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ABSTRACT

Motivation: Alignment-based methods for sequence analysis have

various limitations if large datasets are to be analysed. Therefore,

alignment-free approaches have become popular in recent years.

One of the best known alignment-free methods is the average

common substring approach that defines a distance measure on

sequences based on the average length of longest common

words between them. Herein, we generalize this approach by con-

sidering longest common substrings with k mismatches. We present

a greedy heuristic to approximate the length of such k-mismatch

substrings, and we describe kmacs, an efficient implementation of

this idea based on generalized enhanced suffix arrays.

Results: To evaluate the performance of our approach, we applied

it to phylogeny reconstruction using a large number of DNA and

protein sequence sets. In most cases, phylogenetic trees calculated

with kmacs were more accurate than trees produced with estab-

lished alignment-free methods that are based on exact word

matches. Especially on protein sequences, our method seems to

be superior. On simulated protein families, kmacs even outper-

formed a classical approach to phylogeny reconstruction using mul-

tiple alignment and maximum likelihood.

Availability and implementation: kmacs is implemented in C++,

and the source code is freely available at http://kmacs.gobics.de/

Contact: chris.leimeister@stud.uni-goettingen.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Comparative sequence analysis traditionally relies on pairwise

or multiple sequence alignment. With the huge datasets that

are produced by next-generation sequencing technologies, how-

ever, today’s alignment algorithms reach their limits. Thus,

with the growing number of completely or partially sequenced

genomes, there is an urgent demand for faster sequence-com-

parison methods. Over the past two decades, a wide variety of

alignment-free approaches were proposed (Vinga and Almeida,

2003). Although aligning two sequences takes time propor-

tional to the product of their lengths, most alignment-free

methods run in linear time. They are, therefore, increasingly

used for genome-based phylogeny reconstruction and for

large-scale protein sequence comparison. It is known, however,

that alignment-free methods are generally less accurate than

alignment-based approaches.
Most alignment-free methods calculate the relative frequen-

cies of words of a fixed length k, also called k-mers, in the

input sequences. Other methods are based on variable-length

matches; they have the advantage that it is not necessary to

specify a fixed word length (Comin and Verzotto, 2012; Didier

et al., 2012). These programs achieve usually better results

than approaches relying on a fixed word length. However,

algorithms using variable word lengths are typically more com-

plex and require more sophisticated data structures than meth-

ods relying on fixed word lengths.
A well-known approach that uses word matches of variable

length is the average common substring (ACS) method (Ulitsky

et al., 2006), which calculates for each position i in one se-

quence the length of the longest substring starting at i and

matching some substring of a second sequence. As a further

development of this idea, the shortest unique substring (shu-

string) approach has been proposed by Haubold et al.

(2005). These authors also derived an estimator for the

number of substitutions per site between two unaligned se-

quences based on the average shustring length; they imple-

mented this approach in the program Kr (Haubold et al.,

2009). ACS and shustrings can be calculated efficiently using

suffix trees (Weiner, 1973).

As the aforementioned methods, most approaches for

alignment-free phylogeny reconstruction are based on exact

word matches. Recently, we suggested to use spaced-k-mers

defined by pre-defined patterns of match and don’t care sym-

bols, instead of contiguous k-mers (Boden et al., 2013;

Leimeister et al., 2014). The aim of this study is to apply

the idea of inexact matches to word matches of varying

lengths. We generalize the ACS approach by considering, for

each position i in one sequence, the longest substring starting

at i and matching some substring in the second sequence with

k mismatches. We propose an efficient heuristic to approxi-

mate the lengths of these substrings, and we describe kmacs,

an implementation of this approach based on generalized

enhanced suffix arrays. A web server for our program is

described in Horwege et al. (2014).*To whom correspondence should be addressed.
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2 APPROACH

2.1 The ACS approach and k-mismatch substrings

As usual, for a sequence S over an alphabet S, S[i] is the i-th

element of S, by jSj we denote the length of S and S½i::j� is the
(contiguous) substring of S from i to j. In particular, S½i::jSj� is
the i-th suffix of S. For two sequences S1 and S2, the ACS ap-

proach determines for every position i in S1 the length s1ðiÞ of the

longest substring of S1 starting at position i and exactly matching

some substring in S2. The lengths s1ðiÞ are averaged and normal-

ized to define a similarity measure

LðS1;S2Þ=
1

jS1j
�
XjS1j

i=1

s1ðiÞ ð1Þ

which is turned into a (non-symmetric) distance measure by

defining

dðS1;S2Þ=
logðjS2jÞ

LðS1;S2Þ
�

logðjS1jÞ

LðS1;S1Þ
ð2Þ

To obtain a symmetric distance, the distance between S1 and
S2 is then defined by Ulitsky et al. (2006) as

dACSðS1;S2Þ=
dðS1;S2Þ+dðS2;S1Þ

2
ð3Þ

In this article, we generalize this distance measure by using
substring matches with k mismatches instead of exact matches.

