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Abstract
Recent years have seen progress in druggability simulations, that is, molecular

dynamics simulations of target proteins in solutions containing drug-like probe

molecules to characterize their drug-binding abilities, if any. An important consecu-

tive step is to analyze the trajectories to construct pharmacophore models (PMs) to

use for virtual screening of libraries of small molecules. While considerable success

has been observed in this type of computer-aided drug discovery, a systematic tool

encompassing multiple steps from druggability simulations to pharmacophore

modeling, to identifying hits by virtual screening of libraries of compounds, has

been lacking. We address this need here by developing a new tool, Pharmmaker,

building on the DruGUI module of our ProDy application programming interface.

Pharmmaker is composed of a suite of steps: (Step 1) identification of high affinity

residues for each probe molecule type; (Step 2) selecting high affinity residues and

hot spots in the vicinity of sites identified by DruGUI; (Step 3) ranking of the inter-

actions between high affinity residues and specific probes; (Step 4) obtaining probe

binding poses and corresponding protein conformations by collecting top-ranked

snapshots; and (Step 5) using those snapshots for constructing PMs. The PMs are

then used as filters for identifying hits in structure-based virtual screening.

Pharmmaker, accessible online at http://prody.csb.pitt.edu/pharmmaker, can be

used in conjunction with other tools available in ProDy.
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1 | INTRODUCTION

Drug discovery is a long, costly, and risky process. Computa-
tional approaches have been widely used to increase the
efficiency of this process and reduce the cost, including
quantitative structure–activity relationship (QSAR) studies,

docking-based virtual screening (VS) of libraries of compounds
and pharmacophore-based VS.1–4 QSAR methods evaluate the
activities of small molecules in relation to their physicochemical
properties using machine learning methods.5 Docking simula-
tions evaluate their binding poses and energetics with respect to
a target protein and assign scores based on binding affinities.3

Pharmacophore models (PMs) define the essential chemical fea-
tures (such as hydrogen bond donor/acceptor, hydrophobic,Ji Young Lee and James M. Krieger contributed equally to this work.
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aromatic, and charged regions) as well as shared geometric fea-
tures (e.g., overall volume and shape and relative position of dif-
ferent types of chemical groups) of small molecules that are
identified to be pharmacologically effective.6

Pharmacophore models can be built by ligand- or target-
based methods. In the former case, the PM defines the com-
mon patterns of an ensemble of structurally aligned ligands
known to have some desirable activity.7–12 A variety of soft-
ware, such as HipHop,13 HypoGen,14 DISCO,15 GASP,16

PHASE,17 and PharmaGist7 have been developed to build
PMs from ligands. Their performances mainly rely on their
ability to handle the flexibility of ligands and their align-
ment. Ligand-based approaches have been used in develop-
ing inhibitors against Alzheimer's disease,8 and targeting
topoisomerase I,9 17β-hydroxysteroid dehydrogenase 2,10

and CXC chemokine receptor 2.11 Ligand-based PMs
require a set of ligands that are known to have well-defined
pharmacological effects on a target protein or pathway, but
the 3D structure of the target(s) is not required.

Target-based construction of PMs, on the other hand, takes
account of the atomic interactions at the putative binding site
of the target protein,18–23 and requires knowledge of the 3D
structure of the protein, or at least its ligand-binding pocket.
Methods based on macromolecule-ligand complex structures,
such as LigandScout,18 ZINCPharmer,24 Pharmit,25 and
GBPM26 can be used to build such PMs. Pharmacophore fea-
tures are deduced from the geometry and interactions of the
ligand bound to the target protein. However, the requirement
of a structurally resolved complex with ligand limits the appli-
cability of target-based pharmacophore modeling.

