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The mononuclear phagocyte system comprises a network of circulating monocytes 
and dendritic cells (DCs), and “histiocytes” (tissue-resident macrophages and DCs) that 
are derived in part from blood-borne monocytes and DCs. The capacity of circulat-
ing monocytes and DCs to function as the body’s first-line defense against offending 
pathogens greatly depends on their ability to egress the bloodstream and infiltrate 
inflammatory sites. Extravasation involves a sequence of coordinated molecular events 
and is initiated by E-selectin-mediated deceleration of the circulating leukocytes onto 
microvascular endothelial cells of the target tissue. E-selectin is inducibly expressed by 
cytokines (tumor necrosis factor-α and IL-1β) on inflamed endothelium, and binds to 
sialofucosylated glycan determinants displayed on protein and lipid scaffolds of blood 
cells. Efficient extravasation of circulating monocytes and DCs to inflamed tissues is 
crucial in facilitating an effective immune response, but also fuels the immunopathology 
of several inflammatory disorders. Thus, insights into the structural and functional prop-
erties of the E-selectin ligands expressed by different monocyte and DC populations 
is key to understanding the biology of protective immunity and the pathobiology of 
several acute and chronic inflammatory diseases. This review will address the role of 
E-selectin in recruitment of human circulating monocytes and DCs to sites of tissue 
injury/inflammation, the structural biology of the E-selectin ligands expressed by these 
cells, and the molecular effectors that shape E-selectin ligand cell-specific display. In 
addition, therapeutic approaches targeting E-selectin receptor/ligand interactions, which 
can be used to boost host defense or, conversely, to dampen pathological inflammatory 
conditions, will also be discussed.
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iNTRODUCTiON

The mononuclear phagocyte system (MPS) comprises monocytes, dendritic cells (DC), and 
tissue-resident macrophages. MPS cells have specialized phagocytic capabilities, and antigen pro-
cessing and presenting functions, thereby initiating the immune response and linking innate and 
adaptive immune systems (1). In addition to their role as key sentinels and regulators of immunity, 
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FigURe 1 | Proposed model for migration of human monocytes and dendritic cell (DC) progenitors into tissues in steady-state and inflammatory conditions. After 
differentiation in the bone barrow, precursors of DCs and monocytes enter the blood stream and are distributed to lymphoid organs [through high endothelial venules 
(HEV)] and to various peripheral tissues. In steady state, non-classical monocytes are preferentially recruited into the resting vasculature, where they patrol the 
endothelium and may contribute to the maintenance of tissue-resident macrophage and DC populations. Conventional DCs (cDCs) recirculate between peripheral 
tissues and lymphoid organs (migratory cDCs), participating in the induction of peripheral tolerance, or reside in the lymphoid organs (lymphoid-resident cDCs). By 
contrast, plasmacytoid DCs (pDCs) mostly populate lymphoid tissues (lymphoid-resident pDCs) and lack migratory ability under steady-state conditions. Upon 
inflammation, classical monocytes, cDCs, and pDCs are recruited to affected tissues. After antigen uptake and differentiation into fully functional mature DCs, monocyte-
derived DCs (moDCs), and cDCs enter draining lymph nodes via afferent lymphatics. pDCs can only access reactive lymph nodes from the blood stream via HEVs.
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mononuclear phagocytes are also involved in several pathologi-
cal inflammatory conditions, including autoimmune diseases, 
infection, cancer, and abnormal wound healing processes (2). 
To access inflammatory sites, circulating monocytes and DCs 
must first engage the vascular endothelial barrier against the 
prevailing forces of hemodynamic shear, a process that occurs 
via adhesive interactions between vascular E-selectin and its 
glycan counter-receptors (E-selectin ligands) on the circulat-
ing cells (3). This initial contact results in tethering and slow 
rolling of the cells along the endothelial surface at velocities 
well below that of blood flow (4). E-selectin-mediated slow roll-
ing is a vital step in this cascade of events as it allows intimate 
contact between MPS cells and the inflamed endothelium, and 
the recognition of inflammatory molecules within the milieu 
(3). Consequently, a greater knowledge of how E-selectin ligand 
display is elaborated by different types of circulating mono-
cytes and DCs is key to understanding the physiological and 
pathological events associated with the MPS. In this review, we 
will provide information on the structural biology and opera-
tion of the wide variety of E-selectin-binding glycoconjugates 
expressed by circulating MPS cells (i.e., blood monocyte and 
non-tissue-resident DC populations) in light of their impact on 
pathology and potential therapies. Furthermore, we will discuss 
the molecular basis of the biosynthesis of these glycoconjugates, 

and how such knowledge can frame novel strategies to inhibit 
or enforce trafficking of MPS cells.

MONONUCLeAR PHAgOCYTe FAMiLY: 
HeTeROgeNeiTY AND MigRATORY 
CAPABiLiTieS

Monocytes
Monocytes constitute a heterogeneous cell population, compris-
ing approximately 5–10% of total peripheral blood leukocytes. 
These cells arise from granulocyte–macrophage progenitors in 
the bone marrow and are subsequently released into peripheral 
blood, where they circulate for several days (5). At steady state 
(i.e., without any inflammatory cue), monocytes can enter 
non-lymphoid tissues, and there they either retain their blood 
monocytic behavior (6), or generate the immediate precursors 
of “monocyte-derived macrophages and DCs,” which constitute 
a small portion of tissue-resident macrophage and DC popula-
tions (7–9). On the other hand, under inflammatory conditions, 
monocytes transmigrate into injured tissues, where they then 
directly mediate antimicrobial activity or, depending on the local 
biochemical milieu, differentiate into inflammatory macrophages 
or monocyte-derived DCs (moDCs) (10) (Figure 1). Circulating 
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monocytes, thus, function as a systemic reservoir of tissue-
resident myeloid cells (11, 12).