That is, instead of using the maximum substring lengths s1ðiÞ, we

define sk1ðiÞ as the length of the longest substring of S1 starting at

position i and matching some substring of S2 with up to k mis-

matches, minus k. (We subtract k from the length of this string,

counting only the matching positions). sk2ðiÞ is defined accord-

ingly. We then define a distance measure as above, but

with sqðiÞ replaced by skqðiÞ. In the special case where k=0,
we have s0qðiÞ=sqðiÞ, so in this case our distance is exactly the

distance dACS.

2.2 Approximating the length of k-mismatch substrings

For a pair of sequences, the exact values skqðiÞ can be calculated in

Oðk � n2Þ time using suffix trees or similar data structures where

n is the maximal length of the sequences. As we want to compare

sequences in linear time, however, we propose a heuristic to ap-
proximate these values. To do so, we first calculate for each

position i in S1 the length s1ðiÞ of the longest common substring

starting at i matching a substring of S2, as is done in ACS. Let j

be the start of this matching substring in S2; the character

S1½i+sðiÞ� must therefore differ from S2½j+sðiÞ�. We then

extend this match without gaps in S1 from position i+sðiÞ+1

and in S2 from j+sðiÞ+1, until the next mismatch occurs. This is

repeated until the k+1-th mismatch or the end of one of the two
sequences is reached.

In the example below, for position i=4 in S1 and with k=2

mismatches, our approach would return the following
k-mismatch common substring, starting at position j=2 in S2:

To obtain this k-mismatch common substring, our program

would first determine the longest common substring for position

i=4 in S1 that exactly matches a substring in S2. We find such a

match at position j=2 in S2 with the length s1ð4Þ=2. Then this

match is extended without gaps until the third mismatch is

reached. The length of this 2-mismatch substring is 7, so we

have s21ð4Þ=5 (in the definition of skqðiÞ, we count only the match-

ing positions).
It should be mentioned that, for a position i in S1, the corres-

ponding position j in S2 of the longest exact match to a substring

starting at i may not be unique. Consider, e.g. position i=2 in

the first sequence of the above example:

Here, the substring AT starting at position 2 in S1 is the long-

est substring starting at this position and matching a substring

of S2—but this substring occurs at positions 1, 5 and 10 in S2.

In such a case, we calculate all k-mismatch extensions of these

occurrences as described above, and we define sk1ðiÞ as length of

the maximal possible extension minus k.
The above heuristic reduces the complexity of finding the kmis-

match maximal substring lengths from Oðk � n2Þ to Oðk � n � zÞ,

where z is the average number of maximal matches to a substring

in S2 starting at a position i in S1. In principle, this complexity

could be achieved by using suffix trees (Weiner, 1973) as the

underlying data structure. Here, one would build a generalized

suffix tree for the sequences in OðjS1j+jS2jÞ time, e.g. using

Ukkonen’s algorithm (Ukkonen, 1995). To determine the longest

substring starting at i in S1 and also occurring in S2, one needs to

find the lowest node v in the suffix tree that is above leaf i and also

above some leaf that belongs to S2. The length s1ðiÞ of the longest

common substring starting at i is then the string depth of the node

v, that is, the length of the edge labels on the path from the root to

v. Moreover, the leaves below v appertaining to S2 exactly corres-

pond to the positions of this longest exact match in S2.
Next, we want to extend the longest exact matches that we

have found by this procedure until the k+1-th mismatch is

found. Thus, we need be able to find the longest exact match

between two sequences starting at two given positions i and j (the

positions after a mismatch, in our case). In a suffix-tree ap-

proach, this could be accomplished by lowest common ancestor

(LCA) queries. Similar to the aforementioned approach, we

would have to look up the lowest node v that is above both

leafs i and j; the string depth of v is then the length of the longest

exact match starting at i and j, respectively. LCA queries can be

carried out for any i and j in constant time after a linear-time

preprocessing step (Harel and Tarjan, 1984), resulting in k con-

stant-time LCA queries for the full k-mismatch extension of an

exact longest match.

