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Human immunodeficiency virus type 1 (HIV) infection substantially increases the risk of developing tuberculosis. There is exten-
sive depletion of Mycobacterium tuberculosis–specific CD4+ T cells in blood during early HIV infection, but little is known about 
responses in the lungs at this stage. Given that mucosal organs are a principal target for HIV-mediated CD4+ T-cell destruction, we 
investigated M. tuberculosis–specific responses in bronchoalveolar lavage (BAL) from persons with latent M. tuberculosis infection 
and untreated HIV coinfection with preserved CD4+ T-cell counts. M. tuberculosis–specific CD4+ T-cell cytokine (interferon γ, 
tumor necrosis factor α, and interleukin 2) responses were discordant in frequency and function between BAL and blood. Responses 
in BAL were 15-fold lower in HIV-infected persons as compared to uninfected persons (P = .048), whereas blood responses were 
2-fold lower (P = .006). However, an increase in T cells in the airways in HIV-infected persons resulted in the overall number of M. 
tuberculosis–specific CD4+ T cells in BAL being similar. Our study highlights the important insights gained from studying M. tuber-
culosis immunity at the site of disease during HIV infection.
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Tuberculosis is one of the leading causes of infectious disease 
globally, with >10 million cases and 1.8 million deaths in 2015 
[1]. Of those who developed tuberculosis, 12% were infected 
with human immunodeficiency virus (HIV), and tuberculosis 
was the cause of over one third of deaths among HIV-infected 
persons. This is despite the scale-up of antiretroviral therapy 
(ART) and the increasing provision of isoniazid therapy to pre-
vent tuberculosis in HIV-infected persons [2].

Whilst the majority of opportunistic infections develop 
during advanced HIV-associated immunodeficiency, tuber-
culosis occurs over a wide range of CD4+ T-cell counts [2–4]. 
The risk of developing tuberculosis has been reported to dou-
ble within the first year after HIV infection [5] and increases 
with immunodeficiency, and it is up to 26-fold greater among 

individuals with late untreated infection, compared with HIV-
uninfected individuals [1, 3, 6].

The majority of studies of Mycobacterium tuberculosis immu-
nity in HIV–M. tuberculosis coinfection focus on characterizing 
T-cell responses to M. tuberculosis in blood. Both quantitative 
and qualitative defects in the CD4+ T-cell response to M. tuber-
culosis have been reported in HIV-infected persons with latent 
M. tuberculosis infection [7–11]. Lung responses to M. tubercu-
losis and depletion of CD4+ T cells in the airways are consider-
ably less well characterized during HIV infection. HIV has been 
described as a disease of the mucosal immune system, owing 
to profound and early CD4+ T-cell depletion at mucosal sites 
such as the gastrointestinal tract [12, 13]. The majority of CD4+ 
T cells in the lungs, sampled by bronchoalveolar lavage (BAL), 
are CCR5+ memory cells [14, 15], the primary target for HIV 
infection. Despite HIV RNA being readily detectable in BAL 
fluid [16–19], the frequency of CCR5+ CD4+ T cells has been 
reported to be relatively maintained in BAL during HIV infec-
tion [14, 20].

M. tuberculosis–specific CD4+ T-cell responses in the lungs in 
HIV infection have been examined in only a few studies. A lower 
frequency of BAL CD4+ T-cell responses in immunosuppressed 
HIV-infected individuals as compared to HIV-uninfected indi-
viduals has been reported, and the frequency and function of 
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these cells is distinct from those in blood [15, 17, 21]. Since 
M. tuberculosis–specific CD4+ T cells are preferentially and sub-
stantially depleted in blood early in HIV infection [8, 22], we 
sought to investigate M. tuberculosis responses and CD4+ T-cell 
depletion in the airways prior to substantial immunodeficiency 
and their relationship with M.  tuberculosis–specific responses 
in blood. We characterized the frequency and absolute num-
ber of T cells, the HIV load, and M. tuberculosis–specific T-cell 
responses in BAL and blood specimens from moderately immu-
nosuppressed and untreated HIV-infected and HIV-uninfected 
individuals with latent M. tuberculosis infection.

