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Abstract: Ulcerative colitis (UC), which is a major form of inflammatory bowel disease (IBD),
is a chronic relapsing disorder of the gastrointestinal tract affecting millions of people worldwide.
Alternative natural therapies, including dietary changes, are being investigated to manage or treat
UC since current treatment options have serious negative side effects. There is growing evidence
from animal studies and human clinical trials that diets rich in anthocyanins, which are pigments in
fruits and vegetables, protect against inflammation and increased gut permeability as well as improve
colon health through their ability to alter bacterial metabolism and the microbial milieu within the
intestines. In this review, the structure and bioactivity of anthocyanins, the role of inflammation and
gut bacterial dysbiosis in UC pathogenesis, and their regulation by the dietary anthocyanins are
discussed, which suggests the feasibility of dietary strategies for UC mitigation.
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1. Anthocyanins

Anthocyanins, which is a clan of flavonoids, are water-soluble polyphenolic pigments that are
responsible for the pigmentation of anthocyanin-rich foods including fruits (black plums, blackberries,
blueberries, and grapes), vegetables (black plums, blackberries, blueberries, and grapes), and grains
(black rice, red rice, and black soybeans) [1–5]. Different crops vary in the composition and the content of
anthocyanins ranging from 0.1% to 1.0% [6,7]. Additionally, oxidation, enzymolysis, and environmental
factors such as temperature, light, and pH can alter anthocyanin levels [8]. Previous studies showed
that malonylation enhanced the stability of anthocyanins in water [9]. Most of the anthocyanins
exert better stability under acidic conditions while high pH leads to anthocyanin degradation [10,11].
pH-dependent reversible structure transformation occurs between the following forms: flavylium
cation (red), quinonoidal base (blue), carbinol pseudobase (colorless), and chalcone (colorless) [12] in
aqueous solution [13]. In plants, anthocyanins aid in pollination and anthocyanin pigments can serve
as natural food colorants [11,14].

Anthocyanins are naturally present in plants as glycosides carrying glucose, galactose, arabinose,
rhamnose, and xylose [15]. Deglycosylated anthocyanins known as anthocyanidins are unstable and
rarely found in nature [16]. The instability of anthocyanidins is due to the presence of flavylium ion and
its peculiar electron distribution [17]. To date, a total of 27 aglycones and over 700 anthocyanins have
been identified based on their chemical structures [1,18]. Anthocyanins share a basic C-6 (A ring)-C-3
(C ring)-C-6 (B ring) carbon skeleton (Figure 1) with a varying number of hydroxyl groups and sugars
with different degrees of methylation [19]. Approximately 665 natural anthocyanins are derived from
six commonly found anthocyanidins (Figure 2): cyanidin (Cy), peonidin (Pn), pelargonidin (Pg),
malvidin (Mv), delphinidin (Dp), and petunidin (Pt) [13,20].
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Red-colored or blue-colored fruits, vegetables, and grains serve as sources of various anthocyanins.
For example, 100 g kokum can provide 1000 to 2400 mg anthocyanins [21], 100 g strawberry contains
13-315 mg anthocyanins [22], and 100 g red wine grapes supply 30-750 mg anthocyanins [23]. As reported
by Raul Zamora-Ros et al., daily consumption of anthocyanins varies depending on the region, weather
condition, gender, and lifestyle [24]. Among all European regions that are investigated, Italy had
the highest daily anthocyanin intake (~43.74 mg/day), with men consuming 49% more anthocyanins
daily than women. The opposite pattern was observed in the UK, where daily anthocyanin intake
of women is 21% higher than men [24]. The estimated anthocyanin daily intake in the US is about
11.6 mg/day [25].

