zconv,ki, j = f (X′conv(k, i, j) ∗Wconv(k, :, :) + bconv(k)), (2)

i ∈ [1, 2−Wh + 2p + 1], j ∈
[
1, d−W f + 2p + 1

]
, k ∈ [1, nconv], (3)

where Wconv(k, :, :) is the sliding window weight matrix of the k-th filter, bconv is the bias vector, f is
a ReLU function [30], Zconv,ki, j is the element at the i-th row and j-th column of the k-th feature
map Zconv,k.
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Figure 3. Drug-disease association prediction framework based on convolutional neural network
(CNN) and gated recurrent unit (GRU).

Pooling Layer

The feature maps Zconv,k are pooling layers for downsampling to remove unimportant sample
data, thus further reducing the number of parameters. We use max pooling to complete the pooling
operation and set its sampling window size to Wm ×Wp. The pooling outputs of all the feature maps
are Zconvpool,k:

Zconvpool,k(i, j) = Max
(
Zconv,k

(
i : i + Wm, j : j + Wp

))
, (4)

i ∈ [1, 2−Wm + 2p + 1], j ∈
[
1, d−Wp + 2p + 1

]
, k ∈ [1, nconv], (5)

where Zconvpool,k is the k-th feature map, and Zconvpool,k(i, j) is the element at its’ i-th row and j-th column,
and p is the number of padding layer in the Zconv,k. We obtain the feature representation of the node pair
Zconvpool,k(i, j), which is flattened and sent to the fully connected layer. The characteristic of the output
represents the final result obtained by flattening the fully connected layer as a potential association for
the final drug–disease pair c:

c = σ(Zconvpool,k·Wl), (6)

Wl ∈ R(
2−Wh+2p

S +1)×(
d−W f +2p

S +1)×2, (7)

where σ is a sigmoid function [31], Wl is a fully connected layer feature matrix, and · is the dot
product symbol.
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2.3.2. GRU with Attention-Based Path Encoder on the Right

For the prediction of the novel association between drug ri and disease d j, the different paths
between the two nodes contribute differently to their associations. Thus, a path-level attention
mechanism is introduced to select more important paths for the association between ri and d j. This
mechanism consists of two parts: a path encoder and a path attention layer, as shown in Figure 3.

GRU-Based Sequence Encoder

The GRU module [32] tracks the state of paths with a gating mechanism instead of using separate
memory cells. There are two types of gates: the reset gate rt and the update gate zt. These gates
jointly control the amount of information that is updated to the state. To illustrate the updated process
of the state, we take r1 and d3 as an example. There are four paths between r1 and d3 to form a set
P13 = {r1 → r2 → d3, r1 → r6 → d3, r1 → d1 → d3, r1 → d2 → d3}. The node in each path inputs its
corresponding feature vector xt. The i-th path in P13 is represented by Pi

13, and the new state ht of the
t-th node is calculated as:

ht = (1− zt)·ht−1 + zt ·̃ht, (8)

where ht−1 is the state of the t− 1 state in the path, and h̃t is the candidate state of the current node.
This is a linear interpolation between the previous state ht−1 and the current new state h̃t computed
with new information. The update gate zt controls the extent to which the previous node information
is introduced into the current state. The closer the gate zt is to 1, the more the state information of the
previous node is brought in. zt is updated as:

zt = σ(Wzxt + Uzht−1 + bz), (9)

where xt is the vector at the t-th node, Wz is the weight matrix of the node vector, Uz is the weight
matrix of the previous state, and bz is a bias vector. The candidate state h̃t is calculated as:

h̃t = tan h(Whxt + rt·(Uhht−1) + bh), (10)

where rt is the reset gate that controls how much the past state contributes to the candidate state. If rt

is zero, it will forget all previous states. Wh and Uh are matrices of the candidate state, bh is the bias
vector of the candidate state, and · is the Hadamard product symbol. The reset gate is updated as:

rt = σ(Wrxt + Urht−1 + br), (11)

where σ is the sigmod function, Wr is the weight matrix of the node vector xt in the reset gate, Ur is the
weight matrix of the candidate state ht−1, and br is the bias vector.

GRU-Based Path Encoder

We assume that Pt
i j is the path set of drug ri and disease d j, and the t-th path contains nodes.

