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Abstract: Vascularization, the formation of new blood vessels, is an essential biological process.
As the vasculature is involved in various fundamental physiological phenomena and closely related
to several human diseases, it is imperative that substantial research is conducted on characterizing
the vasculature and its related diseases. A significant evolution has been made to describe the
vascularization process so that in vitro recapitulation of vascularization is possible. The current
microfluidic systems allow elaborative research on the effects of various cues for vascularization,
and furthermore, in vitro technologies have a great potential for being applied to the vascular
disease models for studying pathological events and developing drug screening platforms. Here,
we review methods of fabrication for microfluidic assays and inducing factors for vascularization.
We also discuss applications using engineered vasculature such as in vitro vascular disease models,
vasculature in organ-on-chips and drug screening platforms.
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1. Introduction

The vascular system, being in contact with various types of tissues and organs, is found
throughout the body, and is also the basis of life mechanisms [1,2]. The functional abnormalities
of the vascular system are closely related to some critical diseases such as tumor angiogenesis and
cancer metastasis as well as diseases of the blood vessels themselves [3-5]. Thus, there have been
long-standing interests in the study of blood vessels and related diseases using experimental animal
models and in vitro two-dimensional static experimental platforms. However, the results from animal
experiments are neither always applicable to humans, nor free from ethical concerns [6]. On the other
hand, common static platforms have difficulty in clarifying some of the essential mechanisms related to
human vascular diseases due to dimensional differences and the absence of the physiological level of
fluid flow [7]. Meanwhile, as the advantages of the in vitro engineered vasculature emerge, enormous
efforts have been placed on developing and optimizing the vascular system in vitro. Notably, in
the last decade, the development of in vitro vascular systems has been accelerated by advances in
microfluidic platforms [8-11]. Advantages of microfluidic chips include the ability to control the flow
in physiological levels [12,13], making a 3-D microenvironment by using hydrogel as a scaffold [14-16],
mimicking relevant tissues by incorporating human cells [17-19], and controlling the distribution of
chemical variables [20,21]. Therefore, microfluidic devices can be used not only as a means to elucidate
the mechanisms in the development of vasculatures, but also as experimental platforms for vascular
disease models and drug screening [22-25].

In this review, the various types of microfluidic-based systems for generating the vasculature
are introduced and discussed. Next, different factors considered in inducing vascularization on
microfluidic devices are highlighted. Finally, among numerous applications using engineered
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vasculature, representative studies such as in vitro vascular disease models, vasculature-incorporated
organ-on-chips, and drug screening platforms are investigated. This review will help readers gain
a deeper understanding of vessel generations and their utilization for studying related diseases in
microfluidic systems.

2. Vascularization in Microfluidic-Based Platforms

Until now, microfluidic systems have led advances in technology to reconstruct vessels in vitro,
and many types of research have contributed to their development. Moreover, the integrations of
microfluidics into the study of vascularization are in diverse forms. In this section, the typical methods
used in the previous studies have been categorized into four groups: cell patterning, sacrificial molds,
patterned microchannel, and self-assembly.

2.1. Cell Patterning

The cell patterning method is achieved by marking a particular area in the device and plating cells
on the marked pattern (Figure 1a). This method is a high-throughput process and is advantageous as
the method is only moderately complicated to apply and control flow in the device. A method
developed by Wang et al. used photolithography to create a pattern on the assay, and human
umbilical vein endothelial cells (HUVECs) were later cultured on the same pattern [26]. Using a similar
method with membranes, Raasch et al., made a biochip which was perfusable two-dimensionally [27].
Similarly, Young et al., placed endothelial cells (ECs) on the membrane, and measured permeability
under flow [28]. Xu et al., stacked three polydimethylsiloxane (PDMS) layers and two PDMS porous
membrane layers to mimic metastasis of lung cancer cells [29].
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Figure 1. Schematic representation of fabrication methods. (a) Endothelial cells (ECs) (green) are
cultured on the designed pattern or the specified membrane; (b) After removal of sacrificial molds, ECs
(green) are seeded [30]; (c) ECs form monolayer alongside the hydrogel. Inmunostaining of vascular
endothelial cadherin (VE-cadherin, green) and nuclei (blue) confirm the functionality of the vessel [16].
Scale bar 100 pm; (d) ECs (green) are seeded within the hydrogel, and microvasculature is then formed
through vasculogenesis [23]. Reproduced with permission.