1.1. Anthocyanin Bioavailability

The structure of anthocyanins is a key factor that determines their bioavailability and bioactivity.
Bioavailability is defined as the rate and extent to which a compound is absorbed and utilized by the
organism to perform multiple physiological effects [26]. Thus, the bioavailability has been considered
as an essential index in evaluating the efficacy of bioactive compounds. Absorption is the main
factor that influences the bioavailability of anthocyanins. The absorption rate varies depending on
the molecular size, sugar moiety, and acylated groups. Moreover, the interference by other materials
within the food matrix is also a considerable factor that affects the absorption. An in vitro study
conducted by Yi et al. showed that anthocyanins with more free hydroxyl groups and fewer OCH3

groups had lower bioavailability [27]. Anthocyanidin-glucosides exhibited higher bioavailability
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than anthocyanidin-galactosides, while non-acylated anthocyanins have better absorption than the
acylated ones [28,29]. Studies also found that anthocyanins can be absorbed mainly in their intact
glycosidic forms through the stomach and small intestine [19]. Anthocyanins were detected in the
plasma within a few minutes after intake, which indicates the rapid absorption in the stomach [30].
Talavera et al. indicated that 19% to 37% of bilberry anthocyanins were absorbed by gastric fluid within
30 min [31]. An in vivo study showed that the highest absorption of anthocyanins occurred in the jejunum
(55.3 ± 7.6%) whereas minor absorption occurred in the duodenum (10.4 ± 7.6%), which supports the
role of the small intestine as a major site for anthocyanin absorption [32]. Unabsorbed anthocyanins
travel down to the colon. However, both humans [33] and mice studies [34] demonstrated that most
of the cyanidin-3-glucosides (C3G) that enter the large intestine was excreted in feces. Although
anthocyanins display high absorption in the gastrointestinal tract, the bioavailability of anthocyanins
is less than 1% [35–37]. Recent studies suggest that anthocyanins similar to other flavonoids are
metabolized by colonic microbiota (Table 1) [38,39] and the metabolic function might be a direct result
of metabolomic indicators rather than the bioavailability [40].

Table 1. Bacterial metabolites of major anthocyanidins.

Chemical Class Bacteria Major Metabolites Reference

Cyanidin

Lachnospiraceae,
Bifidobacteria,

and Lactobacillus.

Vanillic acid and protocatechuic acid [41–43]

Peonidin Vanillic acid and protocatechuic acid [41,42]

Pelargonidin

4-hydroxybenzoic acid,
hydroxycinnamic acid,

p-coumaric acid, ferulic acid,
and caffeic acid

[41,42]

Malvidin Syringic acid, gallic acid, and
pyrogallol [44]

Delphinidin Gallic acid and syringic acid [41,42,45]

Petunidin Gallic acid [42]

1.2. Anthocyanin and Human Health

Anthocyanins have been indicated to be a group of bioactive compounds with numerous health
benefits because of their anti-inflammatory, anti-oxidant, anti-obesity, anti-angiogenesis, anti-cancer,
anti-diabetes, anti-microbial, neuroprotection, and immunomodulation properties (Table 2) [9]. Studies
demonstrated that anthocyanins exhibited a strong attenuating effect against colitis [46] and colon
cancer [47]. The anti-angiogenic effect of anthocyanins has been proven on human esophageal
and intestinal microvascular endothelial cells [48]. Significant evidence supports the preventive
efficacy of anthocyanins against many neurodegenerative diseases such as Parkinson’s disease and
Alzheimer’s disease [49]. Previous studies indicated that middle-aged and older-aged women
with a high consumption of anthocyanin-rich foods exhibited 32% and 18% reduction in risk of
myocardial infarction, respectively [50,51]. Additionally, human obesity prevention and blood glucose
tolerance effects of anthocyanin have also been reported [52,53]. Anthocyanins have been shown
to reduce oxidative stress either by scavenging reactive oxygen species or by inducing anti-oxidant
enzymes. Anthocyanins in black currant skin induced the anti-oxidant enzymes and eased the
oxidative stress through activation of the Nrf2 signaling pathway [54]. Moreover, oxidative stress
can increase inflammation by enhanced pro-inflammatory gene expression and inflammation, which,
in turn, can lead to oxidative stress (ref-curcumin review). Antioxidative effects of anthocyanins can
contribute to the anti-inflammatory properties, but we will not be covering the anti-oxidative effects of
anthocyanins. In this review, we will focus on the anti-inflammatory effects of anthocyanins against
ulcerative colitis (UC).
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Table 2. Sources of anthocyanins and their health benefits.