3 IMPLEMENTATION

Abouelhoda et al. (2004) have shown that every algorithm that

uses suffix-trees can be replaced by an algorithm using enhanced

suffix arrays that has the same complexity. Here, an enhanced

suffix array is defined as a data structure ‘consisting of the suffix

array and additional tables’. Both, suffix trees and enhanced

suffix arrays, can be calculated in linear time and space, but

suffix arrays require substantially less memory per input charac-

ter than suffix trees do (Manber and Myers, 1990). In our
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implementation, we therefore used enhanced suffix arrays instead

of suffix trees, making use of recent improvements of linear-time

suffix array construction algorithms.
A suffix array SA of a string S=S½1� . . .S½n� is a permutation

of the indices 1:::n according to the lexicographical ordering of

the corresponding suffices. That is, we have SA½i�=j if the j-th

suffix of S is at the i-th position in the lexicographical ordering of

all suffices of S. In addition to the SA, we need the so-called

longest common prefix (LCP) array for S. Here, the entry LCP[i]

stores the length of the LCP of the SA[i]-th suffix and its prede-

cessor in SA, the SA½i� 1�-th suffix. The SA of a sequence S

together with the corresponding LCP array is called, in this con-

text, the enhanced suffix array of S. To calculate enhanced suffix

arrays in linear time, we used a program described by Fischer

(2011), which is available at http://algo2.iti.kit.edu/english/1828.

php. The underlying algorithm is based on sais-lite byYuta Mori,

a fast implementation of induced sorting (Nong et al., 2009).

Suffix arrays provide an efficient solution to our longest k-mis-

match substring problem.
For a single sequence S and a position SA[i] in S, the enhanced

suffix array of S can be used to find the length of the longest

substring in S starting at a different position in S and matching a

substring starting at SA[i]. It is easy to see that this substring

must be the LCP of the SA[i]-th suffix with one of its neighbours

in SA, i.e. either with the SA½i+1�-th or the SA½i� 1�-th suffix,

whichever is longer. With an enhanced suffix array, the length of

this substring is given as the maximum of the values LCP[i] and

LCP½i+1� and can therefore be looked up in constant time. The

position where this second substring starts is then either

SA½i� 1� or SA½i+1�—or both of these positions—depending

on where the maximum is reached.
If matches between two sequences are to be found, the situ-

ation is slightly more complicated. For a position in sequence S1,

we want to find a position in S2 such that the common substring

starting at these two positions is maximal, and vice versa. To

solve this problem, we build the generalized enhanced suffix array

of our sequences, i.e. the enhanced suffix array of the concate-

nated sequence S :=S1$S2 where $ is a special character not

contained the alphabet S; see also Babenko and Starikovskaya

(2008) for a related approach. Thus, each suffix from S1 or S2 is

represented in lexicographical order by an entry in SA. Figure 1

shows the enhanced suffix array for two sequences.
To find the length of the longest substring starting at SA[i] in

one sequence, matching a substring of the other sequence, and its

occurrences there, we need to look up the largest integer p1ðiÞ

with p1ðiÞ5i, such that SA½p1ðiÞ� belongs to the other sequence.

Correspondingly, we need the smallest integer p2ðiÞ with p2ðiÞ4i

with SA½p2ðiÞ� belonging to the other sequence. The length of this

common substring is then given as the minimum of all LCP

values between p1ðiÞ+1 and i or the minimum between the

LCP values between i+1 and p2ðiÞ—whichever minimum is

larger. Formally, the length of the longest substring starting at

a position SA[i] and matching a substring of the respective other

sequence is given as follows:

sðSA½i�Þ=maxð min
p1ðiÞ5x�i

LCP½x�; min
i5y�p2ðiÞ

LCP½y�Þ ð4Þ

with p1 and p2 defined as above.

