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Ferroptosis-related gene signature predicts
the prognosis in Oral squamous cell
carcinoma patients
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Abstract

Background: The prognosis of oral squamous cell carcinoma (OSCC) patients is difficult to predict or describe due
to its high-level heterogeneity and complex aetiologic factors. Ferroptosis is a novel form of iron-dependent cell
death that is closely related to tumour growth and progression. This study aims to clarify the predictive value of
ferroptosis-related genes (FRGs) on the overall survival(OS) of OSCC patients.

Methods: The mRNA expression profile of FRGs and clinical information of patients with OSCC were collected from
the TCGA database. Candidate differentially expressed ferroptosis-related genes (DE-FRGs) were identified by
analysing differences between OSCC and adjacent normal tissues. A gene signature of prognosis-related DE-FRGs
was established by univariate Cox analysis and LASSO analysis in the training set. Patients were then divided into
high- and low-risk groups according to the cut-off value of risk scores, A nomogram was constructed to quantify
the contributions of gene signature and clinical parameters to OS. Then several bioinformatics analyses were used
to verify the reliability and accuracy of the model in the validation set. Finally, single-sample gene set enrichment
analysis (ssGSEA) was also performed to reveal the underlying differences in immune status between different risk
groups.

Results: A prognostic model was constructed based on 10 ferroptosis-related genes. Patients in high-risk group
had a significantly worse OS (p < 0.001). The gene signature was verified as an independent predictor for the OS of
OSCC patients (HR > 1, p < 0.001). The receiver operating characteristic curve displayed the favour predictive
performance of the risk model. The prediction nomogram successfully quantified each indicator’s contribution to
survival and the concordance index and calibration plots showed its superior predictive capacity. Finally, ssGSEA
preliminarily indicated that the poor prognosis in the high-risk group might result from the dysregulation of
immune status.

Conclusion: This study established a 10-ferroptosis-releated gene signature and nomogram that can be used to
predict the prognosis of OSCC patients, which provides new insight for future anticancer therapies based on
potential FRG targets.
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Background
Oral squamous cell carcinoma (OSCC) is one of the
most common head and neck malignancies [1, 2]. There
are more than 300,000 new cases each year, accounting
for approximately 2 to 3% of all cancers worldwide [2].
Alcohol abuse, smoking, areca nut chewing and chronic
HPV or HBV infections are considered high-risk factors
for OSCC [3–7]. The five-year overall survival (OS) rate
for OSCC remains at approximately 40–50% despite re-
cent advances in diagnostic and therapeutic approaches
[8]. It is difficult to predict or describe the prognosis of
OSCC because of its high-level heterogeneity and com-
plex aetiologic factors. Most of the current clinical pre-
diction models have been developed based on
histological characteristics, which involves the risk of tis-
sue trauma and tumour irritation. Therefore, it is essen-
tial to explore a new and noninvasive prognostic model
from the perspective of the biological behaviour of
tumour cells to facilitate early detection and optimize
treatment strategies for OSCC.
Ferroptosis is a recently discovered type of regulated

cell death (RCD) that differs morphologically, biochem-
ically, and genetically from apoptosis, autophagy, and ne-
crosis and is characterized by iron-dependent and lethal
reactive oxygen species (ROS) and lipid peroxida-
tion(LPO) accumulation [9, 10]. In recent years, indu-
cing ferroptosis in cancer cells become a latent target for
cancer therapy [11–13], especially in those drug-tolerant
and radiation resistant cancers [14, 15]. Previous studies
have also demonstrated that ferroptosis plays important
roles in OSCC. Several drugs (such as telaglenastat (CB-
839) [16] and histone deacetylase inhibitor quisinostat
[17]) and new materials such as zero-valent iron nano-
particles [18] have been shown to enhance the anti-
OSCC response in part through ferroptosis. Moreover,
both non-thermal plasma and photodynamic thera-
py(PDT) can effectively eliminate OSCC cells by indu-
cing ferroptosis [18–20]. Some genes, such as GPX4 and
SREBP, that promote OSCC cell proliferation appeared
to protect cells from ferroptosis [21]. Zhu’s report [19]
also showed that the ferroptosis-negative regulatory gene
SLC7A11 was upregulated in OSCC, and their team
overcame hypoxia-associated resistance to PDT by acti-
vating ferroptosis in OSCC cells. Although some studies
have employed ferroptosis-related genes to construct
survival prognostic models for some cancers [22–24],
the predictive value of ferroptosis-related genes on the
overall survival of OSCC patients warrants further and
more detailed studies.
In this study, we explored the promising value of

ferroptosis-related genes as biomarkers in targeted ther-
apy and their prognostic value for the survival rate of
OSCC. We downloaded the gene expression profile and
clinical information of OSCC from The Cancer Genome

of Atlas (TCGA). Then, a FRG-based prognostic signa-
ture and nomogram were constructed in a training set
and verified in a validation set. Finally, single-sample
gene set enrichment analysis (ssGSEA) was applied to
reveal the latent mechanism of correlation between im-
mune status and the risk model. The flow chart of the
present study is shown in Fig. 1.