There are three subsets of human monocytes, each of which dis-
play different functional and migratory abilities and can be distin-
guished based on their expression of specific chemokine receptors, 
CD14 [the lipopolysaccharide (LPS) receptor], and CD16 (Fcγ 
RIII) (13). “Classical” monocytes (CD14++CD16−), which account 
for about 90% of circulating monocytes in healthy individuals, 
express high levels of the C-C chemokine receptor type 2 (CCR2), 
display high phagocytic and myeloperoxidase activities, generate 
reactive oxygen species, and produce inflammatory cytokines, 
such as interleukin (IL)-1β, IL-6, and tumor necrosis factor 
(TNF)-α (14). On the other hand, the “non-classical” monocytes 
(CD14+CD16++) comprise a population that exhibits low phago-
cytic and myeloperoxidase activities (15, 16). Importantly, while 
classical monocytes are recruited preferentially to distressed tissues 
(17), non-classical monocytes are recruited to non-inflamed areas, 
where they patrol the microvasculature via the CX3C chemokine 
receptor 1 (CX3CR1) and leukocyte function-associated antigen 
(LFA)-1, monitoring the luminal surface of resting endothelium 
for signs of tissue damage or infection (18–20). In addition, non-
classical monocytes are mainly responsive to virus-associated 
signals, via toll-like receptors (TLRs) 7 and 8, whereas classical 
monocytes respond mostly to bacteria-associated signals (21). An 
intermediate subset of monocytes, characterized as CD14++CD16+, 
is viewed as being a transitional population between classical and 
non-classical monocyte subsets, displaying significant production 
of TNF-α and IL-1β, but low peroxidase activity (16, 22). While 
the migratory ability of the intermediate subset is controversial, 
they express the chemokine receptor CCR2, a feature supporting 
their ability to infiltrate sites of inflammation (23). Still, overall, 
the intermediate monocyte population reportedly displays weaker 
ability to migrate across resting endothelium compared to the 
other two monocytic subsets (24).

Dendritic Cells
Dendritic cells are the antigen-presenting cells par excellence, 
showing a unique capacity to initiate immune responses. These 
specialized antigen-presenting cells constitute a unique leukocyte 
population that display high morphological and functional het-
erogeneity (25). DCs can be originated from common myeloid 
or lymphoid precursors and are divided into two main groups: 
conventional DCs (cDCs) and plasmacytoid DCs (pDCs) (26). 
After being released into the bloodstream, they are distributed 
to lymphoid organs (lymph nodes, spleen, and thymus) and 
various peripheral tissues. DC function is intrinsically related 
to their anatomical localization, and, therefore, a stringent 
DC functional-anatomical classification needs to be defined 
(Figure  1). At steady state, DCs are found to be immature (as 
indicated by high phagocytic and endocytic capacity and low 
expression of MHC and costimulatory molecules) and can be 
classified as either migratory or lymphoid-resident DCs (27, 28). 
Migratory DCs serve as immune sentinels screening peripheral 
tissues for signals of danger. They can also capture apoptotic cells 
or self-antigens in non-inflamed tissues and, after entering lymph 
nodes via afferent lymphatics, present these to T cells in the lymph 
nodes, thus playing a key role in antigen-mediated peripheral 

tolerance (29–31). On the other hand, lymphoid-resident DCs 
differentiate within lymphoid organs directly from blood DC 
precursors, and they function to continuously survey blood or 
lymph (27, 32). Both cDC and pDC hematopoietic progenitors 
contribute to the lymphoid-resident DC pool, whereas most 
migratory DCs arise from blood cDCs (33). Under infection or 
sterile inflammatory circumstances, both circulating cDCs and 
classical monocytes enter inflamed tissues, where they capture 
antigens and differentiate into highly functional mature DCs. The 
mature DCs migrate to the lymph nodes via the afferent lymph, 
initiating T cell-mediated immune responses.

In addition to cDCs and pDCs, a distinct subset of DCs are 
derived from monocytes (known as “moDCs”) which are consid-
ered to be “inflammatory DCs”; these cells prominently produce 
TNF-α, nitric oxide, and IL-23, and are potent inducers of TH17 
cells (34–37). Interestingly, although pDCs are believed to be 
absent from peripheral tissues under steady-state conditions, a 
number of recent publications reported pDC extravasation into 
some inflamed tissues, where they secrete large amounts of type I 
interferon (38–42). In contrast to cDCs, pDCs do not enter reac-
tive secondary lymphoid organs after trafficking from peripheral 
tissue via afferent lymphatics; instead, they apparently migrate 
directly from the bloodstream via high endothelial venules 
(HEVs) by an E-selectin-dependent mechanism (43–47).

Macrophages
Macrophages are a heterogeneous and versatile population of 
tissue-resident cells, mostly originating from self-renewing 
embryo-derived progenitors and from blood monocytes that 
have colonized tissues (48, 49). They exist virtually in every 
tissue throughout the body, where they survey for potential 
signs of infection/danger and perform phagocytic clearance of 
dying cells (50). In addition, macrophages play a role in adap-
tive immunity through antigen presentation and production of 
cytokines (51, 52).

There are two main macrophage subsets, the M1 and the M2 
macrophages, with distinct responses to environmental signals. 
The M1 subset produces high amounts of pro-inflammatory 
cytokines and reactive oxygen and nitrogen species, thus play-
ing a crucial role in Th1 polarization and promotion of cellular 
immunity. M2 macrophages are characterized by their ability to 
stimulate humoral immune responses, fight extracellular parasite 
infections, and promote tissue repair, angiogenesis, and tumor pro-
gression (53, 54). Whereas the major function of macrophages is 
to fight infections and kill target cells, they do not typically display 
hematogenous migration, nor leave sites of tissue injury (11, 55).

MPS extravasation Cascade:  
The Multistep Model
Recruitment of circulating cells from blood to inflamed tis-
sue involves a sequential and coordinated series of molecular 
actions mediated by adhesive interactions between circulating 
sentinels and endothelial cells in post-capillary venules (56). 
Here, we review the molecular effectors that regulate the initial 
phagocyte–endothelial binding interactions, which are essential 
for transendothelial migration of blood monocytes and DCs to 
sites of injury.
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FigURe 3 | The selectin family. Selectins are a family of three carbohydrate-
binding proteins: P-selectin, expressed on activated platelets and endothelial 
cells, E-selectin expressed on activated endothelial cells, and L-selectin 
expressed on leukocytes. The figure represents the five domains shared by 
selectins: C-type lectin domain, epidermal growth factor-like domain (EGF), a 
varying number of short consensus repeats having homology to complement 
regulatory proteins, a transmembrane region, and a cytoplasmatic domain.