The position of this longest substring in S is then SA½p1ðiÞ� or

SA½p2ðiÞ� (or both), depending on where the maximum in

Equation (4) is reached. All positions in this formula refer to

the concatenated sequence S, but it is trivial to retrieve the pos-

itions in the original sequences S1 and S2 from these values by

subtracting jS1j+1 where necessary.
As an example, consider Figure 1. For i=6, we want to find

the longest common substring starting at SA½6�=10 (marked by

an arrow) that exactly matches a substring starting at some pos-

ition in the other sequence. Position SA½6�=10 in the concate-

nated sequence S corresponds to a position in sequence S2, so we

have p1ð6Þ=4, as 4 is the largest integer smaller than 6 such that

SA½4� belongs to the other sequence, i.e. to S1. Similarly, we

obtain p2ð6Þ=8. According to Equation (4), we get the following:

sðSA½6�Þ=max min f5; 3g;min f1; 0gf g=max f3; 0g=3:

Position 10 in S corresponds to position 3 in the original se-

quence S2, so, as a result, we obtain s2ð3Þ=3, i.e. the longest

substring starting at position 3 in S2 matching a substring

from S1 has length 3 (the substring itself is ‘ana’).

Algorithm 1 Calculation of Equation (4)

Require: SA {generalized suffix array for S1 and S2 of length n}

Require: LCP {corresponding longest common prefix array}

Ensure: s {stores the results of Equation (4)}

min 0

for i=2 to n – 1 do

if SA½i� and SA½i+1� belong to the same sequence then

if LCP½i+1�5min then

min LCP½i+1�

end if

s½i+1�  min

else

Fig. 1. Generalized SA and LCP array for the strings S1=banana and

S2=ananas, concatenated by the symbol $. Suffices of S1$S2 starting in

S1 are shown in orange, suffices starting in S2 are in blue
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min LCP½i+1�

s½i+1�  LCP½i+1�

end if

end for

min 0

for i= n to 2 do

if SA½i� and SA½i+1� belong to the same sequence then

if LCP½i�5min then

min LCP½i�

end if

s½i� 1�  maxðmin; s½i� 1�Þ

else

min LCP½i�

s½i� 1�  maxðmin; s½i� 1�Þ

end if

end for

All values s(i) can be calculated for the entire concatenated

string S in linear time using Algorithm 1. Here, the first loop

computes min p15x�iLCP½x� for all indices i and stores them as

s[i]. Then the second loop calculates min i5y�p2LCP½y� and up-

dates s[i] if the result is greater than the actual value of s[i]. This

way, algorithm 1 applies Equation (4) to all indices i and stores

the corresponding values s[i].
Finally, for our heuristic we need to find for an index i all

positions belonging to the respective other sequence, where a

match of length s(i) occurs. This can be achieved by a simple

extension of Algorithm 1. Without loss of generality, we assume

that the first minimum in Equation (4) is strictly larger than the

second minimum, so p1ðiÞ is a position where a maximal match

to the other sequence occurs (as was the case in our small ex-

ample above). To find possible additional matching positions, we

consider all indices p � p1ðiÞ in descending order, as long as one

has the following inequality:

LCP½p+1� � min
p1ðiÞ5x�i

LCP½x�

For all such p that belong to the other sequence, the positions

SA[p] are occurrences of longest substrings matching a substring

starting at i. In our example, we find one further position p=3,

so SA½3�=4 is an additional occurrence. If the maximum in (4) is

achieved by the second term, one proceeds accordingly.
Next, the second step in our approach involves finding the

length of the longest common substring starting at pre-defined

positions in S1 and S2, respectively. Using the enhanced suffix

array of a sequence S, the length of the longest substring starting

at positions SA[i] and SA[j] (with SA½i�5 SA[j]) is given as the

minimum over the values LCP[p], i5p � j. There is an approach

similar to LCA queries to obtain this value known as range min-

imum queries (RMQ). A RMQ returns the index of an array A

that stores the smallest element between two specified indices l

and r, denoted as RMQAðl; rÞ.
Several algorithms are available that can solve RMQ in con-

stant time, after a linear preprocessing step, e.g. Fischer and

Heun (2007). According to Fischer and Heun (2006), the longest

common substring starting at i and j can be calculated as

LCP½RMQLCPðSA
�1½i�+1;SA�1½j�Þ� where SA�1 is the inverse

suffix array. As a result, the same complexity as for suffix trees

can be achieved by using enhanced suffix arrays. In our imple-

mentation, however, we extend the substrings by matching single

characters because in our test runs this ‘naive’ approach was
faster than the RMQ implementation that we tested.
Nevertheless, our downloadable program has an option for

using the RMQ algorithm so the user can compare these two
approaches.