METHODS

Study Participants

Participants were recruited from Cape Town, South Africa, 
into 2 groups: 25 ART-naive HIV-seropositive persons with 
CD4+ T-cell counts of >400 cells/mm3 (median age, 31 years; 
96% female) and 25 HIV-seronegative persons (median age, 23 
years; 60% female). HIV RNA levels were determined using an 
Abbott m2000 RealTime HIV-1 assay, and blood CD4+ T-cell 
counts were determined by the Flow-CARE PLG CD4 test. All 
volunteers were sensitized to M. tuberculosis, based on pos-
itive results of an interferon γ (IFN-γ) release assay (IGRA; 
Quantiferon, Cellestis), and tuberculosis was excluded on the 
basis of symptoms, radiological evidence, and BAL fluid cul-
ture results. Previous history of tuberculosis was excluded in all 
participants except for 2, in whom tuberculosis had occurred 
>10 years prior to enrollment. This study was approved by the 
Research Ethics Committees of the University of Cape Town 
(REF158/2010) and Stellenbosch University (N10/08/275). All 
participants provided written, informed consent.

Collection and Processing of Blood Specimens and BAL Fluid

Blood specimens were collected and processed within 4 hours. 
Flexible bronchoscopy was performed while participants were 
conscious and sedated. Saline (160 mL) was instilled into the 
right middle lobe in 20-mL aliquots, aspirated, and stored on 
ice until processing. BAL samples were centrifuged, and the cell 
pellet was washed with cold phosphate-buffered saline (Sigma) 
and filtered through a 100-μm cell strainer (CellTrics, Partec). 
Acellular BAL fluid was stored at −80°C, and cells underwent 
immunological analysis while fresh. To correct for epithelial 
lining fluid (ELF) dilution due to variable fluid volumes recov-
ered (median, 78 mL; interquartile range [IQR], 66–93 mL), the 
urea method was used (QuantiChrom, Clonagen) as described 
elsewhere [23]. BAL viral loads and BAL cell counts were stan-
dardized according to the volume of ELF sampled (median, 
1 mL; IQR, 0.75–1.64 mL) and are expressed as the number of 
cells per milliliter of ELF.

BAL cells were counted using Trypan Blue exclusion and dif-
ferentially stained (RapidDiff, Clinical Sciences Diagnostics). 
A  median of 10.6  ×  106 cells per BAL specimen (IQR, 

6.9× 106–17.6 × 106), or 8.7 × 106 cells/mL ELF, were obtained 
(Supplementary Table  1). The absolute number of T lympho-
cytes in BAL fluid was calculated using the frequencies of live 
CD3+, CD4+, or CD8+ T cells from an ex vivo flow cytometry–
based phenotyping panel (for specimens from 38 participants) 
and by microscopy.

In Vitro Stimulation of Blood and BAL Cells

Whole-blood stimulation was performed as previously 
described [24]. Briefly, heparinized whole blood was incubated 
at 37°C for 12 hours with purified protein derivative (PPD) of 
M.  tuberculosis (20  μg/mL) or phorbol 12-myristate 13-ace-
tate (0.01  μg/mL) and ionomycin (1  μg/mL), in the presence 
of anti-CD28 and anti-CD49d (10 ng/mL and 4 ng/mL, respec-
tively). Unstimulated cells were incubated with costimulatory 
antibodies only. Brefeldin A (5 μg/mL) was added after 7 hours. 
After incubation, red blood cells were lysed, and the cell pel-
let was stained with a violet viability dye, ViViD (Molecular 
Probes), treated with FACS Lyse (BD), and cryopreserved in 
10% dimethyl sulfoxide in fetal calf serum.

Fresh BAL cells underwent similar stimulation in R10 
medium (Roswell Park Memorial Institute 1640 medium with 
10% fetal calf serum) with the addition of 0.02 mg/mL DNase I, 
50 U/mL of penicillin-streptomycin, and 0.8 mg/mL of Fungin. 
BAL cells were stained with ViViD, treated with FACS Lyse, and 
stained. BAL cytokine data are reported for 30 of 50 participants 
(16 with and 14 without HIV infection). The remaining 20 par-
ticipants had insufficient BAL lymphocyte yields to perform 
T-cell stimulation assays (<10 × 106 total live BAL cells and/or 
<2 ×  105 total lymphocytes, based on Trypan and differential 
counts, respectively).