Methods
Data source
The mRNA expression data of 127 ferroptosis-related
genes and corresponding clinical data of OSCC patients
were retrieved from The Cancer Genome Atlas official
website (TCGA, https://portal.gdc.cancer.gov/), includ-
ing 306 tumour samples and 30 normal samples. The
present study followed the TCGA Data Access Policy
and Publication Guidelines. The list of 127 FRGs was re-
trieved from Kyoto Encyclopedia of Genes and Genomes
(KEGG) and previous literature. Detailed information on
these FRGs is summarized in Additional file 1: Table S1.

Identification of differentially expressed ferroptosis-
related genes (DE-FRGs)
The EdgeR package in R software (Vision 3.5.2) was uti-
lized to normalize the RNA-sequencing data and per-
form differential analysis between OSCC and adjacent
normal tissues. FRGs with a false discovery rate (FDR) of
less than 0.05 were considered as DE-FRGs. Next, DE-
FRGs were displayed in a heat map, volcano plot and
boxplot by the ggplot2 package.

Functional annotation of DE-FRGs
Gene Ontology (GO) and KEGG analysis were per-
formed using clusterprofile package to explore the po-
tential function of the DE-FRGs and the results were
plotted by ggplot2 package. Results were considered sig-
nificantly different if p < 0.05.

Construction of prognostic signature based on FRGs
OSCC patients with a follow-up time of less than 30 days
were excluded and only 296 tumour samples were in-
cluded for further analysis. Univariate Cox analysis was
used to select prognosis-related FRGs. Given that the
small number of ferroptosis-related genes, a strict cut-
off value may result in a loss of genes with prognostic
potential. Therefore, p < 0.1 was applied as the cut-off
value in univariate Cox analysis. Candidate prognosis-
related DE-FRGs were determined after overlapping the
DE-FRGs and the prognosis-related FRGs. The hazard
ratio (HR) and the 95% confidence interval (CI) of DE-
FRGs were represented by a forest map.
There were 261 patients who provided complete infor-

mation on survival and important clinical parameters.
Patients with integrated clinical information were
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randomly and homogeneously split into a training set
(184 OSCC patients) and a testing set (77 OSCC pa-
tients). Least absolute shrinkage and selection operator
(LASSO) analysis was next performed to develop a mul-
tigene prognostic risk model with candidate prognosis-
related DE-FRGs in the training set based on the optimal
value of lambda (λ). The glmnet package was used to
implement the procedures mentioned above. To present
the interactions between these prognostic genes, a
protein-protein interaction (PPI) network of 10 FRGs
and an additional 20 related-genes was constructed in
STRING (https://string-db.org/), and Cytoscape (Version
3.8.0) was used for visualization.
A FRG-based risk score for each sample was calculated

by the following formula: Risk score = Gene exp1 × β1 +
Gene exp2 × β2 +… + Gene exp. n × βn (Gene exp.

indicates the value of gene expression while β stands for
the corresponding LASSO regression coefficient). The
survival ROC package was used to perform time-
dependent receiver operating characteristic (ROC) ana-
lysis to determine the optimal cut-off value of the risk
score, and then the cut-off value stratified patients into
high and low-risk groups. Kaplan-Meier (K-M) survival
curve analysis was employed to analyse OS and com-
pared by log-rank test. The area under the ROC curve
(AUC) was used to evaluate the predictive sensitivity
and accuracy of the prognostic model.

Validation of the FRG-based signature in OSCC
To confirm the prognostic capability of the FRG-based
signature model, the risk score was calculated with the
consistent risk score formula in the testing set and entire

Fig. 1 Flowchart of the construction and validation of the ferroptosis-related gene (FRG) signature and nomogram. TCGA, The Cancer Genome
Atlas; OSCC, oral squamous cell carcinoma; DEGs, differentially expressed genes; DE-FRGs, differentially expressed ferroptosis-related genes; LASSO,
least absolute shrinkage and selection operator; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ssGSEA, single-sample
gene set enrichment analysis; PPI, protein-protein interaction
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set and patients were stratified with the identical optimal
cut-off value. K-M survival curve analysis and ROC ana-
lysis were performed as aforementioned.