In view of the existence of structural data for target proteins
and their homologs, macromolecule-based (without ligand)
approaches such as GRID,27 SuperStar,28 HS-Pharm,19

Shaper2,29 Pocket V.3,30 and CavityPlus20 have been devel-
oped, which take as input the target structure only, to charac-
terize the binding site. GRID uses an empirical force-field to
evaluate the energy of probes at each grid point around the tar-
get structure, and determine the optimal poses at hot spots
(positions that exhibit a high propensity to be occupied by
ligands).21,27 SuperStar learns the distribution of probes from
template molecules, and then uses a knowledge-based method
to identify hot spots.28 HS-Pharm identifies hot spots using a
machine learning method based on the fingerprints of known
ligand-binding cavities.19 CavityPlus20 and Pocket V.330 use
CAVITY,31 a geometry-based program, to detect cavities and
a grid-based method to define hot spots and assign scores.
CavityPlus takes advantage of normal modes predicted by the
Gaussian network model (GNM)31,32 to evaluate the potential
allosteric effects of the druggable sites.33 All these tools con-
sider atom–atom interactions and shape complementarity
while entropic effects are often overlooked. The conforma-
tional entropy, and hence adaptability, of proteins to expose

sites that are buried in the resolved structure has been a major
motivation for developing flexible docking tools, as opposed
to rigid docking.34–37 Yet, another entropic effect, associated
with the frequency of binding a site, also plays a dominant role
evidenced by the significance of evaluating probe clus-
ters.24,38,39 Druggability simulations emerged as an approach
that takes account of both types of entropies.

Druggability simulations are simply molecular dynamics
(MD) simulations conducted in the presence of a solution con-
taining probe molecules representative of drug-like fragments,
to analyze their binding events onto the “moving” target
(protein).40–45 These simulations demonstrate the ability of pro-
teins to assume alternative conformations, expose potential
binding cavities, and selectively bind specific types of probes.
Statistical analysis of binding events sheds light onto both
enthalpically and entropically favorable hot spots. Enthalpic
effects are inferred from the strength/energy of ligand-protein
interaction at the hot spots; entropic effects are deduced from
the frequency of binding to a given hot spot. A notable study is
that of Carlson and coworkers, where druggability simulations
(called Mixed MD cosolvent simulations46) were shown to suc-
cessfully evaluate binding free energies and relative entropies
for a series of allosteric proteins.47 Furthermore, coarse-grained
models, such as the GNM31,32 and the anisotropic network
model (ANM) provide unique analytic solutions for the ensem-
ble of conformations sampled under equilibrium conditions,48

including potential allosteric changes,33 which can be advanta-
geously utilized as input for conducting multiple runs. We have
shown that druggability runs of ~40 ns can adequately identify
orthosteric and allosteric sites.12,22,23,42,43,49 Equally important
is the analysis of binding poses and residence times for differ-
ent probes, which permit us to determine the composition of
probes at the hot spots that are most likely to bind drug-like
molecules and estimate the corresponding free energy of bind-
ing using simple Boltzmann statistics.43 While such analyses
have been successfully performed for case studies, such as
cytochrome c,22 γ-secretase,49 ionotropic glutamate receptors
(iGluRs),42 PTP4A3 phosphatase,50 HIV-1 protease,51 K-Ras,52

and several allosteric proteins,47 a tool that complements the
druggability simulations by systematic analysis of hot spots to
construct PMs remains to be established.

Without an easy-to-use tool, the preparation of input files
for druggability simulations and the analysis of the trajectories
to retrieve information for further use in drug discovery
requires a great deal of manual operations. Graham et al.
developed a PyMOL plugin, Probeview, to facilitate such ana-
lyses.53 However, the tool does not handle the raw trajecto-
ries; instead it takes as input pre-calculated PDB files that
contain occupancy information of grids. We developed
DruGUI,43 a tool to assist in setting up druggability runs, that
is, constructing input files for submitting runs to nanoscale
molecular dynamics (NAMD),54 and to perform grid-based
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analysis of the outputs and their visualization in visual molec-
ular dynamics (VMD).55 The Mackerell lab also developed a
tool called SILCS-Pharm for analyzing druggability simula-
tions and extracting pharmacophore features from grid free
energy fields called FragMaps.56,57 However, there is a need
for a suite of tools that would further automate the analysis of
trajectories and the characterization of probe-specific hot
spots, to build PMs, and facilitate PM-based VS. We present
here such a tool, Pharmmaker.

We present below the main features of Pharmmaker by
way of application to a dimer of the main ligand-binding
domain (LBD) of an AMPA receptor (AMPAR) paralogue
GluA2 (PDB 1FTO),58 which we recently used in druggability
simulations.42 AMPARs are glutamate-gated ion channels that
are central to synaptic transmission and plasticity.59,60 The
LBD binds the neurotransmitter glutamate, leading to confor-
mational changes, initially at the monomer and dimer levels,
which trigger receptor activation (opening of the downstream
ion channel) and desensitization (entry into a long-lived
agonist-bound closed channel state).58,61–66 This domain is
also the main binding site for modulators such as cyclothiazide
that bind at the dimer interface and block desensitization.64,67

The presence of multiple binding sites and the well-
characterized dynamics of this domain42 make it suitable for
benchmarking and illustrating our methodology.