Intracellular Cytokine Staining and Flow Cytometry

Unstimulated BAL cells were stained ex vivo with anti-
CD3-PE-Cy7 and CCR5-PE (both from BD) and with CD4-
PE-Cy5.5 and CD8-Qdot705 (both from Invitrogen). Freshly 
stimulated BAL cells and stimulated cryopreserved blood cells 
were washed and stained with anti-CD4-PE-Cy5.5 and CD8-
Qdot705 (both from BD), permeablized, and stained intracel-
lularly with CD3-APC-H7, IFN-γ-Alexa700, and interleukin 
2 (IL-2)-APC (all from BD) and with tumor necrosis factor α 
(TNF-α)-PE-Cy7 (eBiosciences). Cells were acquired on a BD 
Fortessa, using FACSDiva software, and data were analyzed 
using FlowJo (TreeStar) and Pestle and Spice [25]. A  positive 
cytokine response was defined as a level that was twice the back-
ground level, a net response of >0.05%, and an event cutoff of 10 
events, and all data are reported after subtraction of the back-
ground level.

Statistical Analysis

Statistical analyses were performed using Prism 5 (GraphPad). 
Nonparametric tests (the Mann-Whitney U test, the Wilcoxon 
matched pairs test, and the Spearman rank test) were used for 
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all comparisons. A P value of < .05 was considered statistically 
significant.

RESULTS

Cohort and Clinical Characteristics

Blood and bronchoalveolar lavage (BAL) samples were col-
lected from 25 HIV-infected and 25 HIV-uninfected persons 
sensitized to M. tuberculosis, as evidenced by a positive result of 
an IFN-γ release assay. The clinical characteristics of the partici-
pants are summarized in Table 1. HIV-infected participants were 
ART naive, had well maintained CD4+ T-cell counts (median, 
619 cells/mm3; IQR, 533–782 cells/mm3), and exhibited a wide 
range of plasma viral loads (median, 6383 RNA copies/mL; 
IQR, 3548–16 449 RNA copies/mL). HIV RNA was detectable 
in BAL fluid from 20 of 25 participants, with a median load of 
10 700 RNA copies/mL ELF (IQR, 2780–27 287 RNA copies/mL 
ELF). There was a significant positive correlation between viral 
load in plasma and BAL (P < .0001; r = 0.6958; data not shown), 
consistent with published studies [16, 18, 19].

Effect of HIV on the Cellular Composition of BAL Fluid

The cellular content of BAL consisted primarily of alveolar 
macrophages (>90%) and smaller populations of lymphocytes 
and neutrophils (Supplementary Table 1). Compared with HIV-
uninfected individuals, HIV-infected individuals had a signifi-
cantly lower proportion of macrophages (median, 96% [IQR, 
92.1%–97%] vs 92.8% [IQR, 80.7%–96.1%]; P  =  .031) and a 
higher proportion of lymphocytes (median, 3% [IQR, 1.9%–6%] 
vs 6.2% [IQR, 3.5%–16.8%], respectively; P = .005). As expected, 
HIV-infected participants had significantly lower frequencies 
of CD4+ T cells in BAL and blood specimens, compared with 
HIV-uninfected participants (P < .0001 for both comparisons; 
Figure 1A), and significantly higher frequencies of CD8+ T cells 
in BAL and blood specimens (P < .0001 for both comparisons). 
In HIV-uninfected persons, the ratio of CD4+ to CD8+ T cells 
in BAL fluid was lower than in blood specimens (median, 1.2 
[IQR, 0.82–2.22] and 2.55 [IQR, 1.34–3.97]; Figure  1B). As 
expected, HIV infection led to a skewed ratio in blood spec-
imens (median, 0.61; IQR, 0.53–0.97), and for BAL fluid the 
ratio was 0.44 (IQR, 0.2–0.66). Since these data reflect only 
the distribution of cells but not the extent of their depletion or 

expansion, we calculated absolute numbers of CD3+, CD4+ and 
CD8+ T cells in BAL fluid (Figure 1C). HIV-infected individu-
als had significantly greater absolute numbers of CD3+ lympho-
cytes than HIV-uninfected individuals (median, 329 243 cells/
mL ELF vs 14 085 cells/mL ELF; P = .002), consisting of 26-fold 
more CD8+ T cells (P  =  .001) and 7-fold more CD4+ T cells 
(P = .03). When we examined CCR5 expression on BAL CD4+ 
T cells, a median of 76% expressed CCR5, regardless of HIV 
status (data not shown), implying that these cells are potential 
targets for HIV, despite their higher absolute number in BAL 
fluid as compared to the value for HIV-uninfected individuals. 
Absolute numbers of BAL CD4+ T cells (P = .047; r = 0.47) and 
CD8+ T cells (P = .004; r = 0.64) correlated positively with BAL 
viral load (Figure 1D). In contrast, blood specimens exhibited 
the expected inverse correlation between plasma viral load 
and absolute CD4+ T-cell count (P = .0005; r = −0.64; data not 
shown).