Independent prognostic value analysis
Univariate analysis was used to evaluate each predict-
ive value of the risk model and clinical parameters
(age, gender, TNM stages, smoking and alcohol) while
multivariate Cox analysis for OS was employed to
confirm the independent risk variables. The correl-
ation between risk score and the clinical characteris-
tics was further examined by Pearson’s correlation
analysis.

Construction and validation of a predictive nomogram
To predict the overall survival rate for OSCC, a
nomogram with FRG-based risk score and clinical risk
factors was created by using the rms package.
The calibration curves graphically represent the
consistency between actual and predicted OS for
OSCC individuals by using this nomogram. The
concordance index (C-index) ranging from 0.5–1.0
(0.5 indicates a random chance while 1.0 indicates a
remarkable ability) was also used to determine the
predictive accuracy of the nomogram. Finally, the pre-
dictive performance of the nomogram was confirmed
in the testing set and the entire set.

Single-sample gene set enrichment analysis (ssGSEA)
ssGSEA was applied to determine the signaling
pathways with different enrichment scores between
subgroups. The enrichment score of each sample was
calculated with the gsva package. The limma package
was then implemented to identify enriched gene sets
that were significantly different between groups and
showed the top 50 gene sets by heatmap. Correlations
between the risk score and these enriched pathways
were determined by performing Pearson’s correlation
analysis.

Immune cell infiltration patterns between subgroups
To clarify the possible correlations between the immune
status and FRG-based prognostic signature. ssGSEA was
applied to identify the immune cell infiltration patterns
and calculate the enrichment scores of 16 immune cells
and 13 related functions.

Statistical analysis
All analyses were performed with R software (Version
3.5.2) and Microsoft Excel (Version 16.38). If not
specifically mentioned, p < 0.05 was considered
statistically significant or taken as the cut-off
criterion.

Results
Identification of differentially expressed ferroptosis-
related genes (DE-FRGs) in OSCC
A total of 86 FRGs expressed differentially between
OSCC and normal tissue (FDR < 0.05), were called DE-
FRGs, among which 36 genes were downregulated and
50 were upregulated. The DE-FRGs are displayed in a
heatmap (Fig. 2a) and volcano plot (Fig. 2b). However,
only 34 genes were more significantly differentially
expressed when the criteria were set as FDR < 0.05 and
|log2FC| > 1 (Fig. 2c).

Functional enrichment analysis of DE-FRGs
GO analysis indicated that 86 DE-FRGs were primarily
enriched in “response to metal ion”, “response to oxida-
tive stress” and “cellular response to external stimulus”
in biological process (BP) (Fig. 3a), “mitochondrial outer
membrane”, “organelle outer membrane”, and “autopha-
gosome” in cellular component (CC) (Fig. 3b), and “co-
factor binding”, “iron ion binding” and “ubiquitin
protein ligase binding” in molecular function (MF) (Fig.
3c). KEGG pathway enrichment analysis suggested that
these DE-FRGs were primarily involved in “ferroptosis”,
“central carbon metabolism in cancer”, “HIF-1 signaling
pathway”, “glutathione metabolism” and “fatty acid
metabolism”(Fig. 3d). Both GO and KEGG analysis indi-
cated that these DE-FRGs were closely associated with
ferroptosis rather than other types of cell death.

Determination of the prognostic DE-FRG
Univariate Cox regression analysis screened 20 FRGs
with prognostic value. After overlapping 86 DE-FRGs
and 20 prognostic-FRGs, 12 prognostic DE-FRGs were
acquired (Fig. 4a). As show in Fig. 4b, most prognostic-
related genes were shown as risk genes (HR > 1) in the
plot.