Chemical Class Plant Source Health Benefit Reference

Cyanidin

Blueberries, bilberries,
cranberries, elderberries,
raspberry seeds, strawberries,
purple corn, tea, purple carrot,
purple rice

Anti-inflammatory and
anti-cancer activity, prevention
of cardiac disease, amelioration
of perturbations in
mitochondrial energy
metabolism, and scavenging of
reactive oxygen species as well
as the promotion of
neuronal plasticity.

[55–59]

Peonidin

Cranberry, blackcurrant,
blueberry, huckleberry,
bilberry, myrtles, roselle
plants, purple-fleshed sweet
potatoes, raw black rice, and
centella asiatica

Antioxidative,
anti-inflammatory, antimicrobial,
antidiabetic, and
cardioprotective effect.

[55,56,59,60]

Pelargonidin
Cranberry, verbena,
strawberry, red corn,
red potato

Cardiovascular disease
prevention, obesity control,
alleviation of diabetes,
improvement of vision and
memory, and increased
immune defenses.

[61–65]

Malvidin
Red grape, blue pimpernel,
cranberry, blueberries,
saskatoon berries

Antioxidative,
anti-inflammatory,
and anti-cancer activity.

[66]

Delphinidin
Cranberry, Bilberry,
Pomegranate, red potato,
purple potato

Anti-inflammatory, prevention
of bone loss, and
anti-cancer activity.

[61,64,67–70]

Petunidin

Cranberry, grapes, black goji,
color-fleshed potato, mango,
bluberry, red banana,
black bean

Antioxidative,
anti-inflammatory, anti-diabetic,
and neuroprotective effect.

[55,56,71–77]

2. Ulcerative Colitis Pathogenesis

Ulcerative colitis (UC), which is a chronic and idiopathic inflammatory disease of the colon, is one
of the major forms of inflammatory bowel disease (IBD). UC occurs with several clinical symptoms,
such as abdominal and/or rectal pain, diarrhea, bloody stool, weight loss, fever, and even rectal
prolapse under the severe scenario. UC is also associated with an increased risk of colon cancer [78].
Recent studies have identified various genetic and environmental factors involved in UC pathogenesis.
Studies showed that UC is more common in western and northern countries when compared with
eastern countries [79]. The peak age for UC occurrence is 30 to 40 years [80] and people with infection
history of nontyphoid Salmonella or Campylobacter exhibit eight to 10 times more risk to develop UC in
later years [81]. Moreover, former smoking [82], high fat, and/or sugar diets [83], hormone replacement,
and anti-inflammatory therapy have been shown to be closely related to increased risk of UC [83–86].
Collectively, UC is a wide-spread inflammatory disease all over the world and can worsen the quality of
a patient’s life due to the continuous, serious clinical symptoms, possible complications, and sustained
medical intervention [46].

2.1. Impaired Barrier Function and Inflammatory Signaling Pathways

Pathologically, UC is characterized by epithelial ulceration, immune cell infiltration in the
lamina propria, crypt abscess, enlarged spleen and liver, and impaired intestinal epithelial barrier
function [87,88]. The integrity of the mucus layer, the production, and assembly of tight junction (TJ)
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proteins are two main factors to evaluate intestinal barrier function. Decreased thickness of the mucus
layer and expression of TJ proteins (claudins, occludin, and zonula occluden-1 (ZO-1)) and increased
gut permeability against bacterial product have been found in chemical-induced colitis models [89–91].
Weakened epithelium barrier function with increased permeability allows for the translocation of
commensal bacteria and microbial products into the bowel wall and, ultimately, activates the innate
and adaptive immune response.