4 BENCHMARKING

4.1 Benchmark sequences

To evaluate kmacs and to compare it with other methods of
sequence comparison, we applied these methods phylogeny re-
construction. We used a large number of DNA and protein se-

quence sets for which reliable phylogenetic trees are available,
and we measured how similar the constructed trees are to the
respective reference trees. The following sequence sets were used

in our study:
For eukaryotic DNA comparison, we used a set of 27 primate

mitochondrial genomes that were previously used by Haubold
et al. (2009) as benchmark for alignment-free methods. These
sequences have a total length of 446kb. A benchmark tree that

has been constructed based on a multiple alignment.
As prokaryotic genomes, we used a set of 32 Roseobacter gen-

omes, which were previously analysed by Newton et al. (2010).

They constructed a phylogenetic tree for these sequences based
on alignments of 70 universal single-copy genes that we used as

reference tree in our study. The total size of this sequence set is
135.9 mb.
As benchmark proteins, we used 218 sequence sets contained

in the BAliBASE (v3.0) database (Thompson et al., 2005).
To obtain reference trees, we applied Maximum Likelihood
(Felsenstein, 1981), implemented in the program proml from

PHYLIP to the reference multiple alignments in BAliBASE. As
these reference alignments are considered to be reliable, the

resulting trees should also be reliable.
In addition to these real-world sequences, we used the pro-

gram Rose (Stoye et al., 1998) to generate simulated DNA and

protein families. Rose generates sets of related sequences based
on a probabilistic model of substitutions and insertions/deletions
for which the parameters can be adjusted by the user. These

sequences are created along a randomly generated tree, starting
from one common ancestral sequence at the root of the tree. This

way, the ‘evolution’ of the generated sequences is logged, so a
reference tree is generated alongside the sequences. We used Rose
with default parameters, except for the parameter relatedness,

which defines the average evolutionary distance between the gen-
erated sequences, measured in PAM units. We generated 20
DNA sequence sets, each of which contains 50 sequences with

an average length of 16 000 nt using a relatedness value of 70.
Furthermore, we generated 20 protein sequence sets, each con-

taining 125 sequences with an average length of 300 amino acids.
Here, we set the relatedness to 480.

4.2 Compared methods

We compared our new method with seven state-of-the-art align-

ment-free methods, namely ACS (Ulitsky et al., 2006), Kr v2.0.2
(Haubold et al., 2009), FFP (Sims et al., 2009), spaced words
(Leimeister et al., 2014), CVTree (Qi et al., 2004), the underlying

approach (UA) (Comin and Verzotto, 2012) as well as to a
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generic k-mer-frequency approach. As an eighth method, we ran

Clustal W (Thompson et al., 1994) on those sequence sets where

this was possible and meaningful. For ACS and the k-mer ap-

proach, we used our own implementations, namely kmacs with

k=0 and our spaced-words approach without don’t care pos-

itions in the underlying patterns, respectively.
FFP, Kr and CVTree return pairwise distances between the

input sequences. For ACS, we calculated distances as defined

in (3), and for spaced words and the k-mer approach we used

the Jensen–Shannon divergence (Lin, 1991), applied to (spaced)-

word frequency vectors as explained in Leimeister et al. (2014).

For each of the five groups of benchmark data, we used the word

length k for which the k-mer approach produced the best results,

i.e. trees with minimal average Robinson–Foulds (RF) distances to

the reference trees. For spaced words, we used the same value for

k, even though better results might be possible with different

values. Accordingly, on every group of benchmark data, we

tested FFP, CVTree and UA with different parameter values

and used those which produced the best results on this group.
We then constructed phylogenetic trees by applying Neighbor

joining (Saitou and Nei, 1987) to the distance matrices obtained

with the different alignment-free methods. Finally, we calculated

phylogenetic trees for all sequence sets by applying Maximum

Likelihood (Felsenstein, 1981) to the Clustal W multiple align-

ments. All resulting tree topologies were compared with the

topologies of the respective reference trees using the RF metric

(Robinson and Foulds, 1981). For Neighbor joining and to cal-

culate the RF distances, we used the programs neighbor and

treedist contained in the PHYLIP package (Felsenstein, 1989).

5 RESULTS AND DISCUSSION

Figures 2 and 4–7 summarize our test results on the five groups

of benchmark sequence sets that we used. The plots show the

average RF distances between the produced trees and the corres-

ponding reference trees. For kmacs, results are shown for various

values of k. For FFP, CVTree, UA and the k-mer method, we

also used a range of parameter values, but for each of these

methods, the figures show only the best results on the respective

group of benchmark sequences. Thus, for a fair comparison,

these methods should be compared with the best results of

kmacs in the corresponding figure. On the other hand, Kr,

ACS and Clustal could be used with default parameters, which

is clearly an advantage of these methods.