2 | RESULTS

2.1 | Overview of Pharmmaker

Pharmmaker is a tool with a command-line interface, which
takes outputs from druggability simulations package DruGUI
as input, and constructs one or more PMs in a suitable format
to be submitted to Pharmit.43 Key steps and corresponding
outputs are presented below and schematically described in
Figure 1. Also presented is a brief description of the preceding
druggability analysis using DruGUI, as Step 1. Pharmmaker
software and its tutorial can be downloaded from http://prody.
csb.pitt.edu/tutorials/pharmmaker/. A more detailed descrip-
tion is also presented in the Supporting Information.

2.2 | Step 1: Hot spots from druggability
simulations

Step 1 is the identification of hot spots from druggability
simulations (blue box in Figure 1) using the DruGUI module
implemented in ProDy, as described in our previous stud-
ies.42,43 In the present illustration, we include six probe
molecules: isopropanol, acetamide, imidazole, acetate, iso-
propylamine, and isobutane (Figure 2a). The number and
types of probe molecules can be modified by the user.
Figure 2b shows a snapshot from our simulation box

FIGURE 1 Pharmmaker workflow for constructing pharmacophore models (PMs), in conjunction with druggability simulations (DruGUI) and
virtual screening (Pharmit). Pharmmaker uses as input the druggable sites predicted by DruGUI, developed for generating druggability trajectories
and identifying druggable hot spots (blue box). The output from DruGUI is used by Pharmmaker (Steps 2–5; yellow box), to release a PM that is
used (in Step 6) for virtual screening (VS) of libraries of compounds using Pharmit (green box). See the text for a detailed description of each step
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containing the target protein and the probe molecules in
explicit water. Typically, the concentration of probe mole-
cules is one probe for every 20 water molecules.

Figure 2c shows the results from DruGUI analysis where
the spheres display probe-specific hot spots around the LBD
dimer. The hot spots are color-coded as in panel A. Most of
the hot spots are on the solvent-exposed surface of the target
as the latter is easily accessible, but we also note a relatively
buried site at the interface between the two monomers

Figure 2d shows clusters of hot spots that are highly occu-
pied by probes, which are predicted to serve as druggable sites.
There are five druggable binding sites (labeled as Sites 1–5).
Their binding energies are obtained using drug-like combina-
tions of hot spots as described earlier42,43 (see Supporting
Information). The highest affinity region, Site 1, corresponds to
the dimer interface region mentioned above. This site is known
to bind allosteric modulators.67 We note that this site harbors
hot spots for four types of probe molecules, isopropanol, acet-
amide, imidazole, and isobutane, as shown at the bottom of
Figure 2d, meaning that the missing probes, acetate and iso-
propylamine, do not bind there. In Steps 2–5, we characterize

in more detail the specific interactions between the protein resi-
dues and the probes to build PMs for Site 1.

2.3 | Step 2: Identification of residues
exhibiting high probe-specific affinities

In this step, we identify the residues that are involved in high
affinity interactions with probes (Step 2 in Figure 1 and
results in Figure 3a,b). To this aim, we assign a probe-
specific binding score to each residue, and generate a bind-
ing profile as a function of residue index, for each probe
type p. Figure 3, panels a and b, illustrate the six profiles,
one for each probe, generated for subunits A and B, respec-
tively. The probe-specific binding score of each residue i is

defined as s(p, i) =
Pn

k=1 1=dkið Þ2, where k is each frame/
snapshot index and n is the total number of frames recorded
during druggability simulations (in our case, 10,000 frames
at intervals of 4 ps are recorded for each of the 40 ns runs),
i is residue index, and d is the distance between contact-
making heavy atoms belonging to the respective amino acid
i and probe p. Contact-making means that they are within