Overall, these data show that despite the moderate depletion 
of CD4+ T cells in blood specimens from HIV-infected partici-
pants, they had a greater number of CD4+ T cells in BAL fluid as 
compared to findings for uninfected participants.

Lower Frequencies but Preserved Absolute M. tuberculosis–Specific 

CD4+ T-Cell Counts in BAL Fluid During HIV Infection

We next examined the effect of HIV on M. tuberculosis–spe-
cific CD4+ T-cell responses in the airways. Owing to the low 
number of lymphocytes present in BAL, 30 participants had a 
sufficient number of cells available to perform the stimulation 
assay. Figure 2A shows representative flow cytometry plots of 
IFN-γ, IL-2, and TNF-α CD4+ T-cell responses to M. tubercu-
losis PPD. We detected responses in 79% of HIV-uninfected 
individuals (11 of 14) and 50% of HIV-infected individuals 
(8 of 16; Figure 2B). The frequency of PPD-specific CD4+ T 
cells producing any cytokine was significantly lower (15-fold) 
in HIV-infected participants as compared to uninfected indi-
viduals (median, 0.05% [IQR, 0%–0.37%] and 0.7% [IQR, 
0.1%–1.74%]; P = .048; Figure 2B). When considering only 
individuals with a detectable response in BAL fluid, median 
frequencies for HIV-infected participants and uninfected par-
ticipants were 0.33% and 0.83%, respectively, equating to a 
2.5-fold lower median frequency in the former group. Upon 
examining cytokines individually, HIV-infected individu-
als had significantly lower frequencies of CD4+ T cells pro-
ducing IFN-γ (P = .043) or IL-2 (P = .019), compared with 
HIV-uninfected participants (Figure 2C). Since we found that 
higher numbers of T cells were present in the lung during 
HIV infection (Figure 1C), we adjusted the frequencies of M. 
tuberculosis–specific CD4+ T cells for CD4+ T-cell counts in 
BAL fluid. Consequently, we found that in those with a detect-
able response in BAL fluid, there was no significant difference 
in the absolute number of BAL CD4+ T cells responding to 
M. tuberculosis between HIV-infected and HIV-uninfected 

Table  1. Clinical Characteristics of Study Participants, by Human 
Immunodeficiency Virus Status

Characteristic
Uninfected 

(n = 25)
Infected  
(n = 25)

Blood CD4+ T-cell count, cells/mm3a 813 (676–933) 619 (533–782)

Plasma viral load, RNA copies/mL … 6383 (3548–16 449)

BAL viral load,
RNA copies/mL ELF

… 10 700 (2780–27 287)

Data are median values (interquartile ranges).

Abbreviations: BAL, bronchoalveolar lavage; ELF, epithelial lining fluid.
aP = .0016.
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participants (Figure 2D). Thus, our data show that half of 
HIV-infected IGRA-positive individuals had no detectable M. 
tuberculosis–specific CD4+ T-cell responses in BAL. In those 
with detectable BAL responses, there was a similar absolute 
number of M. tuberculosis–specific CD4+ T cells in BAL fluid, 
when adjusted for the increased T-cell numbers in BAL fluid 
during HIV infection.

Lower Frequencies of M. tuberculosis–Specific CD4+ T Cells in Blood in 

HIV-Infected Individuals Despite Well-Preserved CD4+ T-Cell Counts

We next analyzed M.  tuberculosis–specific CD4+ T-cell 
responses in peripheral blood specimens from the same 