Several components involved in the gut immunity have been highly implicated in UC pathogenesis
including dendritic cells (DCs), macrophages, eosinophils, neutrophils, T-cells, B-cells, and their secreted
cytokines and chemokines. Disturbed responses of effector T-cells, T-helper 2 (Th2), and Th17 were
observed in the context of UC. Th2 produces cytokines such as tumor necrosis factor alpha (TNF-α),
IL-5, IL-6, and IL-13 while Th17 produces IL-17A, IL-21, and IL-22 to activate multiple target cells and
downstream signaling pathways to exert their pro-inflammatory functions by binding to corresponding
receptors [92–94]. TNF, IL-6, IL-17A, and IL-22 levels are significantly elevated in experimental colitis
and UC patients [95–97]. TNF binds to TNFR1 and TNFR2, followed by the recruitment of TNF
receptor-associated factor 2 (TRAF2) and activation of JNK-dependent kinase cascade, MEKK kinase
cascade, and the nuclear factor-κB (NF-κB) signaling pathway to induce apoptosis, necroptosis, and
production of other pro-inflammatory cytokines [93,98]. IL-6, which is another key cytokine in UC,
functions in governing the proliferation and survival of Th1 and Th2 cells by pairing with IL-1β to serve
as a signaling molecule for the generation of regulatory B cells and mediate STAT3-dependent T cell
production of anti-inflammatory cytokine IL-10 [99,100]. IL-13 is identified to be an important effector
cytokine in UC to induce epithelial cell apoptosis and compromise epithelial restitution velocity [101].
Similar to IL-10, IL-22 is an anti-inflammatory cytokine involved in wound healing and production
of defensins and mucins against bacterial invasion [102]. Up-regulation of antigen-presenting cells
(APCs) expressing Toll-like receptors 4 (TLR4) is another scenario in human UC. Binding of TLR4 to
ligand lipopolysaccharide (LPS) triggers activation of NF-κB via protein adaptor MyD88 and allows
for transcription of numerous inflammatory genes such as TNF-α, IL-6, IL-1β, and cyclooxygenase-2
(COX-2) [103,104].

2.2. Gut Microbiota Dysbiosis

Gut-commensal bacteria have a profound impact on host health and the pathogenesis of UC.
Gut microbiota play an important role in nutrition, immunomodulation, and various metabolic
processes to exhibit their beneficial function in maintaining gut homeostasis [105]. Intestinal symbiotic
bacteria help in maintaining intestinal stability and prevent the colonization of pathogens. For example,
capsular polysaccharide A (PSA) of Bacteroides fragilis can be delivered to regulatory T cells (Tregs) to
induce interleukin-10 (IL-10) production against experimental colitis [106]. Gut microbial metabolites
such as short-chain fatty acids (SCFAs) produced via dietary fiber fermentation also play a key role
in maintaining colon health [107,108]. Moreover, utilization of non-pathogenic commensal bacteria
Lactobacillus and Bifidobacterium as probiotics have shown promising results in UC remission [109–111].
Dysbiosis of gut bacteria with respect to diversity and bacterial load might be one of the contributing
factors to the pathogenesis of UC because of the overstimulation of mucosal immune response [112].
16S rRNA sequencing performed on fecal and biopsy samples from UC patients revealed a reduction
in bacterial alpha diversity and an increase in total bacterial load compared to healthy subjects [113].
Evident reductions of bacterial phyla in UC patients include Bacteroidetes and Firmicutes, among which
two SCFA producing bacteria from the genus, Phascolarctobacterium, and Roseburia, were significantly
reduced in abundance [114]. Conversely, concentrations of adhesive invasive E.coli have increased
under the UC condition [115]. The impaired intestinal mucosal barrier in predisposed subjects is
marked as one of the early events of UC as the consequence of gut microbial dysbiosis. Gut bacterial
dysbiosis-induced release of enterotoxins lead to increased intestinal permeability and immune
dysfunction [116,117].
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3. Anthocyanin and Ulcerative Colitis

The rapidly rising incidence of UC makes the prevention, therapy, and control of this
disease important. Current standard UC therapies utilize aminosalicylates, immunosuppressants,
and biologicals to interfere with the inflammatory cascade. However, the long-term use of these
therapeutic agents may result in undesirable side effects such as vomiting, nausea, headache,
and fatigue [91]. Hence, there is an urgent demand for developing effective and evidence-based
therapeutic strategies with minimal side effects. Bioactive compounds such as anthocyanins might
be potential candidates against UC [92]. There is extensive evidence from laboratory animal studies
and human clinical trials that dietary anthocyanins derived from fruits and vegetables protect against
intestinal inflammation and provide health benefits to the colon [48,118–120]. Anthocyanins exert
its anti-inflammatory effects against UC through effective protection of intestinal mucosal integrity,
restoration of epithelial barrier function, immunomodulation, and regulation of gut microbiota [90,121].