FIGURE 2 Druggability simulations. (a) The ensemble of probe molecules used in the current study. Six types of probes (isopropanol
[yellow], acetamide [magenta], imidazole [cyan], acetate [red], isopropylamine [blue], and isobutane [green]) were used, and their structures and
features are indicated at the bottom. (b) A snapshot of the simulated system. An LBD dimer of AMPAR subtype GluA2 is shown in silver surface
representation and probe molecules are shown as sticks colored by types. Water molecules are shown as shaded light gray lines in the background.
(c) Hot spots from the druggability analysis. Hot spots are voxels in 3D space, which are highly occupied by probe molecules. Clusters of hot spots
form druggable sites. Hot spots are obtained for each probe molecule type and are displayed as balls in the same color as the probe. (d) Druggable
sites revealed by clusters of hot stops. There are five such sites shown in different colors. They are ranked by score (highlighted in yellow;
comparable to binding energy in kcal/mol) with Site 1 having the highest affinity. Site 1 (blue ellipse) is known to bind allosteric modulators that
potentiate ion channel currents by blocking desensitization. At the bottom, the zoom-in view of Site 1 (rotated to show all the hot spots clearly) is
shown. We observe hot spots for isopropanol, acetamide, imidazole, and isobutane at Site 1. There are no hot spots for acetate and isopropylamine.
AMPAR, AMPA receptor; LBD, ligand-binding domain
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close proximity (4 Å) at a given frame k. If a given residue-
probe pair exhibits multiple atom-atom interactions in a
snapshot, they are all included in the summation, thus
accounting for the tight interaction. The binding score pro-
files permit us to identify the highest affinity residues by
specifying a user-selected threshold score, above which resi-
dues are accepted to exhibit a high affinity for a specific
probe. Data analysis shows that 500Å−2 (indicated by the
dashed line in Figure 3a,b) is a good threshold for 40 ns
runs. This analysis can be carried out using the command
line program highaffresid.sh (see Supporting Information for
details).

2.4 | Step 3: Selection of high-affinity residues
located at druggable sites

The above analysis gives us information on high-affinity res-
idues for specific types of probes. However, these may be
isolated residues, which, in the absence of participation in a
cluster of hot spots (or a druggable site) identified by

DruGUI, might not stably bind drugs. Hence, we need to
select the residues that participate in druggable sites (note
that five were identified in Step 1). Therefore, we select
from among the high affinity residues identified in Step
2, those that are located at the druggable sites (Step 3 in Fig-
ures 1 and 3c,d). Let us consider the highest affinity site
(Site 1). This site exhibited high affinity for four different
types of probes, isopropanol, acetamide, imidazole, and iso-
butane, shown in Figure 3c,d. Among the isopropanol-
binding high affinity residues, for example, we select those
within 8.0 Å from at least one of the three isopropanol hot
spots at this site (yellow spheres in Figure 2d, lower part,
also shown in Figure 3d left): P105, S108, L236, and N242
in subunit A and S108 in subunit B. Note that here, we use
the residue numbering of the isolated LBD construct in the
examined PDB structure,58 not that of the full receptor.
Repeating the same procedure for each type of probe repre-
sented at Site 1, we obtain the four diagrams in Figure 3d,
where the hot spots and corresponding high affinity residues
are displayed for the four different probe types.

FIGURE 3 High affinity residues of AMPAR GluA2 LBD dimer interacting with different types of probe molecules. (a, b) Binding score profiles
for LBD subunits A (top) and B (bottom), evaluated for each type of probe molecule (curves in different colors, labeled). Binding score is as described in
the text. Residues with score above 500/Å2 (see dashed line) are identified as high affinity residues for each type of probe. The residue numbers refer to
those in the examined PDB file, corresponding to the isolated LBD. (c) Probe types and high affinity residues at the dimer interface. The corresponding hot
spot positions for the probe types and potential coordinating residues are displayed in panel (d). Residues of subunit A are labeled in red, and those of
chain B, in black. AMPAR, AMPA receptor; LBD, ligand-binding domain
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Selection of high affinity residues produces the outputs
tabulated in Figure 3c. To generate this type of table in
Pharmmaker, the outputs from the previous steps (hot spots
from Step 1 and the high affinity residues from Step 2) are
used. The high affinity residue files are found automatically,
so this analysis can be carried out using the program
siteselection.sh (see Supporting Information).