individuals. Previous reports suggest that depletion of 
M. tuberculosis–specific CD4+ T cells in blood occurs early 
after HIV infection [8, 22]. Although the duration of HIV 
infection for our study participants was not known, their 
well-maintained CD4+ T-cell counts in the absence of ART 
(median, 619 cells/mm3) likely reflected relatively early infec-
tion. A representative example of CD4+ T-cell cytokine pro-
duction in blood in response to PPD is depicted in Figure 3A. 
We examined adaptive immunity in blood specimens, and 
all 50 participants had a detectable PPD response, which 
correlated significantly with the QFT response (P  =  .0067; 
r = 0.38; data not shown). Similar to our observations in BAL 
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fluid, the total frequency of M. tuberculosis–specific CD4+ T 
cells in blood specimens was significantly lower (by 2-fold) 
in HIV-infected individuals as compared to HIV-uninfected 
subjects (median, 0.41% [IQR, 0.38%–1.85%] and 0.79% 
[IQR, 0.23%–0.69%]; P = .006; Figure 3B). Analysis of each 
cytokine (Figure 3C) revealed that HIV-infected individuals 
had lower frequencies of cells producing IFN-γ, compared 
with HIV-uninfected individuals (P  =  .002). After adjust-
ment for absolute CD4+ T-cell count in blood, this was more 
pronounced, with 3-fold lower numbers of M.  tuberculo-
sis–specific cells (P = .0012; Figure 3D). In blood specimens, 
there was a significant positive correlation between frequen-
cies of PPD-specific CD4+ T cells and CD4+ T-cell counts 

(P = .03; r = 0.45; Supplementary Figure 1A), suggesting that 
the decrease in M.  tuberculosis CD4+ T-cell responses was 
related to overall CD4+ T-cell depletion. We found no rela-
tionship between blood M.  tuberculosis response frequen-
cies and plasma viral load (P = .09; r = 0.35; Supplementary 
Figure  1B), or between BAL responses to M.  tubercu-
losis and either BAL CD4+ T-cell count or BAL viral load 
(Supplementary Figure 1C and 1D).

Overall, our data show that even in HIV-infected individ-
uals with well-maintained peripheral CD4+ T-cell counts in 
the absence of ART, the frequency of peripheral M. tuberculo-
sis–specific CD4+ T cells was significantly lower than in HIV-
uninfected subjects.
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Compartmentalization of M. tuberculosis–Specific Responses in Blood 

and BAL Specimens

M.  tuberculosis responses in blood are frequently mea-
sured in vaccine trials, but whether they are a surrogate for 
responses in the airways is not clear. Thus, we directly com-
pared the frequencies of M. tuberculosis–specific CD4+ T-cell 
responses between blood and BAL specimens in the subgroup 
of 30 participants from whom we had data for both com-
partments. There was no difference in the median frequency 
of M.  tuberculosis responses between BAL and blood speci-
mens, regardless of HIV infection status (Figure 4A). We then 
examined the differences between compartments in more 
detail by calculating the fold change of the frequency of PPD 
responses between blood and BAL specimens for each par-
ticipant. We found no difference in the fold change between 

HIV-uninfected and HIV-infected individuals (Figure  4B). 
Furthermore, concordant blood and BAL T-cell response fre-
quencies were present in 29% and 20% of HIV-uninfected and 
HIV-infected participants, respectively (Figure 4B), while the 
majority had a higher frequency of responses in blood speci-
mens as compared to BAL fluid (57% and 67%, respectively). 
The proportion of participants with higher T-cell frequencies 
in BAL fluid than blood specimens was <15%. Individuals 
with undetectable M.  tuberculosis–specific responses in BAL 
fluid had similar blood CD4+ T-cell frequencies as those with 
detectable BAL responses (Figure  4C). When we examined 
the association between the 2 compartments, we nonetheless 
observed a direct correlation between the frequency of CD4+ 
T cells specific for PPD in blood and BAL (P = .003; r = 0.53; 
Figure 4D).
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In summary, there was an association in response frequencies 
between the 2 compartments, regardless of HIV infection sta-
tus. Nevertheless, blood responses did not predict the absence 
of M.  tuberculosis–specific BAL responses in one third of the 
participants.

Functional Capacity of M. tuberculosis–Specific CD4+ T Cells Differs 

Between BAL and Blood Specimens

Finally, we investigated the functional quality of CD4+ T-cell 
responses to M.  tuberculosis during HIV infection. Cytokine 
coexpression profiles differed substantially between BAL and 
blood specimens (Figure 5A and 5B). In BAL fluid, monofunc-
tional IFN-γ–producing CD4+ T cells dominated the response 
to PPD in both HIV-infected and uninfected individuals 
(median, 46% and 68%, respectively; Figure 5A). The remainder 