We use a bidirectional GRU module to integrate the information in two directions of the path and
combine the context information of the path nodes. A bidirectional GRU module contains a forward
→

GRU module, which reads from the first node to the last node, and the backward
←

GRU module, which
reads from the last node to the first node as:

→

ht
i j =

→

GRU
(
Pt

i j

)
, (12)

←

ht
i j =

←

GRU
(
Pt

i j

)
. (13)

we concatenate ht
i j and ht

i j to obtain the representation ht
i j = [

→

hi j,
←

hi j] of the t-th path of ri and d j.
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Path Attention

To distinguish the different contributions of multiple paths from ri to d j to their associated
predictions, we introduce attention mechanisms to distinguish the importance of the path. The total
path information gi j is formulated as the weighted sum of all paths, and it is expressed as:

gi j =
∑

αt
i jh

t
i j, (14)

where ht
i j is the representation vector of the t-th path of ri to d j, and αt

i j is the attention weight of ht
i j to

measure the importance of the t-th path. We introduce a path vector up to measure the importance of
the path. The attention weight of each path can be defined as:

ut
i j = tan h

(
Wtht

i j + bt
)
, (15)

αt
i j =

exp
(
(up)

Tut
i j

)
∑

t exp
(
(up)

Tut
i j

) , (16)

where ut
i j is the score function of the corresponding path, i.e., the score of the import of the path, Wt

is the weight vector, bt is the bias vector, αt
i j is the attention weight of the t-th path, up is the weight

vector, and (up)
T indicated its transposition.

2.3.3. Combined Strategy

To fully combine the representation of the left-path node pair r1 and d3 and path information
representation of the right path, we design a combined strategy for determining the association score
of r1 and d3. We added a SoftMax classifier to ensure that left and right paths have certain predictive
capabilities and to further improve the performance of predictive classification. The corresponding
loss is defined as:

scorec = softmax
(
Wcci j + bc

)
, (17)

loss1 = yreallogscore0
c + (1− yreal) log score1

c , (18)

scoreg = softmax
(
Wvgi j + bv

)
, (19)

loss2 = yreallogscore0
g + (1− yreal) log score1

c , (20)

where ci j is a representational learning method based on CNN learning drug ri and disease d j. gi j is
the representation obtained by learning on the right, Wc and Wv are the weight matrices of the left
and right parts, respectively, bc and bv are the offset vectors, yreal is the actual correlation between the
drug and the disease. Further, 1 means the drug is associated with the disease, and 0 is the unknown
association, where score0

c indicates that there is no possibility of association between drug ri and disease
d j, and score1

c indicates that there is no possibility of association between drug ri and disease d j. Finally,
loss1 and loss2, are the cross entropy losses of the model in the probability of prediction and the true
correlation value. The final loss function of our model is the weighted sum of loss1 and loss2:

loss = α1loss1 + (1− α1)loss2. (21)

where α1 is a super parameter, which is used to weigh the contribution of loss1 and loss2. Our final
score is:

score = α1scorec + (1− α1)scoreg. (22)
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2.3.4. Reducing Overfitting

Our neural network has nearly 50 million parameters, which turns out to too many parameters to
learn without considerable overfitting. Thus, we introduce the following measures to prevent overfitting.

Dropout

Integrating the result from many different models is an excellent method to reduce test errors [33,34],
but this method is too computationally expensive for large neural networks and takes several days to
train. There is, however, a very efficient approach to model combination that only spends a factor of
about two during training. The recently presented technique, called “dropout” [35], consists of setting
the output of each hidden neuron to zero with probability 0.5. The neurons that are “dropped out” in
this way do not participate in the forward pass and back-propagation. Thus, every time an input is
presented, the neural network samples a different architecture, but all these architectures share weights.
This technique reduces intricate co-adaptations of neurons, because a neuron cannot depend on the
existence of other specific neurons. Therefore, it is forced to learn more robust, beneficial features in
conjunction with many different random subsets of the other neurons. During the test, we multiply the
output of all the neurons by 0.5, which reasonably approximates the geometric mean of the predictive
distributions produced by the exponentially many dropout networks.