2.5 | Step 4: Rank-ordering residue-probe
interactions based on their frequency of
occurrence

In this next step (Step 4 in Figures 1 and 4a,b), we focus
on the residues selected in Step 3, and rank the
corresponding residue-probe interactions based on their fre-
quency of occurrence (entropy). This is achieved by simply
counting the number of snapshots where the specific probe
directly interacts with the selected high affinity residues. In
the top-ranking case of P105(B)-isobutane, for example,
there are six isobutane-specific hot spots (green spheres
shown in Figures 2d, 3d, and 4b). First, we count the total
number of snapshots where an isobutane probe is within
4 Å from the P105(B), based on heavy atoms. Then, we
assign them to hot spots whose center is within 1.5 Å from
any atom of the probe. We count the number of snapshots
with a probe near this residue and occupying any of these
six hot spots as shown in Figure 4b, which is 4,846 in this

case, out of 10,000 snapshots per run of 40 ns, yielding a
frequency of 0.4846. We repeat the procedure for each
selected residue-probe pair. The resulting frequencies are
rank-ordered and listed in Figure 4a. This analysis can be
carried out using the program snapshotstatistics.sh, which
takes the output from previous steps as inputs (see
Supporting Information).

2.6 | Step 5: Construction of a pharmacophore
model

This is the final step in Pharmmaker (Step 5 in Figures 1, 4c,
and 5a). We extract the snapshots that exhibit the most fre-
quent interactions (the top 12 in Figure 4a using the frequency
of occurrence 10% as default cutoff). We found a total of
13 snapshots that include these top 12 interactions. That is, all
13 snapshots display isobutane interacting with the residues
P105(B), S108(B), S217(A), and K218(A), acetamide inter-
acting with P105(B), N242(B), L239(B), K104(B), G219(A),
and K218(B), and isopropanol interacting with N242(A) and
P105(A). While the interactions could be made by different
probes of the same type, it is also possible for only one probe
to be interacting with multiple residues at the same time.

Figure 4c displays one such conformation representing a
highly robust network of interactions, with side chains ori-
ented to achieve optimal probe binding. The 13 snapshots/
conformers that jointly display all the top-ranking

FIGURE 4 Probe-residue interaction statistics and most probable interactions. (a, b) Probe-specific high affinity residues and frequency of
specific probe-amino acid contacts listed in a table (a), and illustrated for one specific case, isobutane near P105 in chain B, in panel b. This residue
had one or more contacts with isobutane, distributed over six hot spots (green spheres) in a total of 4,846 of 10,000 snapshots (or 48.46% of
recorded conformers in our trajectory of 40 ns). The top-ranking interactions with frequency 0.10 (10%) or higher are highlighted in blue. (c) A
snapshot (frame 761) where all the top-ranking interactions simultaneously take place, used for constructing a PM. Ribbon diagram elements
colored yellow and violet correspond to β-strands and α-helices, respectively. Residues of subunit A are labeled in red, and those of chain B, in
black. Also shown are the hot spots with the three probe molecules. PM, pharmacophore model
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interactions are indeed quite similar structurally, with an
average RMSD of 1.9 Å (see Figure S1a). These conformers
are used as inputs for structure-based virtual screening in the
next step. The use of probe poses and corresponding target
conformations from the same snapshots allows us to obtain
more accurate results. A specific target conformation is
important in order to have accurate binding scores in virtual
screening, for example, probe position and affinity are
dependent on the side chains' rotameric states as well as the
fluctuations in the backbone. This analysis can be carried
out using the program snapshotstatistics.sh, which it takes
the output from previous steps as inputs (see Supporting
Information).

We use each of the snapshots selected in this step to con-
struct a PM, as illustrated for one of the snapshots

(numbered 761) in Figure 5a. The PM consists of two hydro-
phobic groups, one hydrogen bond acceptor and two hydro-
gen bond donors, arranged in a well-defined geometry,
occupying a cavity (shown by the semi-transparent gray
volume) at the interface between the two LBD protomers. It
was created by selecting appropriate features based on the
dominant interactions, which would then be realized in the
next step.