Construction of the FRG-based prognostic signature in
OSCC
A total of 261 patients with integrated and vital clinical
parameters were enrolled in the subsequent model con-
struction (Table 1). LASSO regression analysis deter-
mined 10-prognostic-DE-FRGs with the most powerful
prognostic values for OSCC in the training set (Fig. 5a-
b). Table 2 showed the corresponding regression coeffi-
cients and HRs of the 10 prognostic-FRGs. Among these
FRGs, seven genes (ATG5, BID, ACO1, GOT1, AKR1C3,
GLS2, ALOX15) were regarded as risk genes (HR > 1),
and the other three genes (SCO2, MAP1LC3A,
MAP3K5) were considered protective genes (HR < 1).
Furthermore, the PPI network showed that ATG5,
MAP1LC3A and MAP3K5 were core genes among the
prognostic genes (Fig. 5c).
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Next, an individualized risk score was calculated with
the formula for the FRG signature: Risk score = expres-
sion value of ATG5 * 0.516 + BID * 0.0375 + ACO1 *
0.250 + GOT1 * 0.0825 + AKR1C3 * 0.0504 + GLS2 *
0.0421 + ALOX15 * 0.0118 - SCO2 * 0.0805 -
MAP1LC3A * 0.119 - MAP3K5 * 0.188. ROC analysis
then confirmed the optimal cut-off value (6.5285) of this
prognostic signature and patients were divided into two
groups with high (n = 87) and low-risk (n = 97)

according to the optimal value. The distribution of risk
score (Fig. 5d), survival status (Fig. 5e) and the expres-
sion profile (Fig. 5f) indicated that patients with low-risk
had a higher possibility of surviving. K-M analysis also
suggested that high-risk group had a significantly poorer
prognosis than the low-risk group (Fig. 5g, log-rank p =
1.256*10− 5). Furthermore, AUC values for 1-year, 3-
year, and 5-year OS were 0.709, 0.735 and 0.744, re-
spectively, thereby indicating that the risk model can

Fig. 2 Identification of differentially expressed ferroptosis-related genes (DE-FRGs) based on TCGA database. (a) Heatmap and (b) Volcano plot of
86 DE-FRGs between normal and OSCC tissues. The changing colour from green to red indicates the low-to-high level of gene expression in the
heatmap. The Volcano plot also lists the names of the genes with |log2(FC) | > 2. (c) Scatter plot shows the difference in the expression of 34 DE-
FRGs (with the criterion of FDR < 0.05 and|log2(FC)| > 1) in OSCC (red) and normal (green) tissue. N, normal tissue. T, OSCC tissue

Li et al. BMC Cancer          (2021) 21:835 Page 5 of 16



Fig. 3 Gene functional annotation of 86 DE-FRGs. GO enrichment analysis (A-C) is presented in three parts: (a) biological process, (b) cellular
component, and (c) molecular function. (d) KEGG pathway enrichment analysis shows the primary pathways enriched by the 86 DE-FRGs. Three
crucial ferroptosis-related signaling pathways are marked by the black box

Fig. 4 Identification of DE-FRGs with prognostic value. (a) Venn diagram shows that 12 genes were screened out the prognosis-related DE-FRGs
(p < 0.1). (b) Forest plots exhibit the hazard ratio and 95% confidence intervals of 12 prognosis-related DE-FRGs by univariate Cox
regression analysis
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accurately predict the OS of OSCC patients (Fig. 5h).
The ROC curve involving several clinical risk factors and
the risk score for 1-year OS showed that this gene signa-
ture (AUC = 0.709) had better prediction performance
than the other clinical parameters (Fig. 5i).

Validation of the FRG-based signature in OSCC
To confirm the prognostic capability of the FRG-based
signature model, the risk score in the testing set and en-
tire set was calculated with the consistent a formula and
patients were classified into two groups with the same
cut-off value (6.5285). The distribution of each patient’s
risk scores, survival status and expression profile of 10
FRGs in the testing set (Fig. 6a) and entire set (Fig. 6b)
showed similar results to the training set, in which pa-
tients in the high-risk group had a worse prognosis. K-
M survival analysis in both the testing set (Fig. 6c, log-
rank p = 3.546*10− 3) and entire set (Fig. 6d, log-rank
p = 1.307*10− 7) also confirmed that the high-risk groups
had a tendency to died earlier. In addition, the AUC

values for 1-year, 3-year, and 5-year were 0.799, 0.647
and 0.632 in the testing set (Fig. 6e), and 0.735, 0.713
and 0.699 in the entire set (Fig. 6f), respectively. In sum-
mary, all of these results suggested that the 10-FRG gene
signature was a credible predictor of overall survival in
patients with OSCC.