3. Results and Discussion

3.1. Evaluation Metrics

In this study, we applied five-fold cross-validation analysis to evaluate the performance of our
method. All known drug-disease associations were treated as positive samples and divided randomly
into five equal positive subsets. At the same time, unknown associations with a matching number
were randomly selected and divided into five negative subsets. In each fold, four positive subsets and
four negative subsets were selected for training and the remaining were used to testing. We trained the
prediction model based on known associations in the training set and predicted associations in the
testing set. Training and testing were repeated five times, and the average of the performance was
adopted. In addition, we calculated the drug similarity each time we selected four positive samples.
Then, the testing set for each drug was ranked; the higher the candidate disease ranked, the greater
was the possibility of association between the drug and the disease.

The CGARDP model was used to obtain the test scores of the associations in the testing set.
The scores were ranked in the descending order of the scores, given a threshold θ. If the scores
were higher than θ, they were considered as positive samples, and those below θ were considered as
negative samples. We calculate different true positive rates (TPRs), false positive rates (FPRs), accuracy
(precisions), and recall (recall) in each θ as follows

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

, (23)

precision =
TP

TP + FP
, recall =

TP
TP + FN

(24)

where TP indicates the correct identification of the number of positive samples, TN indicates the correct
identification of the number of negative samples, FP indicates the number of samples that will be
predicted as a positive example, and FN indicates the number of samples identified as a negative
sample. Thus, the receiver operating characteristic (ROC) curve [36] can be drawn using different TPRs
and FPRs under different θ. The area under the curve (AUC) is called the drug-related AUC value.
The average AUC of all drugs was used to assess the overall performance of our method. Because the
ratio of positive and negative samples is 1:169, there is a large class imbalance. The class imbalance
problem is concerned with positive cases, while the two indicators of the PR curve are focused on
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positive samples; therefore, the PR curve has more credibility than the ROC curve [1]. Thus, we used
the PR curve to measure the performance at the same time. Precision is defined as the percentage of
real samples that are determined as positive samples, and recall as the percentage of true samples to
the total number of actual positive samples.

In addition, biologists always choose to arrange higher-ranking candidate diseases for biological
verifications, and therefore, the top of the ranking candidate list must have more positive samples.
Therefore, we made another evaluation criterion a performance metric, i.e., we calculated the average
recall rate of top-k (k = 30, 60, 90, 120 . . . ). The higher the recall rate, the higher is the proportion
of drug-related diseases that are correctly retrieved; further, the better the predictive performance,
the higher is the positive sample that is successfully identified.

3.2. Comparison with Other Methods

To evaluate the performance of the CGARDP model, we compared it with several state-of-the-art
methods including HGBI [37], MBIRW [24], LRSSL [23], and SCMFDD [25]. HGBI builds a three-layer
heterogeneous network that uses a combination of drug, disease, and target for prediction. MBIRW
builds a two-layer network of drugs and diseases to complete the drug reposition by walking among
the drug-disease network. LRSSL, a Laplacian regularized sparse subspace learning method, combines
the chemical substructure of the drug, the target domain, and the target annotation for prediction.
SCMFDD calculates the Jaccard similarity of the chemical substructure of the drug and the semantic
similarity of the disease to predict novel drug-disease association using matrix factorization.

For CGARDP and several other comparison methods, each method must adjust the parameters
involved to optimize the prediction performance. In our method, the left convolutional neural network
active windows W f and Wh are 3 and 20, respectively. It has two convolutional layers; the first of
contains 16 convolution kernels, and the second contains 32 convolution kernels, that is, nconv is 16 and
32. The padding parameter P is (1,10). The size of the sampling window (Wm,Wp) is set to (2,2),
and the super participation α1 is 2. For fairness, the parameters of other methods are based on the
parameters recommended in the corresponding literature (α = 0.4 for HGBI, α = 0.3 for MBIRW,
µ = 0.01,λ = 0.01 for LRSSL, µ = 20,λ = 22 for SCMFDD).