2.7 | Step 6: Virtual screening of libraries of
compounds using the PM

Figure 5 (Step 6, green box in Figure 1) shows the results
from screening our PM against the ChEMBL database68,69

using the Pharmit Server.25 PM features were treated as

FIGURE 5 Compounds obtained from virtual screening of our PM against the ChEMBL 25 library of small molecules. (a) PM constructed
based on the snapshot displayed in Figure 4c, using the binding position and orientation of three probe molecules: acetamide, isobutane, and
isopropanol. C atoms are colored by probe as in previous figures, H, N, and O atoms are colored white, blue, and red, respectively. Hydrogen bond
donor (gray) and acceptor (orange) features were used for acetamide (both donor and acceptor) and isopropanol (donor), and hydrophobic features
(green) were used for isopropanol and isobutane. Selected probes span the gray transparent volume, which is displayed in other panels too for
comparison. (b) Histogram showing AutoDock Vina scores from querying the ChEMBL 25 database with Pharmit. The majority of scores are
negative (corresponding to favorable binding energies). The inset enlarges this region with negative scores and indicates the scores for six known
AMPAR modulators listed in ChEMBL 25 (see Table 1). (c) AutoDock Vina score and minimization RMSD (mRMSD) between docked
compounds and the input pharmacophore features are listed for the top hits (compounds with the highest binding affinity or most negative scores).
One of the compounds (highlighted in orange) has a high mRMSD value, meaning its preferred binding pose after minimization is not consistent
with the input PM. (d). Optimized binding poses of the top five hits shown in various shades of blue, along with the experimentally resolved
modulators (R,R)-2a, (R,R)-2b, and 11m from PDB structures 3BBR, 4U5B, and 5OEW in red. (e) The predicted binding pose of the top known
modulator (11m) and its experimental pose show good agreement with the PM. See also Figure S3 for additional hits and experimentally determined
compounds (Table 1) that match the PM. PDB, protein data bank; PM, pharmacophore model

82 LEE ET AL.



spheres of 1 Å radius for matching against database com-
pounds, and hits were filtered to only include 1 entry per
compound and exclude compounds larger than 500 Da. This
was then succeeded by minimization docking using
AutoDock Vina70,71 within Pharmit, yielding the binding
scores and hits shown in Figure 5b,c and Table 1 for snapshot
761. Other snapshots gave similar but distinct results as
shown in Figure S1b, S2, and Table S1. We therefore recom-
mend users to use all the snapshots containing the most domi-
nant interactions and compare them. While the global
interactions are maintained throughout the simulation, the
exact conformation will likely change over time, allowing
them to sample more possible binders. It should, however, be
noted that after a certain degree of conformational change,
DruGUI analysis results may not be meaningful when carried
out over a whole trajectory, which is why we use 40 ns.

Figure 5c lists the top-ranking compounds (hits) from VS,
and the corresponding AutoDock Vina scores (or binding
energies) and RMSDs with respect to the pharmacophore
features after energy minimization (mRMSD). We note that a
score below −10 kcal/mol represents a highly favorable
(nanomolar range) interaction. The poses of the top five com-
pounds are shown in blue sticks in Figures 5d and S3a, along
with the poses of known allosteric modulators in red, a
benzothiadiazine, designated as compound 11m (PDB id:
5OEW72; also shown in Figure 5e), and the biarylpro-
pylsulfonamides (R,R)-2a (PDB id: 3BBR),73 and (R,R)-2b
(PDB id: 4U5B)74 (see Figure S3b for individual examples).
Therefore, the hits occupy the same space as the known allo-
steric modulator, and exhibit similar features as illustrated in
panels d and e of Figure 5. It remains to be experimentally
tested and verified whether these compounds could function
as well or even better than the existing modulators

The screening against ChEMBL also allowed us to identify
some experimentally verified compounds with good scores
(see Figure 5b,e, S3c, Table 1). The best one (first row of
Table 1) corresponds to the compound 11m mentioned above

and the predicted binding pose matches the known one in the
resolved structure (PDB id: 5OEW) very well (Figure 5e).
Interestingly, these compounds show small RMSDs (< 1.0 Å)
with respect to the PM before minimization docking (Table 1)
and, in some cases, the binding scores after docking correlate
very well with the inferred binding affinity from functional
experiments (pEC50 in Table 1). The compound 11m is likely
the most potent AMPAR modulator to date with an effective
concentration for 50% activity (EC50) of 2.0 nM,72

corresponding to a pEC50 (− log10 EC50) of 8.700 in line with
the binding score of −8.34 kcal/mol. Another compound in
the same series (known compound #3; Figure S3c) has a
pEC50 of 7.336 and a binding score of −7.44 kcal/mol. There-
fore, the new compounds predicted by our method have the
potential to bind with sub-nanomolar affinity.