Independent prognostic value analysis
Next, univariate Cox analysis indicated that the risk
score (HR = 3.659, 95% CI = 2.120–6.316, p < 0.001),
stage (HR = 1.703, 95% CI = 1.241–2.337, p < 0.001), T-
stage (HR = 1.525, 95% CI = 1.193–1.949, p < 0.001) and
N-stage (HR = 1.523, 95% CI = 1.191–1.947, p < 0.001)
were significantly associated with OS (Fig. 7a). After
adjusting for additional clinical features, the multivariate
Cox analysis confirmed that the FRG gene signature was
an independent predictor for the survival of OSCC pa-
tients (Fig. 7b, risk score: HR = 3.368, 95% CI = 1.861–
6.094, p < 0.001). Additionally, the correlation between
risk models and clinical characteristics was evaluated.
Unexpectly, none of the clinical factors were significantly
related to the risk score (p > 0.05). The risk score indi-
cated a possible trend towards significantly higher
TNM-stage III-IV (p = 0.052), tumour size stages T3-T4
(p = 0.081) and lymph node metastasis stages N1-N3
(p = 0.106) (Fig. 7c).

Construction and validation of a predictive nomogram
Following that, a nomogram was developed on the
training set to quantitatively predict patient OS with
the FRG signature and some important clinical
parameters (Fig. 8a). Points in the nomogram were
assigned to represent the contribution of each factor
to OS. Not surprisingly, the risk score was the vital
OS predictor for OSCC individuals because high-risk
accounted for 100 points. Calibration curves in the
training set showed that the predictive survival
matched the actual survival well at 1-year (Fig. 8b), 3-
years (Fig. 8c), and 5-years (Fig. 8d). Plots of the test-
ing set (Fig. 8e-g) and entire set (Fig. 8h-j) also indi-
cated superior agreement in general. In addition, the
concordance index (C-index) ranging from 0.5–1.0
(0.5 indicates random chance while 1.0 indicates
remarkable ability) was also used to determine the
predictive accuracy of the nomogram. The C-index of
the nomogram was 0.64 (95% CI = 0.58–0.70, p =
3.38*10− 5) in the training set, while 0.68 (95% CI =
0.58–0.78, p = 2.77 × 10− 4) in the testing set, and
0.65(95% CI =0.60–0.70, p = 3.01 × 10− 8) in the entire
set, indicating good accuracy and sensitivity of this
nomogram. Overall, both calibration curves and the
C-index confirmed that the nomogram was a
favourable and reliable tool for prognosis prediction
in OSCC patients.

Table 1 Clinical Characteristics of OSCC patients in the TCGA
cohort

Variates Training set
n = 184

Testing set
n = 77

Entire set
n = 261

Age

< 60 76 35 111

≥ 60 108 42 150

Gender

Male 127 53 180

Female 57 24 81

TNM stage

Stage I-II 35 19 54

Stage III-IV 149 58 207

T (Tumour size)

T1-T2 66 36 102

T3-T4 118 41 159

N (Lymph Node)

N0 85 28 113

N1-N3 99 49 148

M (Tumour Metastasis)

M0 184 77 261

M1 0 0 0

Smoking history

No 44 27 71

Yes 140 50 190

Alcohol history

No 62 23 85

Yes 122 54 176
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Fig. 5 Construction of 10 ferroptosis-related gene signature in the TCGA training set. (a) The optimal value of penalty lambda (λ) is selected in
LASSO analysis. (b) LASSO coefficient profiles of 10 FRGs in OSCC. (c) The protein-protein interaction network among 10 candidate prognostic
genes (red font) and 20 additional genes. The size of the node and the thickness of the connection line represent the interaction degree and the
number of supporting pieces of evidence, respectively. The distribution of risk score (d) and survival time and status (e). The optimum cut-off
value of the risk score is shown in (d) and used to divide each patient into different risk groups. (f) Heatmap of mRNA expression of the 10-
prognostic FRGs. (g) K-M curves for the overall survival between low and high-risk OSCC patients. (h) Time-dependent ROC curves for the
prognostic model for 1-, 3-, and 5-year OS of OSCC in the training set. (i) Time-dependent ROC curves for the risk score and clinical parameters in
1-year OS of OSCC in the training set. The AUC values represent the predictive performance of the gene signature and clinical risk factor
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Signaling pathways enrichment analysis between two risk
groups
To elucidate the potential signaling pathways associated
with the 10-FRG gene signature, the mRNA matrix of
patients was split by risk score into low- and high-risk
group and analysed with ssGSEA. As shown in Fig. 9a,
“p53 signaling pathway”, “cell cycle”, “DNA replication”,
“mismatch repair” and “RNA degradation” were enriched
in high-risk samples, while a variety of immune-related
pathways including “B cell receptor signaling pathway”,
“T cell receptor signaling pathway”, “acute myeloid leu-
kaemia”, “FcγR mediated phagocytosis”, “FcεRI signaling
pathway”, and “primary immunodeficiency” were
enriched in the low-risk group. Moreover, Pearson’s cor-
relation analysis showed that the risk score exhibited a
positive correlation with most of these pathways(Fig.
9b). Therefore, these results preliminarily indicated that
the 10-FRG signature may mainly affect immune-related
and cancer-related signaling pathways, and dysregulation
of these pathways may be associated with tumour devel-
opment and progression.