FigURe 2 | Multistep model of circulating blood cell adhesion and migration along the vascular endothelium. Cells make adhesive contacts onto the inflamed 
endothelial surface through engagement of their sialofucosylated glycan determinants to vascular E-selectin (Step 1—tethering and rolling). Subsequent engagement 
of chemokine receptors leads to integrin activation (Step 2) and firm adhesion of leukocytes to endothelium (Step 3), allowing their transmigration (Step 4).
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To initiate the extravasation process, circulating phagocytes 
establish low-affinity and reversible interactions (tethering) on 
target endothelial cells, achieving low velocity “rolling” adhesive 
interactions (Step 1, Figure  2). Rolling exposes these cells to 
chemokines that are immobilized by glycosaminoglycans on 
the endothelial surface, and, in turn, facilitates engagement of 
G-protein-coupled chemokine receptors (GPCRs) expressed on 
the mononuclear phagocyte cell surface (Step 2, Figure 2), with 
resultant G-protein-driven integrin activation (3, 57). Activated 
integrins on phagocytes, principally very late activation protein 
4 and LFA-1, bind to their respective endothelial receptors 
vascular cell adhesion molecule-1 and intercellular adhesion 
molecule-1 (ICAM-1), leading to firm adhesion of MPS cells 
on the endothelium (Step 3, Figure 2) (3, 57). The binding of 
activated integrins then allows diapedesis into the tissue (Step 
4, Figure  2). Two distinct mechanisms enable diapedesis: (1) 
transient dismantling of endothelial junctions (paracellular 
migration) or (2) migration through individual endothelial cells 
(transcellular migration) (58, 59).

Although several cell-associated proteins are specialized 
at mediating the first step of cell migration, the selectins and 
their ligands are the most potent effectors of tethering and 
rolling adhesive interactions. These molecules are responsible 
for the initial low-affinity binding interactions of leukocytes on 
endothelial layer (60), a property related to the unique biophysics 
of lectin–carbohydrate interactions under fluid shear conditions.

SeLeCTiNS AND THeiR 
gLYCOCONJUgATe LigANDS

The Selectin Family
The selectins are a family of three carbohydrate-binding pro-
teins that can be expressed on endothelial cells, leukocytes and 
platelets (Figure 3). Due to their requirement of calcium ions 
for binding, all three selectins, E-selectin (CD62E), P-selectin 

(CD62P), and L-selectin (CD62L), belong to the C-type lectin 
family (61). Selectins share a common structure of five differ-
ent domains: an N-terminal carbohydrate recognition domain 
(CRD), an epidermal growth factor-like domain (EGF), a 
varying number of short consensus repeats that have homol-
ogy to complement regulatory domains (“CRs” of which there 
are 2, 6, and 9 within L-, E-, and P-selectin, respectively), a 
transmembrane region, and a C-terminal cytoplasmatic domain 
(Figure  3) (62–64). While the CRD and EGF domains are 
highly homologous between the three selectins, the structure 
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of the transmembrane and cytoplasmic portions, as well as the 
extracellular CR domains are not conserved across the selectins, 
resulting in structural diversity and varying molecular weights 
between selectins (61, 65).

Despite sharing common elements, the three selectins have 
different functions in diverse pathological and physiological 
processes and vary in their distribution and binding kinetics.

The biology of L-selectin was first elucidated by use of an in vitro 
assay in which suspensions of lymphocytes were overlaid onto 
lymph node sections (66). This assay then allowed for creation of 
mAb that could interrupt this binding, such as the mAb known 
as “MEL-14” described by Gallatin and coworkers (67) in 1983, 
and thereafter led investigators to cloning of this structure (62). 
L-selectin is highly expressed on hematopoietic stem cells and 
mature leukocytes, including all myeloid cells, subsets of natural 
killer cells, naïve T and B cells, and central memory T cells. When 
leukocytes are activated, cell surface levels of L-selectin are down-
regulated by proteolytic cleavage via metalloprotease-dependent 
shedding of the extracellular domain (61, 68, 69).

P-selectin was described in 1984 by McEver and cowork-
ers (70, 71) and Furie and coworkers (72) as a glycoprotein 
expressed on the cell surface of activated platelets. P-selectin is 
constitutively expressed by circulating platelets and endothelial 
cells, where it is stored in α-granules and Weibel–Palade bodies, 
respectively. Because it can be expressed on endothelial cells, 
P-selectin together with E-selectin (described below) are known 
as the “vascular selectins.” Following pro-inflammatory stimulus 
by molecules such as thrombin or histamine, P-selectin is rapidly 
translocated from the granules to the cell surface by fusion of 
intracellular storage compartments with the plasma membrane. 
In murine endothelial cells, inflammatory mediators, such as 
TNF-α, IL-1β, and LPS, induce P-selectin mRNA transcription, 
which requires the cooperative binding of the nuclear factor 
κ-light chain-enhancer of activated B cells (NF-κB) and activat-
ing transcription factor-2 (ATF-2) to their response elements 
within the P-selectin promoter (73–75). However, importantly, 
the promoter of P-selectin in humans and other primates lacks 
binding sites for NF-κB and ATF-2 (76). For this reason, in human 
endothelial cells, the only vascular selectin inducibly expressed by 
TNF-α, LPS, and IL-1β is E-selectin (77).

E-selectin was first reported by Bevilacqua and coworkers 
(63, 78) in 1980s as a leukocyte adhesion molecule on acti-
vated endothelial cells. Skin and bone marrow microvessels 
express E-selectin constitutively (79), however, in other tis-
sues, endothelial cells do not constitutively express E-selectin 
but its expression is strongly upregulated by inflammatory 
cytokines, such as TNF-α and IL-1β. These cytokines potently 
induce transient transcription (within hours of exposure) of 
E-selectin mRNA in both human and mouse endothelial cells 
(80). Cytokine-dependent activation of E-selectin is mediated 
by NF-κB binding to regulatory domains in the E-selectin pro-
moter (81). Functionally, E-selectin slows leukocyte rolling to 
much lower velocities than do either L- or P-selectin, favoring 
subsequent leukocyte arrest (4, 82). This capacity, along with 
the inability of human endothelial cells to upregulate P-selectin 
in the presence of IL-1β and TNF-α, is why E-selectin is con-
sidered to be the most important selectin for cell trafficking 

to sites of inflammation in humans, and it plays a critical role 
in the recruitment of immune effectors to target inflammatory 
sites.