of the cells produced TNF-α alone or in combination with 
IFN-γ, with negligible polyfunctional responses. There were 
no significant differences in CD4+ T-cell functional profiles 
between HIV-infected and uninfected individuals. In contrast 
to BAL fluid, PPD-specific cells from blood specimens exhib-
ited a greater diversity in their functional profiles, primarily as a 
result of higher IL-2 responses, and were highly polyfunctional 
(Figure  5B). Moreover, the distribution of functional subsets 
in blood specimens was significantly different between HIV-
uninfected and HIV-infected individuals, with the proportion 
of cells producing only IFN-γ, as well as the subset producing 
IFN-γ and IL-2 only, significantly lower in HIV-infected indi-
viduals, compared with HIV-uninfected individuals (P < .0001 
and P =  .0004, respectively). Furthermore, HIV-infected indi-
viduals had a significantly higher proportion of cells expressing 
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IFN-γ, IL-2, and TNF-α; IL-2 and TNF-α only; and TNF-α 
only (P = .002, P = .0007 and P = .007, respectively), compared 
with HIV-uninfected individuals. We also noted a significant 
difference in the median fluorescent intensity of TNF-α in 
M.  tuberculosis–specific CD4+ T cells, with a higher value in 
HIV-infected individuals as compared to uninfected individuals 
(P = .002; Figure 5C), whereas no such difference was observed 
in BAL fluid (data not shown). Of note, while the sex distribu-
tion differed between the HIV-infected and uninfected groups, 
no significant differences in the functional profile or magnitude 
of PPD-specific CD4+ T cells were observed between male and 
female participants (data not shown).

Taken together, these results suggest specific perturbations 
in cytokine production in M.  tuberculosis–specific CD4+ T 
cells during HIV infection, and they highlight distinct HIV-
induced changes in blood compared to BAL. Collectively, these 
data emphasize that M. tuberculosis responses in blood do not 

necessarily reflect the quantity or quality of the M. tuberculosis 
immune responses in the airways.

DISCUSSION

HIV infection is the greatest recognized risk factor for the devel-
opment of tuberculosis in high-burden settings [26]. The risk of 
tuberculosis increases up to 30-fold as CD4+ T cells are progres-
sively depleted [26, 27]. CD4+ T-helper type 1 (Th1) cells play a 
critical role in immunity to M. tuberculosis [28], and depletion of 
peripheral CD4+ T-cell responses to M. tuberculosis during HIV 
infection has been described in many studies [8, 10, 22, 29–31]. 
In contrast to the numerous studies of M. tuberculosis in blood, 
the effect of HIV on immunity at the site of infection is consid-
erably less well studied. We examined M. tuberculosis–specific 
lung immunity in HIV-infected persons with moderate immu-
nosuppression. We found a decreased frequency of M.  tuber-
culosis–specific CD4+ Th1 responses in blood specimens from 
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HIV-infected participants as compared to uninfected persons, 
consistent with published studies of advanced HIV disease [15, 
17, 21]. Several novel observations emerged from BAL in our 
study: (1) although HIV-infected individuals had lower CD4+ 
T-cell frequencies in BAL fluid, they had a 7-fold greater abso-
lute CD4+ T-cell count in these specimens, compared with HIV-
uninfected individuals; (2) increased CD4+ T-cell numbers in 
BAL fluid were associated with BAL viral load; (3) in 30 par-
ticipants in whom we measured lung immunity, one third had 
no detectable M.  tuberculosis–specific responses in BAL fluid, 
despite detectable T-cell responses in blood specimens; (4) 
although HIV-infected participants had significantly lower fre-
quencies of M. tuberculosis–specific CD4+ T cells, when those 
with detectable BAL responses were adjusted for CD4+ T-cell 
numbers in BAL fluid, no significant differences were observed 
from HIV-uninfected participants. These data highlight dis-
parities in the effect of HIV on CD4+ T-cell dynamics in the 
blood and the lungs and underscore the compartmentalization 
of M. tuberculosis–specific responses between the 2 sites.