Immune cell infiltration pattern between the two risk
groups
Generally, the pattern of infiltrating immune cells in the
tumour microenvironment (TME) is distributed di-
versely between subgroups. As illustrated in Fig. 9c and
d, aDCs, B cells, iDCs, mast cells, pDCs, the type II IFN
response and T cell co-stimulation which are involved in
the antigen presentation process were more highly acti-
vated in low-risk samples (p < 0.05), especially iDCs and
B cells (p < 0.001). The results also showed that immune
effector cells including CD8+ T cells, NK cells and
tumour infiltrating lymphocytes (TIL) were downregu-
lated in the high-risk group, and the scores of T helper
cells, Th2 cells and regulatory T cell Treg presented
similar results. The aforementioned results indicated

that a high FRG-related risk score may be relevant to an
immunosuppressed status.

Discussion
An increasing number of studies have confirmed that
ferroptosis plays a crucial role in carcinogenesis and
oncotherapy [11, 25]. The construction of prognostic
models based on public databases and next generation
sequencing (NSG) provides more comprehensive
clinical-genetic prognostic value and prognostic models
based on ferroptosis are becoming a research hotspot for
predicting OS in different cancers [22–24, 26, 27].How-
ever, the predictive value of ferroptosis-related genes for
the OS of OSCC patients’ remains unknown and war-
rants further study. In this study, we comprehensively
analysed the 127 ferroptosis-related genes expression
patterns and their correlation with prognosis in OSCC.
A novel prognostic signature based on 10 ferroptosis-
related genes was first constructed and a nomogram to
predict OS for patients with OSCC was subsequently
established. ssGSEA finally revealed some cancer-related
and immune-related pathways that affect the prognosis
of OSCC. These results demonstrated that the novel
FRG signature has the potential to accurately predict
OSCC prognosis and could provide some insights into
the development of novel ferroptotic biomarkers and
targeted therapies.
In this study, more than half of the genes were

expressed differentially between OSCC and normal sam-
ples. GO and KEGG analysis suggested that these 86
DE-FRGs were mainly enriched in principal ferroptosis-
related functions and pathways, such as “response to
metal ion”, “response to oxidative stress”, “iron ion bind-
ing”, “glutathione metabolism and fatty acid metabol-
ism”. These results preliminarily suggested that
ferroptosis-related genes and pathways might be in-
volved in the development of OSCC and could be used
to develop a prognostic signature.
Hence, 10 FRGs including ATG5, BID, ACO1, GOT1,

AKR1C3, GLS2, ALOX15, SCO2, MAP1LC3A and
MAP3K5, were determined to be the most powerful
prognostic biomarkers based on minimum criteria with
LASSO analysis. Ferroptosis is usually accompanied by
excessive iron accumulation, lipid peroxidation, glutam-
ate and antioxidant metabolism [9, 10]. In this regard,
these genes can fall into four categories [28]: (1) ATG5,
MAP1LC3A, and ACO1 are related to iron metabolism.
ATG5 and MAP1LC3A activate autophagy through the
ATG5-ATG7-NCOA4 pathway, leading to ferritin deg-
radation and thereby intracellular unstable iron accumu-
lation, ultimately promoting ferroptosis in fibroblasts
and cancer cells [29]. ACO1 is an iron sensor that func-
tions as an aconitase to convert citrate to isocitrate and
then control iron levels and ferroptosis [30]; (2)

Table 2 Ten OSCC-prognostic ferroptosis-related genes were
identified LASSO regression analysis