3.1. Anthocyanins: Mucosal Integrity and Intestinal Epithelial Barrier Function

The integrity of the mucus layer and tight junction proteins are two key factors to maintain regular
intestinal epithelial barrier function. The mucus layer provides a physiochemical barrier to protect the
epithelial cell surface. Previous studies indicated that anthocyanins-rich food consumption significantly
increased the secretion of membrane-associated mucins and wound-enclosure proteins including
MUC1, MUC2, MUC3, Cdc42, Rac1, GAL2, GAL3, GAL4, and RELMβ, which play a vital role in the
mucus injury repair process [121,122]. Tight junctions establish the paracellular barrier that controls the
flow of molecules in the intercellular space between epithelial cells. As the building blocks of epithelial
tight junction, different TJ proteins play different roles. Claudin 1 and Claudin 4 contribute to the
tightening of the epithelium, whereas Claudin 2 may be partially responsible for the luminal uptake
of antigenic macromolecules because of induction of TJ strand discontinuities [123–125]. Occludin
involved in cellular adhesion regulates paracellular permeability [126]. ZO-1, which is a classic TJ
marker, functions as an “anchor” and is responsible for linking occludin, claudin, and actin cytoskeleton
to enhance the epithelial barrier [127,128]. Anthocyanins from a purple-fleshed potato reduced the
cell permeability in vitro using a Caco-2 cells [129]. In another study, mice were supplemented with
100 mg/kg black rice extract via oral gavage, and then provided with 2% DSS in their drinking water
for five days to induce colitis. Mice on black rice supplementation showed a reduced histological
score, which suggests alleviated mucosal injury and edema compared to DSS treatment [90]. In a
DSS-induced murine colitis model, the cooked black bean diet (20%) consumption for two weeks
significantly inhibited the colon shortening and spleen enlargement in mice [130]. Shima Bibi et al.
evaluated the intestinal barrier protective activity of anthocyanins from red raspberries and reported
that the red raspberries supplementation observably suppressed the elevation of claudin-2 protein
and enhanced the expression of claudin-3 and ZO-1 under DSS treatment [122]. These above results
indicate that anthocyanins can protect the tight junctions by modulating the ratio of TJ-positive and
negative proteins and confirm the protective effect of anthocyanins from different fruits and vegetables
against colonic inflammation [131].