The Carbohydrate e-Selectin Ligands
E-selectin recognizes a range of structurally diverse glycan 
epitopes expressed by human leukocytes that typically contain 
α(1,3)-fucose (Fuc) and α(2,3)-sialic acid (Sia) modification(s) 
on a lactosamine backbone [consisting of galactose (Gal) linked 
to N-acetylglucosamine (GlcNAc)], as shown in Figure 4 (79). 
The terminal tetrasaccharide known as sialyl Lewis X (sLex—
Siaα2-3Galβ1-4(Fucα1-3)GlcNAc) is the prototypical E-selectin-
binding determinant (83–85). Some sLex-variant structures can 
also exhibit E-selectin binding activity, namely an internally 
fucosylated sLex-variant (VIM-2) and other polylactosamine 
structures, in which Fuc modifications occur at more than one 
GlcNAc residue along the polylactosamine chain (tri-fucosyl-sia-
lyl Lewisx and di-fucosyl-sialyl Lewisx) (86–88). In addition, other 
glycan structures that are not natively expressed on leukocytes 
exhibit E-selectin binding activity, namely the sLex isomer, sialyl 
Lewis a (sLea—Siaα2-3Galβ1-3(Fucα1-4)GlcNAc) (89), some 
sulfated derivatives of Lex and Lea (3′-sulfo-Lex and 3′-sulfo-Lea, 
respectively) (90, 91), and a fucosylated glycoform of LacdiNac 
that displays a terminal N-acetylgalactosamine (GalNAc) instead 
of Sia (GalNAc-Lewis x) (92).

glycosyltransferases involved in the 
Biosynthesis of Selectin–Carbohydrate-
Binding Determinants
E-selectin binding determinants are typically displayed at the 
end of O-glycans, N-glycans, or glycolipid precursor structures, 
and require the coordinated and sequential action of specific 
glycosyltransferases localized within the lumen of the Golgi 
apparatus. Assembly of sLex is driven by the terminal addition 
of Sia (to Gal) and of Fuc (to GlcNAc) through the action of 
α(2,3)-sialyltransferases and α(1,3)-fucosyltransferases (FTs), 
respectively, on type 2 lactosamine (LacNAc) chains (i.e., Gal 
connected to GlcNAc through a β(1,4)-linkage) (Figure 4) (93, 
94). The sialylated forms of Lewis antigens are synthesized by 
the action of the α(2,3)-sialyltransferases (ST3Gal isoenzymes). 
These enzymes transfer Sia residues to the Gal on the LacNAc 
chain, exclusively acting prior to fucosylation (95, 96). There are 
six members of the α(2,3)-sialyltransferase family (ST3Gal-I–
ST3Gal-VI), but only ST3Gal-III, ST3Gal-IV, and ST3Gal-VI 
are reported to sialylate lactosamine chains (97). Importantly, 
ST3Gal-III exhibits preference for type 1 lactosamine chain 
acceptors (wherein Gal is connected to GlcNAc through a β(1,3)-
linkage), whereas ST3Gal-IV and ST3Gal-VI preferentially act on 
type 2 polylactosamine chains (98–100). When Type 1 lactosa-
mines are decorated with Sia in α(2,3)-linkage to Gal and with 
Fuc in β(1,3)-linkage to GlcNAc, this tetrasaccharide is known as 
sialyl Lewis A (sLeA).

So far, six human FTs have been found to catalyze the 
addition of Fuc at α(1,3) linkage to GlcNAc with a type 2 
lactosamine—FTIII, FTIV, FTV, FTVI, FTVII, and FTIX. 
Each enzyme exhibits specificity for acceptor substrates and, 
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FigURe 4 | Schematic representation of biosynthesis of the E-selectin ligand determinants. The α(2,3)-sialyltransferases, ST3Gal-III, -IV, and -VI, terminate the 
elongation of both O- and N-glycans by creating sialylated type 2 lactosamine chains. These can be further fucosylated by the action of the specific 
fucosyltransferases, yielding different Lewis-related structures that display E-selectin binding activity.
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therefore, has the ability to generate distinct fucosylated 
structures (101, 102). Particularly, FTIII and FTV are unique 
in that they exhibit both α(1,3) and α(1,4) FT activity on both 
sialylated and unsialylated type 2 and type 1 lactosamines 
thereby creating (s)Lex and (s)Lea epitopes, respectively (103, 
104). On the other hand, FTIV and FTVI fucosylate both 
sialylated and unsialylated type 2 lactosamine chains, with 
FTIV creating VIM-2 and Lex (105, 106) and, modestly, sLex 
determinants (107, 108), and FTVI creating these structures 
as well as di-fucosyl-sLex (108–110). Uniquely, FTVII can only 
act on sialylated type 2 lactosamines, yielding sLex and di/tri-
fucosyl-sLex-structures (111, 112), whereas FTIX is known to 
synthesize mostly Lex (101, 106).

Most of the reports that assess the role of the different glyco-
syltransferases involved in selectin ligand biosynthesis in leu-
kocytes have been performed using knock-out mouse models, 