3 | CONCLUSION

Structure-based VS is not easy, especially if there is no
information about binding pocket, binding features, and
poses; and target flexibility makes it an even more challeng-
ing problem. A strong aspect of our method is that it uses
multiple target conformations dependent on the binding
poses of probes where they interact during druggability sim-
ulations. Therefore, the binding score in VS can be more
evaluated in a more realistic manner. Also, we can have mul-
tiple PMs for the same site, with different target conforma-
tions and probe poses, which can be analyzed statistically.
Furthermore, multiple different compositions of PM features
can be explored. In this article, we focused on the highest
affinity site, which is a known allosteric site, but we can
focus on other sites that harbor clusters of hot spots and on
specific residues if necessary. Our method is purely compu-
tational and unbiased, and we believe that this new tool will
assist in current efforts in drug discovery and development,
especially in the identification of allosteric modulators.

TABLE 1 Compounds with experimental verification, identified in ChEMBL (release 25)

Compound
(ChEMBL ID) pEC50

a
Initial
RMSD (Å)

Binding
energy
(kcal/mol)

RMSD
after minimization
(mRMSD; Å)

Rank among
all compoundsb

Rank among
known
compoundsb

CHEMBL4091984 8.70072 0.57 −8.34 1.63 1,159 1

CHEMBL1214203 5.10080 0.56 −7.70 2.75 2,957 2

CHEMBL4060993 7.33672 0.65 −7.44 1.21 4,001 3

CHEMBL1290503 5.39881 0.60 −6.97 2.77 6,297 4

CHEMBL1277180 5.79682 0.70 −6.72 2.30 7,645 5

CHEMBL1214334 5.90080 0.75 −6.57 2.26 8,452 6

aExtracted from the cited articles, or calculated as −log10(EC50).
bAfter minimization.
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4 | METHODS

The manuscript is a tool description overall. So, we present
below a brief overview only, and more details including all
intermediate steps, commands, and quantitative data, are
provided in the Supporting Information and in the Tutorial
accessible online.

Druggability simulations and trajectory analyses were per-
formed as described previously.42,43 Briefly, simulations were
run using the probe set shown in Figure 2 (selected as repre-
sentatives of drug fragments with different physicochemical
properties) using the molecular dynamics (MD) simulation
package NAMD54 with the CHARMM22 force field for
proteins,75 the TIP3P water model,76 and the CGenFF force
field77 (version 43) for the probes. Trajectory analyses were
performed using the DruGUI module43 of ProDy.48,78

The target protein used for illustration of Pharmmaker is
AMPAR GluA2 LBD dimer (PDB id: 1FTO).58 Two inde-
pendent runs were performed for AMPAR GluA2 LBD
dimer, which yielded similar results in DruGUI analysis, in
agreement with experiments.58 We use one of them here for
illustrative purposes. The latter presented five druggable
sites. We focused on the highest affinity site indicated by
DruGUI analysis, which agreed well with experiments.58 All
MD snapshots were superposed onto the reference PDB
structure using Cα-atoms and a cubic grid-based representa-
tion of the space was used for the analysis. Grid edge size
was set to 0.5 Å. Probe molecules having non-hydrogen
atoms within 2.5 Å from protein atoms were considered to
interact with the protein. For each probe type, the individual
occupancy of grids was calculated using their centroids. We
evaluated the occupancy of each probe for a given voxel.
High occupancy voxels, called hot spots, within a distance
less than 5.5 Å were merged and druggable sites were
defined by clusters of at least six such hot spots. We
obtained five druggable sites as shown in Figure 2d; details
of binding affinity calculations are explained in the
Supporting Information. The druggable sites were analyzed
further to build a PM with our new tool called Pharmmaker,
written in Tcl and Bash. This tool is described in our results
section and outlined in Figure 1. Details of each step are
described in the Supporting Information, and the tutorial
files are accessible online at http://prody.csb.pitt.edu/
tutorials/pharmmaker.

We used Pharmit, which is for VS of large compound
databases using pharmacophore features, molecular shape,
and energy minimization.25 We applied the following filters:
1 hit per molecule and molecular weight ≤ 500. Features as
described in the results were used for screening the
ChEMBL database.68 Data visualization are performed using
ProDy 1.10.10,78 VMD 1.9.1,55 and PyMOL 1.8.6.79
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