3.2. Anthocyanins and Immunomodulation

Anthocyanin-rich bilberry extract (ARBE) and single anthocyanin cyanidin-3-O-glycoside (C3G)
application significantly inhibited the expression and secretion of TNF-α in stimulated human colon
epithelial T84 cells [132]. Blueberry supplementation in an obesity-associated chronic inflammation
rat model showed elevated production of acetate and reduced expression levels of TNF-α and IL-1β
compared to control rats [133]. The protective effect of blueberry anthocyanin extract has also been
confirmed in trinitrobenzene sulfonic acid (TNBS)-induced colitis mice model, where researchers
found that anthocyanin treatment restored not only IL-10 secretion but also reduced serum levels of
IL-12, TNF-α, and IFN-γ. In the same study, anthocyanin supplementation showed amelioration of
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morphological and histological symptoms of colitis in a dose-dependent manner [134]. In a recent
study by Lei Zhao et al., mice supplemented with 100 mg/kg black rice extract via oral gavage showed
a reduction in DSS-induced colonic IL-6, IL-1β, and TNF-α expression levels and MPO levels that are
linearly related to the neutrophil infiltration [90]. Anthocyanin fraction from the tubers of purple yam
down-regulated TNF-α, IFN-γ, and inflammation-associated ROS-producing enzyme myeloperoxidase
(MPO) in mice treated with TNBS to induce colitis [135]. Similar observations are reported in a study
using grapes, where anthocyanin-rich grape pomace extracts were found to prevent a DSS-induced
increase of IL-6, MPO, and nitric oxide synthase (iNOS), whose production is triggered by bacterial
products and pro-inflammatory cytokines [136]. Administration of purple-fleshed potatoes rich in
malvidin and petunidin have shown to reduce the secretion of pro-inflammatory cytokines and, thereby,
attenuate dextran sodium sulfate (DSS)-induced colitis in mice [88]. Anthocyanins also play a role in
inhibiting chemokine release and the subsequent NF-κB signaling pathway (Figure 3). Cyanidin and
C3G displayed a clear inhibitory effect on macrophage migration and pro-inflammatory chemokines
monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-related protein-2
(MRP-2) in vitro [137]. The p-Coumaroyl anthocyanin mixture (contains petanin, peonanin, malvanin,
and pelanin) extracted from a dark purple-fleshed potato cultivar Jayoung displayed an inhibitory
effect on the transcriptional activity and translocation of NF-κB in RAW264.7 macrophages [138].
Another in vitro study reported that a pure sour cherry anthocyanin extract addition to human Caco-2
cells receded the translocation of a p65 subunit from the cytosol to nuclei [139]. Studies also linked the
anti-inflammatory activity of anthocyanins to the inhibition of the COX-2 cascade. Both in vivo and
in vitro evidence show that anthocyanins can suppress the expression level of COX-2 as well as the
transactivation of AP-1, which is a transcription factor that regulates COX-2 gene expression [140,141].
Moreover, C3G can reduce COX-2 producing prostaglandin E2 (PGE2) production in human intestine
HT-29 cells [142]. Additionally, a six-week ARBE treatment on UC patients revealed decreased
serum levels of TNF-α, IFN-γ, and activated NF-κB subunit p65 and increased serum levels of IL-10
and IL-22 [143]. These results suggest that anthocyanins act as anti-inflammatory agents by their
transcriptional and translational regulation of cytokines to inhibit/suppress pro-inflammatory cytokines
and elevate the anti-inflammatory cytokines.

3.3. Anthocyanins and Gut Microbiota

The health-promoting effects of individual anthocyanins and their mixtures have been attributed
not only to their direct effects in the colon but also to their metabolism by intestinal microbiota and their
alteration of intestinal microbial populations. Anthocyanins and gut microbiota exhibit a two-way
interaction to impact host physiology. Intestinal microbiota as a “metabolizing organ” plays a critical
role in maintaining gastrointestinal health [144] and host metabolism [145,146]. Gut microbiota is a
crucial determinant of anthocyanin bioavailability.

In the lumen of the large intestine, unabsorbed anthocyanins are exposed to microbiota-mediated
biotransformation, which includes three significant conditions: hydrolysis (breaking glycosidic
linkages), fission (cleaving heterocycle), and demethylation. Bacterial species that carry corresponding
β-glucosidase, β-glucuronidase, α-rhamnosidase, or demethylase such as Clostridium spp., Butyrivibrio
spp., Lactobacillus spp., B. fragilis, and B. ovatus, etc., are actively involved in this process [147,148].
Anthocyanin biotransformation also produces glucose, which is an essential energy source required
for bacterial growth [144]. Primary anthocyanin-derived metabolites are phenolic acids, whose
anti-inflammatory effects have been verified by substantial studies. For example, the predominant
metabolite of cyanidin and protocatechuic acid (PCA) has been shown to suppress COX-2 and
iNOS protein expression and attenuate DSS-induced UC in mice [149]. Gallic acid as another
anthocyanin-derived metabolite was shown to reduce the growth of potentially harmful bacteria such
as Clostridium histolyticum and Bacteroides spp. without any negative effect on measured beneficial
bacteria [150].
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Figure 3. The mechanisms through which anthocyanins act as anti-inflammatory agents. Inflammatory
signaling pathways including NF-kB, MAPKs (P38, ERK, JNK), and STATs were activated by ligand
binding of the pro-inflammatory cytokines TNF-α, LPS, IL, and IFN, which eventually leads to the
translocation of transcription factors to the nucleus, transcriptional activation, and cytokine production.
Anthocyanins attenuated the cascade of inflammatory responses by inhibiting the translocation of
transcription factors (P50 and P65), the phosphorylation of IRAK1, NIK, IKK, STAT1, STAT3, P38,
ERK, and JNK, the secretion of inflammatory cytokines (IL-6, IL-1β, TNF-α, iNOS, COX-2, and IFN-γ),
and activation of NF-kB, MAPK, and STAT inflammatory signaling pathways.