with a small proportion of these studies using human leukocytes 
or human hematopoietic cell lines. Concerning the role of the 
α(2,3)-sialyltransferases, murine studies suggest that ST3Gal-IV 
and ST3Gal-VI collaborate together in murine E-selectin ligand 
biosynthesis, with ST3Gal-IV having an important role in the 
regulation of E-selectin-dependent rolling velocity (113, 114). 
Interestingly, ST3Gal-III does not seem to contribute to the 
synthesis of murine E-selectin ligand moieties, since deficiency 
of this enzyme did not affect E-selectin ligand expression or 
activity on murine leukocytes (113). Surprisingly, ST3Gal-IV 
is reportedly the only human α(2,3)-sialyltransferase involved 
in the biosynthesis of E-selectin ligands in human myeloid 
leukocytes, since ST3Gal-IV-silenced HL-60 cells (a human 
promyelocytic cell line), and neutrophils derived from stable 
ST3Gal-IV knockdown hematopoietic stem cells fail to engage 
in tethering and rolling interactions on E-selectin-bearing 
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FigURe 5 | Schematic representation of the biosynthetic pathways leading to glycoprotein synthesis: O-linked and N-linked glycosylation. The O-glycosylation 
process is characterized by a stepwise sugar addition that occurs in the Golgi apparatus and involves a broad array of enzymes. This synthesis is initiated by one of 
the N-acetylgalactosaminyltransferase (ppGalNAcTs) family members, forming the Tn antigen. After the first sugar [N-acetylgalactosamine (GalNAc)] addition, Tn is 
typically elongated by Core 1 β(1,3)galactosyltransferase (Core1GalT or T synthase, whose Golgi expression requires the activity of its chaperone COSMC), creating 
the “Core 1” O-glycan (also known as “T antigen”). Core 1 is then further lengthened by C2GnT-I, which adds an N-acetylglucosamine (GlcNAc) to the GalNAc, 
forming the “Core 2” O-glycan structure. Alternatively, Core 1 sialylation, by ST3Gal-I or ST6GalNAc-II [forming sialyl-T (sT) or sialyl-6T (s6T) antigens, respectively] 
stops Core 2 formation. In contrast to O-glycosylation, the N-glycosylation process requires the production of an oligosaccharide precursor (GlcNAc2Man5) in the 
cytoplasmic face of the endoplasmic reticulum (ER) membrane. This glycan flipped in the ER lumen and is then transferred en block from a lipid donor to the Asn 
residue of a newly synthesized protein within the ER lumen, and then further processed in the Golgi compartment. Biosynthesis of hybrid and complex glycans is 
initiated by the action of MGAT-I, which adds a GlcNAc residue to the mannose (Man) present on the α(1,3)-arm of the Man5GlcNAc2 structure. Repetitive additions 
of galactose (Gal) and GlcNAc by β(1/4)GalT and β(1,3)GnT enzymes, respectively, can further elongate Core 2 O-glycan and hybrid- and complex-type N-glycan 
structures, creating the lactosaminyl type 2 chains that serve as acceptors for terminal sialofucosylation reactions.
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substrates (115). In case of α(1,3)-FTs, studies demonstrate that 
mostly FTVII, and to a lesser extent FTIV, are the key murine 
α(1,3) FTs that mediate leukocyte selectin ligand biosynthesis. 
In fact, murine leukocytes lacking FTVII show poor adhesive 
contacts with E- and P-selectin, indicating that this FT plays 
a prominent role in murine E-selectin ligand biosynthesis 
(116, 117). However, others reported that FTIV is crucial for 
slow murine leukocyte rolling velocity (118, 119). Importantly, 
E-selectin binding activity conferred by murine FTIV, but not 
by FTVII, apparently occurs mainly on glycolipids rather than 
glycoproteins (120). Conversely, in human leukocytes, there is 
evidence that FTVII, FTIV, and FTIX could each act in synthesis 
of E-selectin ligand determinants (121). Notably, the mouse 
genome encodes only FTIV, FTVII, and FTIX (122), whereas 
primates possess an additional three FT gene products—FTIII, 

FTV, and FTIV. These additional FTs provide for a much wider 
capacity to create sLeX; in addition, the expression of FTIII and 
FTV in primates uniquely drives creation of sLeA determinants. 
Human circulating monocytes express all the α(1,3)-FTs, with 
the exception of FTV, heightening the potential for variability 
in glycoconjugates bearing sLex among human and mouse cells 
(123). Notably, sLeA is not expressed on any primate leukocytes 
as these cells do not synthesize Type 1 lactosamines (3).

Other glycosyltransferases involved in the biosynthesis 
of sLex have also been studied for their relevance in generat-
ing functional selectin ligands (Figure  5). Regarding sLex 
presentation on O-glycans, one study reported that leukocytes 
from mice deficient in the enzyme required for initiation of 
O-glycosylation, ppGalNAcT-1, showed impaired recruitment 
during inflammation due to a significant reduction in E- and 
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P-selectin ligand levels (124). Mice lacking the O-glycan core 
1 β3galactosyltransferase (C1GalT-I) showed dramatic loss 
of leukocyte rolling on E-selectin and, consequently, these 
leukocytes did not transmigrate into inflamed tissues (125). 
Transgenic mouse studies, where the O-glycan core 2 β6-N-
acetylglucosaminyltransferase-I (C2GnT-I) was knocked out, 
also showed reduced E-selectin and P-selectin binding activ-
ity of leukocytes under static and shear-based rolling assays, 
with impaired leukocyte recruitment to sites of inflammation 
(126–128). In agreement, in human moDCs, the downregula-
tion of C2GnT-I, with concurrent upregulation of ST3Gal-I and 
GalNAc α(2,6)sialyltransferase (ST6GalNAc)-II, results in a loss 
of the core 2 structures required for O-glycan display of sLex 
(Figure 5) (129). Furthermore, studies using HL-60 cells have 
revealed that the ST6GalNAc-II overexpression abrogates sLex 
cell surface display and reduces the number of adherent cells 
to E-selectin under flow conditions, reinforcing the notion that 
there exists a competition between ST6GalNAc-II and C2GnT-I 
for core 1 acceptors, affecting the biosynthesis of sLex-bearing 
core 2-O-glycan structures (Figure  5) (130). Interestingly, in 
mice, knockout of one of the β(1,4)galactosyltransferases (of 
the family of five isoenzymes) involved in Type 2 lactosamine 
synthesis, β(1,4)galactosyltransferase-I (β(1,4)GalT-I), showed 
reduced inflammatory responses and impaired P-selectin 
binding activity; however, the contribution of this enzyme in 
the synthesis of E-selectin counter-receptors remains to be 
elucidated (131).

One study has recently evaluated the contributions of N-glycans, 
 O-glycans and glycosphingolipids (GSLs) to E-selectin binding by 
human myeloid cells under physiological flow conditions (132). 
To address this issue, O-glycan and GSL synthesis was abolished 
by, respectively, knocking-out the core 1 Gal transferase chaper-
one, i.e., the C1GalT-I-specific Molecular Chaperone (COSMC), 
β1,2 GlcNAc-transferase (MGAT-I), and UDP-glucose ceramide 
glucosyltransferase (UGCG). Notably, these studies indicate that 
while O-glycans are indispensable for myeloid cell binding to 
L- and P-selectins, N-glycans play the major role in the initial 
myeloid cell recruitment into E-selectin-bearing substrates, with 
O-glycans playing a more modest role. In addition, both glycolip-
ids and N-glycans are responsible for the slowing down of rolling 
velocities that precede firm arrest (132).