Adaptive immunity in blood is used as a surrogate for 
lung responses, emphasizing the importance of understand-
ing differences between blood and BAL T-cell responses. 
Approximately two thirds of individuals had a higher M. tuber-
culosis response frequency in blood specimens as compared to 
BAL fluid, regardless of HIV infection. Although there was a 
weak positive association between blood and BAL response 
frequencies, undetectable responses in BAL fluid were unre-
lated to the magnitude of M. tuberculosis–specific CD4+ T-cell 
frequencies in blood specimens. The absence of responses to 
M. tuberculosis in BAL fluid was more pronounced in HIV-
infected persons, with 50% having no detectable responses. 
In addition to HIV-associated depletion, several possibilities 
could account for the absence of BAL responses. We sampled a 
single site, and M. tuberculosis immunity may not be uniform 
throughout the lung [32]. Furthermore, we studied M. tuber-
culosis–exposed individuals, among whom the spectrum of M. 
tuberculosis history could range from contained latent infection 
to cleared infection without persisting M. tuberculosis–specific 
memory responses in the lungs [33]. M. tuberculosis–specific 
CD4+ T cells were also functionally distinct between the com-
partments, with a negligible percentage of polyfunctional PPD-
specific CD4+ T cells within the BAL CD4+ T-cell population, 
compared with approximately 25% in blood. This is in contrast 
to studies using mitogens and other pathogens, in which highly 
polyfunctional CD4+ T cells were detected in BAL fluid [14, 
20], and thus may be specific to the pathogen studied.

This compartmentalization in frequency and function 
between blood and lung M. tuberculosis–specific responses may 
have important implications for tuberculosis vaccine devel-
opment. Recent trials of the first novel tuberculosis vaccine, 
MVA85A, failed to demonstrate protection against M. tubercu-
losis infection or tuberculosis [34, 35] despite eliciting increased 

CD4+ T-cell responses in blood. An effective tuberculosis vac-
cine may need to induce immunity to M.  tuberculosis in the 
airways. Although BAL is expensive to perform and requires 
specialized personnel, early vaccine trials could investigate local 
pulmonary responses in a subset of individuals. Additionally, 
vaccine delivery into the airways may be a promising strategy 
to induce long-lived pulmonary immunity and increase vaccine 
efficacy [36–38].

We found increased CD4+ T-cell numbers in BAL fluid during 
HIV infection despite moderate peripheral CD4+ T-cell deple-
tion. The marked increase of both CD4+ and CD8+ T-cell counts 
in the airways that we observed was reflective of a degree of 
lymphocytic alveolitis characteristic of HIV infection [39–41]. 
The relative maintenance of predominantly CCR5-expressing 
(and, thus, HIV-susceptible) CD4+ memory T cells supports 
the hypothesis that the lung is a mucosal site distinct from the 
gastrointestinal tract when it comes to the effects of HIV [14] 
and may be attributed to the presence of protective β-chemok-
ines [14, 16, 20]. We speculate that the decreased frequency of  
M. tuberculosis CD4+ T cells may be offset by an influx of CD4+ 
T cells that normalizes the absolute number of M.  tuberculo-
sis–specific CD4+ T cells and thus keeps the tuberculosis risk 
relatively low, thus resolving the apparent discrepancy between 
a substantially decreased M.  tuberculosis–specific CD4+ T-cell 
frequency but only a doubling of tuberculosis risk in early infec-
tion [5].

It is worth noting that we restricted our analyses to blood 
and BAL CD4+ Th1 responses, considered the cornerstone of 
adaptive M. tuberculosis immunity. There is, however, a grow-
ing body of evidence that IFN-γ–independent mechanisms may 
also provide protection against tuberculosis [42]. Further stud-
ies, particularly at sites of tuberculosis, are needed to investigate 
the role of additional Th cell lineages, as well as the possible 
role of unconventional T cells [43], in protective immunity to 
M.  tuberculosis. In addition, early defects in innate immunity 
in both blood and BAL may influence tuberculosis risk. Last, 
although BAL is a relatively noninvasive technique for studying 
immunity in the lungs, a major limitation is the low yield of 
lymphocytes, enabling us to perform functional immune assays 
in only 60% of our cohort. Thus, further studies will be required 
to confirm our findings.

In summary, this study showed that antiretroviral-untreated, 
M. tuberculosis–exposed HIV-infected persons with moderately 
well-preserved CD4+ T-cell numbers had a significant decrease 
in the frequency of CD4+ T-cell responses to M.  tuberculosis 
in blood and BAL specimens. However, an increased T-cell 
count in the airways related to the HIV load may have resulted 
in a similar absolute number of M. tuberculosis–specific CD4+  
T cells in BAL fluid. Our novel findings emphasize the differ-
ences between blood and lung responses to M.  tuberculosis 
and highlight the need to better understand M.  tuberculosis 
responses in the lungs.
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