As shown in Figure 4A and Table 1, CGARDP achieves the best average performance over all
763 drugs that we considered (AUC of ROC curve = 0.956). The AUC-ROC values of other methods,
i.e., HGBI, MBIRW, LRSSL, and SCMFDD for 763 drugs are 0.683, 0.837, 0.838, and 0.726, respectively.
In particular, CGARDP outperforms HGBI by 27.3%, MBIRW by 11.9%, LRSSL by 11.8%, and SCMFDD
by 23%. Further, we list the AUCs of all five methods on 15 well characterized human drugs, each of
which has more than 15 known related diseases. CGARDP yields the best average performance in
terms of AUCs and achieves the best performances for 11 of the 15 common drugs. Among all methods,
LRSSL performed second best, and LRSSL took full advantage of the multiple similarity of drugs.
MBIRW achieved almost the same effect as LRSSL on AUC; however, it performance was less than
LRSSL by 7% on AUPR. These differences in performance are possibly because MBIRW focuses on the
topology information of the network. SCMFDD and HGBI perform considerably worse than LRSSL
and MBIRW; however, SCMFDD performs 4.5% better than HGBI. This difference can be attributed
to the fact that SCMFDD relies on the calculation of similarity, while HGBI constructs a three-layer
network that introduces drug–protein information but does not make full use of this information.
Compared with other methods, the superiority of CGARDP is due to its in-depth understanding
of the node representation of the drug–disease association and the attentional representation of the
path representation.
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Figure 4. (A) Receiver operating characteristic (ROC) curves and (B) positive rate (PR) curves of
CGARDP and other methods for all drugs.

Table 1. AUCs of CGARDP and other methods for all of the drugs and 15 well characterized drugs.

Drug Name CGARDP HGBI
AUC

MBiRW LRSSL SCMFDD

ampicillin 0.964 0.751 0.932 0.962 0.895
cefepime 0.990 0.910 0.970 0.971 0.914

cefotaxime 0.958 0.917 0.929 0.950 0.953
cefotetan 0.973 0.808 0.918 0.948 0.848
cefoxitin 0.880 0.890 0.912 0.979 0.894

ceftazidime 0.938 0.845 0.931 0.936 0.922
ceftizoxime 0.929 0.960 0.961 0.923 0.962
ceftriaxone 0.999 0.945 0.898 0.955 0.811

ciprofloxacin 0.905 0.811 0.813 0.928 0.820
doxorubicin 0.951 0.487 0.921 0.727 0.460

erythromycin 0.948 0.827 0.887 0.918 0.764
itraconazole 0.956 0.445 0.877 0.845 0.730
levofloxacin 0.898 0.943 0.975 0.964 0.872
moxifloxacin 0.992 0.812 0.948 0.957 0.932

ofloxacin 0.980 0.902 0.943 0.904 0.774

Average AUC 0.956 0.683 0.837 0.838 0.726

Because the number of unknown drug-disease associations far exceeds the known associations,
there is a serious imbalance in data. The PR curve predicts performance metrics better than the
ROC curve when there is a serious imbalance between the positive and negative samples. Figure 4B
and Table 2 shows the AUPR for the average performance of all drugs, and CGARDP produces the
best average performance on these drugs (AUC of PR curve = 0.425). Its average AUPR is 41.3%,
37.8%, 30.8%, and 41.1% higher than those of HGBI, MBIRW, LRSSL, and SCMFDD, respectively.
For the 15 well-characterized drugs, CGARDP demonstrates the best performance for 11 of these drugs.
In addition, 265 diseases were only association with one drug, and 116 diseases were associations with
two drugs. Therefore, CGARDP can be used for diseases associated with only one or two drugs.

For all the prediction results on 763 drugs, we performed a Wilcoxon test to evaluate whether
CGARDP’s performance is significantly better than that of the other methods. The statistical results
(Table 3) indicate that CGARDP yields the significantly better performance under the p-value threshold
of 0.05 in terms of not only AUCs but also AUPRs.
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Table 2. AUPRs of CGARDP and other methods for all of the drugs and 15 well characterized drugs.