There is broad agreement that dietary anthocyanins and their metabolites have potential health
benefits via modulation of the gut microbiota [44,150]. Increasing evidence supports the idea that
anthocyanins can function as prebiotics, which contributes to the growth of certain commensal
bacteria [44,151,152]. Both in vitro and in vivo studies have shown an elevated growth of potentially
beneficial bacteria such as Lactobacillus spp. and Bifidobacterium spp. after administration of
anthocyanin-rich products [44,151,152]. Anthocyanins can also interact with starch, SCFAs, and ferric
iron to indirectly modulate gut microbiota. Anthocyanins exert the beneficial effect by increasing
the levels of SCFAs, which has the antimicrobial impact on pathogens [153]. Moreover, it was found
that anthocyanins were able to affect the digestion of starch by inhibiting digestive enzymes, such as
α-amylase [154,155]. The indigestible starch goes down to the large intestine, where it can act as an
energy source for several probiotic bacteria such as lactobacilli, bifidobacteria, and streptococci, which are
beneficial to human health [155,156]. Another impressive result showed that indigestible dietary
fiber components, such as β-glucans and resistant starch, can significantly increase the production
of SCFAs [157,158]. Evidence indicated that the dysbiosis of the gut microbiota and impaired
intestinal barrier function could be induced by Fe deficiency [159]. However, this situation can be
alleviated with anthocyanin supplementation. Studies reported that C3G, cyanidin-3-5-diglucoside,
petunidin-3-glucoside, and delphinidin-3-glucoside exerted substantial ferric ion chelating activities.
Ferric ion chelation increases its solubility and bioavailability and may contribute to the intestinal
homeostasis [160–162].

The above evidence demonstrated the anti-inflammatory properties of anthocyanins and the
potential of anthocyanin to be used as novel therapeutic agents in UC treatment. Even though the
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mechanism behind anthocyanin-induced UC mitigation is not entirely known, it is highly likely that
anthocyanin and bacteria interplay while anthocyanin-derived metabolites play a crucial role. There is
no proven consensus regarding the bioavailability of anthocyanins, and minimal research has been
done to elucidate the bioactivity of anthocyanins in vivo. Majority of studies focusing on the anti-colitis
effect of anthocyanins utilize fruit or grain extract containing other bioactive compounds that are known
to have an anti-oxidant effect. Thus, it is challenging to ascribe the observed UC relief to anthocyanins
solely. Moreover, the possible synergistic effect of anthocyanins with other phytochemicals and fiber is
a topic that requires more attention and effort to address the need for searching for a natural and safe
anti-colitis strategy.
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Abbreviations

APCs Antigen-presenting cells
ARBE Anthocyanin-rich bilberry extract
C3G Cyanidin-3-glucoside
Cdc Cell division control protein
COX-2 Cyclooxygenase-2
DCs Dendritic cells
DSS Dextran sodium sulfate
ERK Extracellular signal-regulated kinase
GAL Galectin
IBD Inflammatory bowel disease
IFN-γ Interferon gamma
IL Interleukin
iNOS Nitric oxide synthase
JNK c-Jun N-terminal kinase
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MCP-1 Chemoattractant protein-1
MPO Myeloperoxidase
MRP-2 Macrophage inflammatory protein-related protein-2
MUC Mucin
NF-κB Nuclear factor-κB
PCA Protocatechuic acid
PGE2 Prostaglandin E2
PSA Polysaccharide A
RELMβ Resistin-Like Molecule-beta
ROS Reactive oxygen species
SCFA Short chain fatty acid
STAT Signal transducer and activator of transcription
Th T-helper
TJ Tight junction
TLR4 Toll-like receptors 4
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TNBS Trinitrobenzene sulfonic acid
TNFR Tumor necrosis factor receptor
TNF-α Tumor necrosis factor alpha
TRAF TNF receptor-associated factor
Tregs Regulatory T cells
UC Ulcerative colitis
ZO-1 Zonula occludens-1
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