Most studies that have assessed biologic modulators of 
E-selectin ligands in leukocytes have been performed using 
human and murine T  cells. An array of cytokines has been 
shown to regulate E-selectin ligand expression via upregulation 
or downregulation of specific glycosyltrasferases that control sLex 
expression. Specifically, IL-2, IL-7, IL-15, and IL-12 increase the 
expression of glycosyltransferases involved in the biosynthesis 
of E-selectin ligand determinants, whereas IL-4 has the oppo-
site effect (133). This selectin ligand upregulation in T  cells in 
response to cytokine signaling was shown to be dependent on 
Th1 transcription factor T-bet (134) and on STAT4-mediated 
pathways (135). Interestingly, human myeloid cells treated with 
granulocyte-colony stimulating factor (G-CSF) show increased 
cell surface expression of E-selectin ligands associated with sig-
nificant increases in gene expression of the glycosyltransferases 
ST3Gal-IV, FTIV, and FTVII (136).

e-SeLeCTiN LigAND ACTiviTY 
DiSPLAYeD BY CiRCULATiNg MPS 
SUBSeTS

Among the cells of MPS, human circulating monocytes and, to a 
lesser extent, human blood cDCs and moDCs are the most com-
prehensively analyzed group in terms of E-selectin ligand activ-
ity. In our studies, human classical monocytes (CD14++CD16−) 
showed significantly higher levels of sLex determinants as 
compared to intermediate monocytes (CD14++CD16+), 
whereas non-classical monocytes (CD14+CD16++) were almost 
devoid of sLex expression (123). Another study compared the 
trafficking capacity of human monocyte subsets by analyz-
ing their ability to bind to activated endothelial monolayers, 
and commensurately, classical monocytes showed noticeably 
higher capability of adhering to reactive endothelium than did 
non-classical/intermediate monocytes (137). In agreement 
with human studies, murine classical monocytes (Ly-6Chi) 
exhibit greater binding to E-selectin under flow conditions and 
express higher levels of the scaffolds that bear sLex determinants 
compared to non-classical monocytes (Ly-6Clo) (138, 139). This 
differential pattern of E-selectin ligand display is in agreement 
with the specific migratory requirements among the monocyte 
subsets: classical monocytes are typically recruited to inflamed 
lesions (138, 139), whereas non-classical monocytes migrate to 
non-inflamed endothelium (14) upon which they patrol healthy 
tissues in a LFA-1-dependent manner (19). Indeed, although 
the first observations of non-classical monocytes were made in 
non-inflamed skin blood vessels (19), these cells were further 
described in the microvasculature of kidney under steady-state 
conditions (20). The patrolling profile that these cells exhibit is 
independent of the activation state of the endothelium, since 
non-classical monocytes constitutively scavenge the luminal side 
of non-reactive endothelium (18). Therefore, their ability to bind 
to endothelium seems to be independent of E-selectin receptor/
ligand interactions, but, instead, appears critically regulated by 
LFA-1 expression and its interaction with endothelial ICAM (19, 
20). Notably, although selectins play a major role in the initial 
adhesive contacts with endothelium surfaces, integrins can also 
support tethering and rolling events under flow conditions, 
albeit with less potency than do selectins (140, 141).

Multiple adhesion molecules are involved in monocyte 
attachment to endothelium. While E-selectin receptor/ligand 
interactions prominently mediate Step 1 events in transmigration 
for all leukocytes, L-selectin-dependent binding interaction have 
also been observed to potently mediate human peripheral blood 
monocyte binding to activated vascular endothelium under shear 
stress (142–144). Thus, even though the majority of the reports 
indicates that initial monocyte adhesion to activated endothelial 
cells is most critically dependent on E-selectin receptor/ligand 
interactions (123, 145–150), distinct interactions were also 
reported by other authors. The differences have to do with dif-
ferences in the leukocyte populations under study, variations in 
the assay conditions employed (i.e., shear stress levels employed, 
rotatory shear versus fluid shear conditions, temperature, etc.), 
differences in the adhesion metrics (i.e., number of adhered 
cells, number of rolling cells, rolling velocity measurements, 
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etc) altogether compounded by the innate biologic differences 
between mice and human cells, could alternatively emphasize the 
contribution(s) of other adhesion molecules.

Concerning DCs, human blood cDCs express high levels 
of sLex determinants, which allow them to tether and roll on 
E-selectin under flow conditions (151, 152). Importantly, in in vivo 
intravital microscopy studies, human blood cDCs adoptively 
transferred into mice were observed to roll along resting murine 
skin endothelium and extravasate at sites of inflammation (151). 
Notably, human moDCs significantly express sLex, especially on 
O-glycan structures. Upon maturation of moDCs with the TLR4 
ligand, LPS, sLex expression is downregulated due to decreased 
C2GnT-I expression and upregulation of ST6GalNAc-II and 
ST3Gal-I (129). Biologically, these observations suggest that 
sLex is less relevant for transendothelial migration of TLR4-
induced-mature moDCs, or that maturation is a step that follows 
transendothelial migration. By contrast, IFN-γ-induced matura-
tion of moDCs leads to an upregulation of C2GnT-I, resulting 
in increased expression of core 2 O-glycan substrates for sLex 
decoration (153). These features suggest that sLex-bearing core 
1-derived (or core 2) O-glycans are required for human moDC 
migration and are modulated according to specific maturation 
stimuli. Human pDCs also express sLex, allowing their recruit-
ment to some inflamed tissues (38, 39, 154) and to reactive lymph 
nodes (43), a process believed to be mediated by the expression of 
E-selectin in HEVs (45, 47).

gLYCOCONJUgATe STRUCTUReS THAT 
DiSPLAY e-SeLeCTiN LigAND 
DeTeRMiNANTS iN CiRCULATiNg MPS 
CeLLS

Several diverse and structurally singular glycostructures with 
E-selectin binding activity have been identified on human classi-
cal monocytes or human blood DCs. Human classical monocytes 
greatly display sLex decorations on an array of protein scaffolds, 
consisting of P-selectin glycoprotein ligand-1 (PSGL-1), CD43 
and CD44, and GSLs (123), whereas human circulating DCs 
appear to display sLex solely on PSGL-1 (129, 155).