Drug Name CGARDP HGBI
AUPR

MBIRW LRSSL SCMFDD

ampicillin 0.515 0.032 0.023 0.285 0.068
cefepime 0.766 0.163 0.315 0.625 0.054

cefotaxime 0.525 0.071 0.292 0.283 0.105
cefotetan 0.496 0.054 0.197 0.512 0.059
cefoxitin 0.420 0.151 0.394 0.286 0.065

ceftazidime 0.591 0.032 0.201 0.488 0.694
ceftizoxime 0.472 0.212 0.244 0.455 0.096
ceftriaxone 0.607 0.056 0.223 0.673 0.077

ciprofloxacin 0.429 0.082 0.118 0.280 0.064
doxorubicin 0.520 0.005 0.051 0.180 0.004

erythromycin 0.592 0.023 0.038 0.144 0.022
itraconazole 0.379 0.006 0.253 0.042 0.008
levofloxacin 0.212 0.136 0.071 0.539 0.098
moxifloxacin 0.735 0.049 0.650 0.384 0.088

ofloxacin 0.382 0.091 0.130 0.201 0.078

Average AUC 0.425 0.013 0.047 0.117 0.014

Table 3. The statistical result of the paired Wilcoxon test on the AUCs of 763 drugs comparing CGARDP
and all of four other methods.

p-Value between CGARDP
and Another Method HGBI MBiRW LRSSL SCMFDD

p-value of ROC curve 6.873 × 10−270 6.302 × 10−72 3.473 × 10−31 9.326 × 10−180

p-value of PR curve 4.365 × 10−40 7.332 × 10−30 2.321 × 10−12 3.265 × 10−60

A higher recall rate on top k ranked drugs means that real disease-related drugs are correctly
identified. The average recall rates of the top k samples on all 763 drugs are shown in Figure 5.
CGARDP consistently outperforms the other methods at various k values, and it ranked 89.9% in
the top 30, 93.8% in the top 60, and 97.1% in the top 120. Before the top 90, LRSSL performed better
than MBiRW, and then MBiRW surpassed LRSSL. The former ranks 63.4%, 71.3%, and 77.7% in the
top 30, 60, and 120, respectively, and the latter is 53.1% and 66.3%. 79.3%. The possible reason for
these different rankings is that MBiRW makes better use of global topology information, while LRSSL
focuses more on neighbor node information. HGBI and SCMFDD have relatively close recall rates at
different k values. HGBI ranks for k values of 30, 60, and 120 were 28.8%, 41.1%, and 54.9%, respectively,
and those of SCMFDD are 30.6%, 45.0%, and 57.8%. Ultimately, we can conclude that CGARDP is
indeed better than other methods in discovering the underlying disease of the drug.

Figure 5. Recalls across all the tested drugs at different top k cutoffs.
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3.3. Case Studies on Ciprofloxacin, Ceftriaxone, Ofloxacin, Ampicillin, and Levofloxacin

After the above five-fold cross-validation, we evaluated the performance of the method,
and all known correlation data were used as training data to predict the unknown drug-disease
association. Case studies of five drugs—Ciprofloxacin, Ceftriaxone, Ofloxacin, Ampicillin,
and Levofloxacin—demonstrate the ability of CGARDP to detect high-quality candidate diseases for
drugs. The analysis of each of the top ten candidates for each drug is presented in detail in Table 4.

Table 4. The top 10 candidates related to the drugs Ciprofloxacin, Ceftriaxone, Ofloxacin, Ampicillin,
and Levofloxacin.

Drug Name Rank Disease Name Description Rank Disease Name Description

Ciprofloxacin

1 Conjunctivitis,
Bacterial Clinical Trials 6 Gram-Negative

Bacterial Infections Clinical Trials

2 Campylobacter
Infections CDC 7 Chlamydia Infections Clinical Trials

3 Anthrax CTD, Clinical
Trials 8 Pneumonia,

Pneumocystis PubChem

4 Klebsiella Infections CTD, Clinical
Trials 9 Eye Infections,

Bacterial Clinical Trials

5 Soft Tissue Infections Clinical Trials 10 Acanthamoeba
Keratitis PubChem

Ceftriaxone

1 Bone Diseases,
Infectious Clinical Trials 6 Tetanus literature [38]

2 Panic Disorder Drug Bank 7 Legionnaires Disease Drug Bank

3 Hepatitis B Clinical Trials 8 Cytomegalovirus
Infections Drug Bank

4 Respiratory Syncytial
Virus Infections PubChem 9 Respiration Disorders Clinical Trials

5 Maxillary Sinusitis Drug Bank 10 Respiratory Distress
Syndrome, Adult Clinical Trials

Ofloxacin

1 Corneal Ulcer PubChem 6 Proteus Infections CTD

2 Epididymitis CDC 7 Urinary Bladder Neck
Obstruction

Inferred candidate
by 1 literature

3 Otitis Externa Drug Bank 8 Glaucoma,
Angle-Closure PubChem

4 Tuberculosis,
Pulmonary

CTD, clinical
Trials 9 Urinary Bladder

Diseases
Inferred candidate

by 1 literature
5 Urethral Diseases PubChem 10 Trichomonas Vaginitis clinical Trials