Figure 2 contains the test results on the primate mitochondrial

genomes. The best method on this dataset was our previously

developed spaced-words approach; the tree topology produced by

this method precisely coincides with the topology of the reference

tree, i.e. the RF distance is zero. The second best methods were

FFP and kmacs with k=3, 4 and 64 � k � 117. ACS, CVTree,

UA, kmacs with other values for k and Kr performed worse on

these data. As an example, Figure 3 compares the tree calculated

with kmacs (k=70) with the alignment-based reference tree

from Haubold et al. (2009). The tree topology calculated by

A

B

Fig. 3. Midpoint-rooted trees of 27 primate mitochondrial genomes.

(A) is the alignment-based reference tree obtained from Haubold et al.

(2009) and (B) is based on kmacs with k=70. Red branches represent

differences to the reference tree topology. Except for these three species,

the topologies of the two trees coincide, resulting in a RF distance of 2

between our tree and the reference tree

Fig. 2. Performance of alignment-free methods on a set of 27 primate

mitochondrial genomes. RF distances between constructed trees and a

reference tree are shown. The tree calculated by kmacs with k=70 is

shown in Figure 3, together with the reference tree
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kmacs almost coincides with the topology of the reference tree;

the RF distance between these trees is 2.
On the Roseobacter genomes, the best methods were kmacs

with k=4 and 6, FFP and CVTree as shown in Figure 4.

Spaced words and the generic k-mer approach performed slightly

worse. None of the tested methods was able to exactly recon-

struct the topology of the reference tree. UA is missing in this

comparison, as this program is too slow to be run on full bac-

terial genomes in reasonable time. For our simulated DNA

sequence sets, the results were similar as for the primate mito-

chondrial genomes; see Figure 5. Here too, spaced words was the

best alignment-free method, followed by kmacs. This time kmacs

outperformed the established alignment-free approaches for all

values of k that we tested. On our simulated DNA sequences, we

could also run a classical approach to phylogeny reconstruction

using Clustal W and Maximum Likelihood. Not surprisingly, this

slow and accurate method performed better than all alignment-

free approaches.
Figure 6 shows the results for the BAliBASE protein se-

quences. Spaced words and kmacs again produced better results

than the existing alignment-free methods that we evaluated. This

time, there was a large range of values for k where kmacs per-

formed similar or even slightly better than spaced words, and

both methods outperformed the other alignment-free methods

that we tested. As with the previous dataset, the classical

approach based on multiple sequence alignment performed

best; this time the difference between alignment-based and

alignment-free methods was larger. This may be because of the

fact that multiple-alignment programs are often tuned to

perform well on BAliBASE, the main database to evaluate mul-

tiple-alignment methods.
Finally, the results on our simulated protein sequences are

shown in Figure 7. As in most previous examples, spaced

words and kmacs outperformed other alignment-free approaches

and, as on BAliBASE, kmacs was slightly better than spaced

words if k was sufficiently large. Surprisingly, on these bench-

mark sequences spaced words and kmacs even outperformed

Clustal W and Maximum Likelihood, although not dramatically.
So far, we evaluated alignment-free and alignment-based

methods indirectly, by applying them to phylogeny reconstruc-

tion and comparing the resulting trees with trusted reference

trees using the RF metric. This is a common procedure to evalu-

ate alignment-free methods. RF distances to reference trees are

only a rough measure of accuracy, though, as they are based on

tree topologies alone and do not take branch lengths into

account. Furthermore, the constructed trees depend not only

on the underlying methods for sequence comparison but also

on the methods used for tree reconstruction. A more direct

and accurate way of comparing alignment-free methods is to

directly compare the distance values that they calculate. This

can be done, for example, by plotting the distances produced

for simulated sequences against their real evolutionary distances

(Haubold et al., 2009). Ideally, this should be a linear relation.