Cutaneous Lymphocyte Antigen
The cutaneous lymphocyte antigen (CLA) is the E-selectin-
reactive glycoform of PSGL-1. PSGL-1 is a transmembrane 
240-kDa homodimeric, mucin-like glycoprotein expressed 
on leukocytes (and, reportedly, on some activated endothelial 
cells) that plays a crucial role in the homing of leukocytes into 
inflamed tissue (156, 157). E-selectin binding activity of PSGL-1 
is conferred by sialylated and fucosylated core 2-based-O-glycans 
that are cluster-distributed along the stalk region of the PSGL-1 
extracellular domain (158). A number of studies have identified 
PSGL-1 as one of the several scaffolds expressed by human clas-
sical monocytes displaying E-selectin-binding activity (123, 155). 
On the other hand, PSGL-1 is the only known scaffold that pre-
sents sLex determinants on human circulating cDCs (151, 155) 
and moDCs (129). Yet, Silva et al. observed that although PSGL-1 
is essential for P- and L-selectin recognition by human moDCs 

under fluid shear conditions, it is not mandatory for tethering to 
E-selectin (153). Moreover, there are reports that extravasation 
of murine immature DC to inflamed tissues requires both E- and 
P-selectin, but not PSGL-1 (159). Together, these data suggest 
the expression of ligands for E-selectin in addition to CLA by 
human and murine DCs. Still, PSGL-1 is the dominant ligand for 
P- and L- selectin and is the only known glycoprotein that binds 
all three selectins (160, 161). Accordingly, circulating monocytes 
that have already bound to E-selectin on inflamed endothelium 
can also interact with L-selectin expressed by other circulating 
monocytes/DCs via PSGL-1 and support their secondary cap-
ture, potentiating mononuclear phagocyte recruitment to sites of 
inflammation (162).

Hematopoietic Cell e- and L-Selectin 
Ligand
HCELL is a sialofucosylated glycoform of CD44 that exhibits 
potent E-selectin (and L-selectin) binding activity. CD44 is a 
transmembrane protein that exists in a wide variety of protein 
isoforms due to alternative splicing and extensive post-transla-
tional modifications (with molecular weight ranging from 80 to 
220 kDa). CD44 is expressed by most mammalian cells, where it 
serves as the principal receptor for hyaloronic acid and partici-
pates in a broad range of cellular activities, including lymphocyte 
activation, leukocyte trafficking, hematopoiesis, cell growth and 
survival, and tumor dissemination (163). Post-translational 
modifications along with extensive alternative splicing allow 
the formation of multiple protein isoforms, expressed in a 
tissue-specific manner (164, 165). The standard protein isoform 
of CD44 (CD44s or CD44H) is encoded by mRNA transcripts 
comprising exons 1–5 and 16–20 (“s1–s5 and s6–s10”). CD44s is 
ubiquitously expressed by mammalian cells and is the form most 
often displayed by hematopoietic-lineage cells. In addition to 
CD44s, non-hematopoietic cells characteristically display CD44 
variant isoforms contain peptide products of variant exons (exons 
“v2–v10”) in addition to the standard exon peptide products.

CD44 post-translational modifications include the addition 
of different glycan structures, namely glycosaminoglycans, and 
N- and O-glycan substitutions (166). While previous studies 
indicated that HCELL was only expressed by human hemat-
opoietic stem and progenitor cells (HSPCs) (167, 168), and some 
hematologic (167, 169) and solid malignancies (170), HCELL was 
recently reported to be expressed by classical human monocytes 
(123). Importantly, for human HSPCs, the sLex determinant is 
exclusively displayed on N-glycan lactosamines on CD44s, but 
classical monocytes express sLex on O-glycans of CD44s (123). 
Because of its ability to engage E- and L-selectin under relatively 
high fluid shear conditions (i.e., in excess of 20 dynes/cm2 shear 
stress), HCELL is considered the most potent L- and E-selectin 
ligand expressed on mammalian cells (167, 171).

CD43e
CD43, also known as sialophorin or leukosialin, is a cell surface 
glycoprotein expressed by nearly all hematopoietic cells and is 
involved in several important processes, including cell develop-
ment, activation, survival, and migration (172–176). Glycosylation 
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of CD43 molecules with either core 1 or core 2 O-glycan structures 
produces the ~115 and ~135 kDa glycoforms, respectively (177). 
Recently, we reported that human classical monocytes display 
E-selectin binding activity on CD43 (123). CD43 that displays 
sLex and binds E-selectin is known as “CD43E” and this protein 
harbors sLex on O-glycans (178).

glycosphingolipids
In contrast to results in mouse leukocytes, reports using human 
cells have suggested that sialofucosylated determinants displayed 
on lipid scaffolds can mediate adhesion to E-selectin under 
static and flow conditions. In native human leukocytes and in 
the myelocytic leukemia cell line HL-60, the glycolipid structures 
that display ability to bind to E-selectin consist of sialylated 
lactosylceramides decorated with internal fucosylated GlcNAc 
structures (myeloglycans) (86, 87, 179). It has been reported that 
the disruption of myeloglycan biosynthesis via knockdown of 
ceramide glucosyltransferase (UGCG) in HL-60 cells disturbed 
stable cell rolling and impaired transmigration across inflamed 
endothelial cells (180). Finally, human classical monocytes 
treated with a broadly active protease did not show a complete 
abrogation of sLex staining, suggesting that although the majority 
of sialofucosylated moieties required for E-selectin binding are 
preferentially expressed on proteins rather than lipids, a consid-
erable amount of sialofucosylated determinants are present on 
glycolipids (123).

PATHOPHYSiOLOgiCAL iMPORTANCe  
OF THe SeLeCTiNS

Due to its crucial role in the transmigration of specific myeloid 
populations to sites of inflammation, the selectin/selectin–ligand 
axis is involved in the development of many acute and chronic 
inflammatory conditions (181, 182). In fact, cutaneous inflam-
matory disorders, such as allergic contact dermatitis (183), 
atopic dermatitis (184–188), and psoriasis (183, 184, 189–191), 
are known to be promoted by the upregulation of selectins on 
dermal microvasculature. Specifically, P- and E-selectins are 
upregulated in skin lesions of cutaneous inflammatory patients, 
which enables inflammatory mononuclear phagocyte infiltra-
tion with subsequent release of soluble cytotoxic mediators, 
T  cell activation, and destruction of the dermal layer of skin  
(154, 192–194). Atherosclerosis is another chronic inflammatory 
disease in which the recruitment of monocytes into selectin-
expressing endothelial beds constitutes a key molecular event 
in the pathogenesis of the disease (195). Both E-and P-selectins 
are expressed on human arterial luminal endothelial cells of 
atherosclerotic plaques (195, 196), and mouse studies have 
shown that E-selectin and/or P-selectin deficiency substantially 
reduces the formation of atherosclerotic plaques, suggesting an 
overlapping function of these two selectins in the development 
of atherosclerotic lesions (197, 198). Murine classical monocytes 
(Ly6Chi) preferentially migrate into activated endothelium and 
infiltrate developing atheromas to become atherosclerotic 
macrophages, inflammatory DCs, or foam cells (139). Indeed, 
murine classical monocytes display high levels of PSGL-1 and 
higher binding affinity to E-/P-selectin expressing cells than do 

the non-classical patrolling monocytes, which might explain 
why they are preferentially recruited to sites of endothelial 
inflammation and thrombosis (138).