Gene HR (95%CI) LASSO Coefficient

ATG5 1.8 (1.1–2.9) 0.516

BID 1.3 (0.95–1.7) 0.0375

ACO1 1.3 (0.87–1.8) 0.250

GOT1 1.2 (0.78–1.8) 0.0825

AKR1C3 1.1 (0.97–1.2) 0.0504

GLS2 1.1 (0.95–1.2) 0.0421

ALOX15 1.0 (0.94–1.1) 0.0118

SCO2 0.88 (0.69–1.1) −0.0805

MAP1LC3A 0.85 (0.71–1.0) −0.119

MAP3K5 0.77 (0.57–1.1) − 0.188
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MAP3K5, ALOX15, and AKR1C3 regulate lipid metab-
olism. In details, MAP3K5, also known as ASK1, is in-
volved in the ASK1-p38 axis and activated by lipid ROS
accumulation, implementing ferroptosis in lung cancer
cells [31]. Inhibition of ALOX15 contributes to abroga-
tion of lipid peroxides accumulation; thus, ferroptosis re-
sistant melanoma cells efficiently activate NRF2 to
elevate the level of AKR1C3 and lead to a negative regu-
lation of ALOX15 [32]. (3) GLS2, GOT1 and BID are re-
quired for energy metabolism (glutamate metabolism).
Glutamine (Gln) is first deamidated in mitochondria to
glutamate (Glu) by glutaminase GLS, following conver-
sion to a-KG by GOT1. Elevation of GLS2 and GOT1

increases the level of a-KG and reduces cysteine import.
Both cysteine limitation and glutaminolysis increase
ROS content and sensitize melanoma cells to
chemically-induced ferroptosis [33]. In addition, BID
transactivation and the subsequent mitochondrial fis-
sion, ROS accumulation and loss of mitochondrial mem-
brane potential link ferroptosis to oxytosis pathway
signaling in neuronal cells [34]; (4) SCO2 is important to
(anti-)oxidant metabolism. SCO2 plays a putative ROS
defensive role in human cell lines and double deletion of
SCO2 and SOD1 incaeases ROS, resulting from superior
sensitivity to oxidative stress [35]. Although some of
these genes have been shown to be involved in the

a

c d e f

b

Fig. 6 Validation of the 10 FRG signatures in the TCGA testing set and entire set. The distribution of risk score, survival time, OS status and
heatmap of 10-FRG gene expression in the testing set (a) and entire set (b). K-M curves for overall survival of OSCC patients in different
subgroups and time-dependent ROC curves in the testing set (c, e) and entire set (d, f)
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development and progression of OSCC, to know
whether these genes influence the survival of OSCC pa-
tients by regulating ferroptosis need more clinical and
basic research.
The gene signature classified patients into two groups

and K-M curve analysis showed that patients with high-
risk scores had a significantly worse prognosis. Univari-
ate and multivariate Cox analysis confirmed the FRG-
based risk score could act as an independent predictor
for OS. However, none of the clinical factors were sig-
nificantly related to the risk score. This was different
from the prognostic model for OSCC based on another
gene set [36]. However, there was a tendency for a
higher FRG-based risk score to be associated with a
more advanced clinical stage.
The nomogram can combine genetic and clinical in-

formation easily to calculate and predict a personalized
survival rate of cancer patient, which has great value in
helping doctors make decisions regarding diagnosis and

treatment. Therefore, we developed an FRG signature-
based nomogram and confirmed its good accuracy and
sensitivity in validation sets. These results indicated that
the nomogram was a favourable and reliable model for
prognosis prediction in OSCC patients and showed great
application potential.
It was demonstrated that the most vital ways in which

ferroptotic cancer cells interact with the antitumour im-
munity were phagocytosis, migration, maturation, anti-
gen processing, and cross-presentation by dendritic cells
[37]. To determine whether the poor prognosis in high-
risk patients was related to tumour cell-mediated im-
munity, ssGSEA between the different risk groups was
performed. The DEGs between subgroups were enriched
in a variety of cancer and immune-related pathways.
Additionally, the risk score showed a negative correl-
ation with a series of immune-related pathways in the
Pearson’s correlation analysis. The aforementioned re-
sults implied that the ferroptosis-related gene signature