Figure 8 shows such plots for the algorithms that we compared

in our study.
Tables 1 and 2 summarize the run times of the different

methods that we tested. When used with moderate values of k,

kmacs is faster than spaced words run with a set of 100 different

Fig. 6. Performance of different methods on 218 protein sequence sets

from BAliBASE. Average RF distances to reference trees, calculated

based on BAliBASE reference alignments, are shown

Fig. 5. Performance of alignment-based and alignment-free methods on

20 sets of 50 simulated DNA sequences of length 16 000 each. Average

RF distances to the respective reference trees are shown

Fig. 7. Performance of different methods on 20 sets of 125 simulated

protein sequences each

Fig. 4. Performance of alignment-free methods on a set of 32Roseobacter

genome sequences. RF distances to the reference tree are shown
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patterns. Kr was more than one order of magnitude faster than

kmacs and spaced words, respectively, although UA was the slow-

est method. The fastest method was our implementation of the

generic word-frequency approach, followed by Kr and CVTree.

In general, spaced words used with the single-pattern option is

only slightly slower than the k-mer approach. As shown in our

companion paper, however, spaced words produces considerably

better results when used with multiple patterns (Leimeister et al.,

2014). We therefore applied only the multiple-pattern version in

this study.

The relatively long runtime of UA is partially because of the

fact that this program is written in Java, while all other programs

that we tested are written in C++. As expected, the multiple-

alignment approaches Clustal W and Clustal � (Sievers et al.,

2011) were far slower than the alignment-free methods; the

difference in speed between alignment-based and alignment-free

methods was between three and four orders of magnitude.

All test runs were done on a Intel Core i7 4820k, which we over-

clocked to 4.5Ghz.

As explained in Section 2.2, kmacs searches for each pos-

ition i in one sequence the maximum substring starting at i

that matches a substring in the second sequence. There can be

more than one such maximal match, and all these matches are

extended to k-mismatch common substrings. Thus, the runtime

of kmacs depends on z, the average number of such maximal

substring matches for a given position i. In principle, z can be

large and the worst-case time complexity of our algorithm is

therefore high. In practice, however, z is small, independent of

sequence length and substitution probability. Figure 9 shows

values of z for different sequence lengths and mutation

frequencies.

Finally, we wanted to know how accurately our greedy

heuristic approximates the exact maximal k-mismatch sub-

string length. Figure 10 compares the average maximal k-mis-

match substring length for varying substitution probabilities

(a) as estimated with our heuristic and (b) calculated with a

slow and exact algorithm. The figure shows that our heuristic

is clearly suboptimal. But the goal of our project was not so

much to precisely estimate the maximal k-mismatch substring

lengths, but rather to define a distance measure on sequences

that can be efficiently calculated and that can be used to

obtain biologically meaningful results. Therefore, we think

that the discrepancies between the optimal substring lengths

and the values estimated by our heuristic are acceptable.

Figure 10 suggests, however, that better estimates of the k-

mismatch common substring lengths might improve the sensi-

tivity of kmacs on divergent sequence sets because the curves

for the exact solutions converge at higher substitution frequen-

cies. In fact, on the mitochondrial genomes that we used as

benchmark data, an exact algorithm led to better phylogenetic

trees than our greedy heuristic (Supplementary Material).

Therefore, it may be worthwhile to develop heuristics that

approximate the maximal k-mismatch substring lengths more

accurately.

Table 1. Program runtime for different methods on a set of 50 simulated

DNA sequences of length 16 000 nt each

Method Runtime (s)

Clustal W 1817

Clustal � 1039

8-mer 0.3

FFP, l=23 123.3

spaced words, 100 patterns, k=8 27.6

ACS 2.8

Kr 0.9

CVTree 0.5

UA 572

kmacs, k=1 4.2

kmacs, k=10 7.6

kmacs, k=20 4.2

kmacs, k=50 21.4

Note: Spaced words was run with 100 random patterns of varying length as

described by Leimeister et al. (2014). For Clustal W and Clustal �, the time for

calculating a multiple alignment is shown; for the six alignment-free methods the

time for calculating pairwise distances is shown.

Fig. 8. Distances calculated by different alignment-free methods as a

function of substitutions per site for pairs of simulated DNA sequences.

Distances were normalized such that they are equal for 0.75 substitutions

per site

Table 2. Program run time for different methods on a set of 32 genome

sequences of total length 135 mb from various Roseobacter species

Method Runtime (s)

17-mer 34.9

FFP, l=24 9022

Spaced words, 100 patterns, k=17 3617

ACS 531

Kr 206

CVTree 84

kmacs, k=1 784

kmacs, k=10 1302

kmacs, k=50 3158

kmacs, k=100 5433

Note: Parameters for spaced words as in Table 1.
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6 CONCLUSION

Most alignment-free approaches to sequence analysis are based

on exact word matches. In this article, we presented a novel

alignment-free algorithm that takes mismatches into account.