Inflammatory bowel disease (199–202), multiple sclerosis 
(203, 204), rheumatoid arthritis (205–207), and type 1 diabetes 
(208, 209) are other examples of inflammatory diseases in which 
upregulated E-/P-selectin expression in tissue microvasculature 
drives myeloid cell recruitment crucial for the development of 
the disease. Increased E-selectin expression and mononuclear 
phagocyte infiltration have been similarly observed in cases of 
transplantation rejection, including human renal (210, 211), 
lung (212–214), and cardiac (215–217) rejection and in acute 
graft versus host disease (218–221). Recruitment of inflam-
matory classical monocytes (222, 223) and pDCs (38, 41, 224) 
to tumor-cell-activated endothelium has also been reported 
to be dependent on E-selectin expression, which can lead to 
an inhibition of the tumor-specific immune defense response 
and induction of tolerance (225, 226). Some studies have also 
indicated that inflammatory monocytes license extravasation of 
tumor cells via the induction of E-selectin-dependent adhesive 
interactions (222).

THeRAPeUTiC STRATegieS TARgeTiNg 
THe SeLeCTiN/SeLeCTiN–LigAND AXiS

The critical role of selectins and their ligands in the pathogenesis 
of many inflammatory conditions makes them potential molecu-
lar targets for therapy and, therefore, several strategies have been 
developed to interfere with this biology (182, 227, 228). One 
strategy relies on the development of pan-selectin competitive 
inhibitors that inhibit leukocyte/endothelial cell interaction and, 
therefore, cell recruitment to affected inflammatory or metastatic 
tissues. One example is the molecule Bimosiamose (Encysive 
Pharmaceuticals), a sLex mimetic that showed clinical efficacy 
in both asthma and psoriasis (229, 230). Other examples of 
pan-selectin inhibitors include sLex-peptides (231), sLex-bearing 
liposomes (232) or heparin oligosaccharides (233, 234). Also, 
GMI-127 and GMI-1271, E-selectin antagonists developed by 
GlycoMimetics based on the bioactive conformation of sLex in 
the carbohydrate-binding domain of E-selectin, have been used 
in treatment of sickle cell crisis (ClinicalTrials.gov Identifier: 
NCT00911495) and as an adjuvant for chemotherapy of hema-
tological malignancies, including multiple myeloma and acute 
myeloid leukemia (NCT02811822, NCT02306291). In addition, 
an alternative approach involves the inhibition of the selectin 
ligand synthesis, either by interfering with the expression of key 
glycosyltransferases involved in sLex biosynthesis (235), or by 
using fluorinated analogs of Sia and/or Fuc residues (232, 236) 
that inhibit sLex synthesis. Finally, competing antibodies that bind 
to vascular E- and P-selectins and/or to selectin ligands expressed 
on the leukocyte cell surface constitute alternative methods 
that have been explored to prevent inflammatory exacerbation  
(182, 228). Indeed, a soluble form of PSGL-1 linked to the Fc 
portion of human IgG1 (PSGL-1-Ig) has been shown to inhibit 
leukocyte rolling in several disease models in mice (237–240).

On the other hand, the disruption of the selectin–leukocyte 
interaction has been reported to trigger severe immune-deficiency 
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by disruption of immunosurveillance (241). Leukocyte adhesion 
deficiency Type II is a rare genetic disorder characterized by defec-
tive neutrophil and monocyte migration caused by a mutation in 
a GDP-Fuc transporter gene (242). This mutation leads to the 
formation of glycans that lack fucosylation, resulting in impaired 
leukocyte rolling and consequent leukocytosis and recurrent 
infections (242, 243). To overcome deficient cellular rolling, our 
lab developed a FT-driven sLex biosynthesis approach to enforce 
cell surface expression of E-selectin ligands while preserving cell 
viability, called glycosyltransferase-programmed stereosubstitu-
tion (GPS) (244, 245). This platform uses optimized reaction 
conditions, which enables the efficient α(1,3)-fucosylation of 
underfucosylatated sialylated type 2 lactosamine acceptors 
(Siaα2-3Galβ1-4GlcNAc), via a soluble α(1,3) FT, installing 
expression of sLex (Siaα2-3Galβ1-4GlcNAcα1-3Fuc) (3). GPS has 
been used to improve the recruitment of a variety of human and 
mouse cells into E-selectin-bearing endothelial beds, driving cell 
migration into bone marrow and inflammatory sites (123, 178, 
208, 244, 246–248).

CONCLUDiNg ReMARKS

Specific migratory routes and distinct localization in steady and 
inflammatory conditions of the different human MPS subsets 
suggests that they play differential roles in immunity. These 
cells are operational in multiple beneficial processes, including 
immediate antimicrobial host defense, activation of the adaptive 
immune system, and tissue healing processes. However, they 
may also contribute to the pathobiology of several inflamma-
tory conditions. A better understanding of the molecular basis 

of glycosylation-dependent creation of E-selectin ligands could 
yield the development of novel therapeutic approaches for 
inflammatory diseases, or, alternatively, could yield enhanced 
ability to infiltrate sites where immunity is needed (e.g., tumors 
or infection). To our knowledge, only a limited number of studies 
have analyzed the functional and structural biology of the full 
spectrum of E-selectin ligands expressed by different circulating 
human MPS subsets. Future work will be required to address this 
issue and to elucidate how custom-modified expression of these 
homing receptors can be achieved to preferentially influence the 
specific migratory routes of the different subsets of circulating 
MPS cells.
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