Fig. 7 Relationship between risk score and clinical characteristics. The results of univariate (a) and multivariate Cox regression analysis (b) show
the correlation between risk score of the novel prognostic model and clinical characteristics (including age, gender (sex), smoking history
(smoking), alcohol history (alcohol), stage, tumour size (stage-T), tumour node (stage-N)) and the overall survival of OSCC patients in the training
set. (c) Relationship between risk score and age, gender, smoking history, alcohol history, stage, T-stage, and N-stage
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Fig. 8 Construction and validation of nomogram. (a) The prediction nomogram integrating the risk score and multiple clinical risk factors to
predict 1-, 3-, or 5-year survival in OSCC patients. Each factor corresponds to a point value at the top row, indicating their contribution to the OS
of OSCC patients. These values were summed to obtain a total point. Then, a line was drawn from the location of “total points” downward to the
survival axis to determine the possibility of 1-, 3-, or 5-year survival. (b-j) Calibration curves show that the predictive survival fit actual survival well
at 1-year (b), 3-years (c), and 5-years (d) in the training set. Similar results are obtained with the testing set (e-g) and entire set (h-j)

Fig. 9 Pathway profiles and single-sample gene-set enrichment analysis (ssGSEA) between the low and high-risk groups across the entire TCGA
cohort. (a) Enriched pathway profiles of the entire set show the DEGs between different risk scores enriched in different pathways. ssGSEA was
performed to calculate the enrichment scores of pathway activity. Each score is displayed in a cell, with a colour change indicating a low (green)
to high (red) score. (b) Pearson’s correlation analysis preliminarily demonstrates that high-risk score (marked with *) is negatively correlated with
some immune-related pathways (marked with **). Red indicates a positive correlation coefficient while green indicates a negative correlation. (c-
d) Boxplots showing the score of immune-related cells (c) and functions (d). Adjusted p-values are labelled as: ***, p < 0.001; **, p < 0.01; *, p <
0.05; ns, not significant
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may connected with the dysregulation of cancer-related
and immune-related pathways.
Furthermore, additional quantitative research showed

that the high-risk group contained a higher fraction of
some immune-related cells and functions. According to
previous studies, ferroptotic cancer cells can release
damage-associated molecular patterns (DAMPs) or lipid
mediators that have been found to attract antigen-
presenting cells (APCs) to ferroptotic dying cells, subse-
quently, triggering a series of innate and adaptive im-
mune responses [37, 38]. Consistent with a prior study
[23], our study also indicated that antigen presentation
process related cells and functions were significantly
more activated in the low-risk group, especially iDCs
and B cells. It should also be noted that iDCs and B cells
favour antitumour activity in OSCC [39]. Moreover, the
present results suggested that immune effector cells in-
cluding CD8 + T cells, NK cells and TILs, were down-
regulated in the high-risk group. CD8 + T cells have
been shown to induce lipid peroxidation in cancer cells
and sensitize cells to ferroptosis via IFNγ [40]. A higher
density of these immune cells was found in tertiary
lymphoid structure-positive patients and contributed to
a better 5-year overall survival for OSCC [41]. Th2 cells
and Tregs play a notable role in tumour immune eva-
sion. Poonam R et al. [42] reported that Th2 cells and
Tregs were both associated with OSCC progression, and
their upregulation increased the risk of death. These
aforementioned studies of Th2 cells and Tregs were in-
conformity with our results. Therefore, the exact role of
these immune cells in ferroptosis and immune evasion
needs further investigation. Consequently, these results
preliminarily indicated that the worse prognosis in the
high-risk group might result from the dysregulation of
antitumour immunity and left open a further question:
how does ferroptosis affect the development of OSCC
through antitumour immunity.
Compared with previous studies, our study was the

first to construct an FRG-based prognostic signature and
nomogram for predicting prognosis in OSCC and pre-
liminarily revealed the relationship between ferroptosis-
related genes and immune status. However, there were
still several limitations in our research: First, our gene
prognostic models were constructed and validated with
the TCGA cohort, and other available external databases
and prospective data in reality will be required to evalu-
ate its clinical predictive value in the future. Second, fur-
ther studies need to perform basic experiments to
explore the relationship between ferroptosis and our
prognostic signatures. Finally, the underlying correlation
between the risk score and antitumour immunity re-
mains to be further investigated. Therefore, the conclu-
sion obtained from this study needs more detailed
verification in view of the above limitations.

Conclusions
In conclusion, we used bioinformatics analysis to con-
struct a new 10-FRG prognostic model with good pre-
dictive value that was capable of independently
predicting the overall survival of OSCC patients. The
nomogram model of risk factors and clinical parameters
provides a new understanding of the prognostic value of
ferroptosis-related genes in OSCC and new insight for
future anticancer immunotherapies based on potential
FRG targets. In our future study, the predictive value of
the model needs to be verified by clinical data and the
inherent mechanism of ferroptosis-related genes and
antitomour immunity needs to be unveiled.
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