This is similar in spirit to the spaced-words approach that we

previously proposed (Leimeister et al., 2014). But while spaced

words uses word pairs of a fixed length with possible mismatches

at pre-defined positions, kmacs considers maximal substring

matches with k mismatches at arbitrary positions. In the

spaced-words approach, the number of match positions in the

underlying patterns is a critical parameter for the performance

of the method. In contrast, in kmacs, there seems to be a fairly

large range of values for k that lead to high-quality results, as

shown by our test results. kmacs seems therefore less sensitive to

user-defined parameters.
The implementation of our approach using generalized

enhanced suffix arrays enables us to analyse large sequence sets

efficiently. Still, the program Kr is roughly one order of magni-

tude faster than kmacs. One reason for this is that Kr uses one

single generalized suffix tree representing all input sequences,

which can be calculated in time proportional to the number of

sequences (Domazet-Lo�so and Haubold, 2009). In contrast,

kmacs calculates one generalized enhanced suffix array for each
pair of sequences, so its run time is quadratic in the number of
sequences. On the other hand, calculating suffix arrays for two

sequences at a time is less memory consuming, as one does not
need to keep the suffix array for all input sequences simultan-
eously in main memory. Thus, our approach can be applied to

larger datasets than Kr.
The two approaches that we developed, kmacs and spaced

words, are slower than the corresponding approaches based on

exact matches, ACS and the generic k-mer approach. Our new
approaches, however, produce significantly better results than
those established methods. Our test results suggest that spaced

words performs slightly better than kmacs on genomic sequences,
whereas on protein sequences, kmacs is superior.
In our program evaluation, we used DNA sequence sets with

large evolutionary distances. On these sequences, our new align-
ment-free methods performed better than established methods
that rely on exact word matches. Algorithms using exact

matches, on the other hand, seem to work better on smaller
evolutionary distances. Kr, for example, performs best on evolu-
tionary distances of up to 0.6 substitutions per site (Haubold

et al., 2009). Similarly, we observed that on closely related
DNA sequences, kmacs produces sometimes best results with
k=0, i.e. without mismatches (unpublished results). It seems

therefore best to apply kmacs to distantly related sequence sets,
while methods such as Kr and ACS may be preferred on evolu-
tionarily more closely related sequences.

In biological sequences, substitutions are more frequent than
insertions and deletions. Consequently, exact matches between
local homologies can usually be extended until the first substitu-

tion is reached. The average length of longest common substrings
and of shortest unique substrings, respectively, can therefore be
used to estimate substitution probabilities (Haubold et al., 2009).

This is similar for kmacs as long as k is small enough. In this
case, all k mismatches are likely to be used up in a k-mismatch
common substring extension before the first indel occurs. Thus,

the average length of the longest k-mismatch common substrings
depends on the frequency of mismatches and could be used to
estimate substitution probabilities, just as in Kr.
In contrast, if k is sufficiently large, substring matches between

local homologies are essentially extended until the first indel
occurs. From this point on, the mismatch frequency is high

and the remaining mismatches will be used up quickly. So in
this situation, the average k-mismatch substring length depends
on the frequency of indels rather than on the frequency of sub-

stitutions. This may explain why ACS and Kr work well on
closely related sequences, while kmacs is superior on distantly
related sequences where the frequency of indels may be a

better measure for evolutionary distances than the frequency of
mismatches.
In our study, we used alignment-free methods to reconstruct

phylogenetic trees and evaluated the quality of these trees. But

phylogeny reconstruction is only one important application of
sequence comparison. Clustering, classification and remote-
homology detection are other fundamental challenges in DNA

and protein sequence analysis. With the rapidly growing size of
sequence databases, alignment-free methods have become indis-
pensable for these tasks (Comin and Verzotto, 2012; Hauser

et al., 2013; Lingner and Meinicke, 2006). Given the speed of

Fig. 10. Average common k-mismatch substring lengths depending on

the substitution frequency in simulated DNA sequences, estimated with

our greedy heuristic (lower curve) and calculated with an exact algorithm

(upper curve) for various values of k

Fig. 9. Average number z of maximal exact matches starting at a position

i in one sequence to a substring in a second sequence. We used simulated

DNA sequences with different lengths and substitution frequencies
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kmacs and the quality of the phylogenetic trees that we could
produce with it, our approach should be useful not only for fast
phylogeny reconstruction, but also for other tasks in compara-
tive sequence analysis.
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