Ampicillin

1 Burns Inferred candidate
by 3 literature 6 Candidiasis,

Cutaneous PubChem

2 Meningitis, Bacterial CTD 7 Otitis Media,
Suppurative Drug Bank

3 Pseudomonas
Infections CTD 8 Pneumonia, Bacterial CTD, Clinical

Trials

4 Skin Diseases,
Infectious Clinical Trials 9 Proteus Infections CTD

5 Radiation Injuries,
Experimental

Inferred candidate
by 1 literature 10 Sarcoma, Ewings Drug Bank

Levofloxacin

1 Tuberculosis,
Pulmonary Clinical Trials 6 Listeriosis Drug Bank

2 Histoplasmosis Drug Bank 7 Soft Tissue Infections CTD, Clinical
Trials

3 Pneumonia,
Mycoplasma Clinical Trials 8 Respiratory Tract

Fistula Drug Bank

4 Bronchitis Clinical Trials 9 Rhinitis Drug Bank

5
AIDS-Related
Opportunistic

Infections
Clinical Trials 10 Mouth Diseases Clinical Trials

First, A drug bank is a database of drugs pharmacology indication, drug interaction, and clinical
trials for a disease. The Comparative Toxicogenomics Database (CTD) contains important information
about the effects of drugs on the disease. The Centers for Disease Control and Prevention (CDC)
records the trends and preventive treatments of common diseases. In Table 4, 12 candidate diseases are
included from the drug bank, nine candidates are included in the CTD, and two candidates are included
in the CDC; this table shows that these candidate diseases are indeed related to the corresponding
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drugs. Second, ClinicalTrials.gov (https://clinicaltrials.gov/) is a database of clinical trials run by the
National Institutes of Health (NIH), and it contains clinical trials of various drugs and related diseases.
PubChem (https://pubchem.ncbi.nlm.nih.gov/) is a database of chemical modules supported by the
NIH, and it stores biochemical experimental data and structural information on compounds, including
drugs and their biological activities data. A total of 21 candidate diseases in Table 4 were included in
ClinicalTrials.gov, and 7 candidates were included in PubChem, indicating that these candidates were
supported by the experiment. In addition, a candidate for the “literature” marker was supported by
the literature. The addition of ceftriaxone to metronidazole has a synergistic effect, which can reduce
the production of toxins and promote wound healing; thus, the combination of metronidazole and
ceftriaxone is preventive. Tetanus patients with sepsis and pneumonia have good efficacy, confirming
that Ceftriaxone affects the candidate disease tetanus.

In addition, the CTD database also contains potential associations that the literature infers to
exist, labelled as Inferred. Four candidate diseases in Table 4 were inferred from the CTD literature,
indicating that the drug is more likely to be associated with the candidate disease. Case studies of
candidate diseases for the five drugs confirmed that CGARDP was indeed able to detect potential
candidate diseases for the drug.

3.4. Prediction of Novel Drug–Disease Associations

According to cross validation and case studies, we applied CGARDP to predict the novel
drug–disease associations. All known drug–disease associations were utilized to train CGARDP’s
prediction model, the potential candidate associations were then obtained by using the model as listed
in Supplementary Table S1.

4. Conclusions

A novel method based on CNN and GRU—CGARDP—was proposed to predict the potential
drug–disease associations. The CRU based framework deeply integrates the similarity and association
information of a drug–disease pair. The GGU based framework deeply learns the path information
between the drug and the disease. CGARDP discriminates different contributions of the paths by
constructing the attention mechanism and learns more informative representation of the drug-disease
pair. The experimental results show that CGARDP outperforms other methods in terms of both AUCs
and AUPRs. The case studies on five drugs confirm that CGARDP is able to retrieve potential candidate
drug–disease associations.

Supplementary Materials: The following are available online, Table S1: The top 10 potential candidates for 763 drugs.
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