2.2. Sacrificial Molds

The second method for vascularization in microfluidics aims to secure spaces with structures, and
the temporary molds are removed just before the cell seeding (Figure 1b). Baker et al., used gelatin as
the sacrificial construct within a collagen gel [9]. After dissolving the gelatin, HUVECs were seeded,
which later formed a vasculature along the collagen gel. Instead of sacrificial molds, needles or rods
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can also be used in microfluidic devices [20,31,32]. Nguyen et al., observed angiogenic sprouting after
extraction of a needle [20], and Buchanan et al., investigated the correlation between shear stress and
the effects of tumor-expressed angiogenic factors [33]. Furthermore, the effects of needle size, gelling
temperature, and collagen concentration were also identified [34].

2.3. Patterned Microchannel

The patterned microchannel method is a process, which makes patterns using soft lithography in
a device, and fills a hydrogel and cells into the empty channels (Figure 1c). Using this method, the
designed channels determine the size and direction of the newly-formed vessels. This widespread
method is advantageous in that it is a high-throughput process and the mechanical and biochemical
stimuli are easy to control. To test the effects of drugs on vascular structures, for example,
Bischel et al. [35] and van der Meer et al. [36] fabricated a 3-D lumen structure with a circular
cross-section within the extra-cellular matrix (ECM). A study by Wang et al. [37] demonstrated
that a cellulose-based tube could work as a patterned microchannel. They implanted a circular tube
in the collagen gel and an engineered blood vessel was formed alongside the tube. The microfluidic
assay of Lee et al. reproduced tumor angiogenesis and intravasation of circulating tumor cells
(CTCs) by co-culturing HUVECs, lung fibroblasts, and cancer cells [38]. Zervantonakis et al. analyzed
interactions between HUVCEs, cancer cells, and macrophages [39]. Wood et al., controlled diameters
of vasculatures with matrix metalloproteinases (MMPs) inhibition and fluid flow [40]. In another
approach, Jusoh et al. added hydroxyapatite to the fibrin gel, and generated 3-D vascular networks to
mimic bone microenvironments [41]. Additionally, implantable angiogenic systems that are made of
poly lactic-co-glycolic acid (PLGA) and human endothelial progenitor cells (hEPCs) were developed
in vitro and later transplanted into in vivo mice [42,43].

2.4. Self-Assembly

The self-assembly microfluidic approach for vasculature is in stark contrast to the other methods.
This approach does not require an extra structure to guide vasculatures; vascular cells are seeded within
hydrogels in the device, where the cells reconstitute 3-D vascular networks by themselves so that the
vasculature generated is more physiological than the ones in other methods (Figure 1d). For instance,
Song et al., reproduced anastomosis using fluid control [13]. Likewise, Wang et al., by engineering
artificial vascular networks, replicated anastomosis from the artery to vein [44]. This model consisted of
a human endothelial colony forming cell-derived ECs and normal human lung fibroblasts in fibrin gel.
Kim et al., investigated the effects of flow and pro-angiogenic factors on the growth of the vasculature,
and identified the significant roles of interstitial flow [45]. Jeon et al., cultured bone marrow-derived
human mesenchymal stem cells (BM-hMSCs) and HUVECs together in the microfluidic device to
make functional microvasculature [19]. The same research group also formed microvasculature in the
bone or muscle-mimicking microenvironments to study organ-specific metastasis [23].

3. Inducing Factors of Vascularization on a Chip

Vessels are mainly formed through two generic processes invivo: vasculogenesis and
angiogenesis. In vasculogenesis, endothelial precursor cells that have not yet formed lumen are
differentiated to form new blood vessels [46], and angiogenesis is a process where existing blood
vessels form an extensive vascular network [47,48]. There are three primary inducing factors in the
formation of vasculatures: mechanical, chemical, and biological factors [11,49]. The following examples
are vasculature-on-chips with the factors considered.

3.1. Mechanical Factors

Forces from fluid flow strongly influence ECs [50]. First of all, ECs in vessels are exposed to shear
force which is tangential to the endothelial surface [12]. Shear stress causes ECs to secrete biomolecular
signals [49], leading to vascular structure remodeling [46], cytoskeleton rearrangement [51-53], and
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transcriptional gene expression [47]. Furthermore, ECs are exposed to interstitial flow which acts
as a transverse force across the vessel wall [12]. Interstitial flow above a certain threshold promotes
capillary formation [54,55].

The microfluidic device can control the mechanical factors through various ways. First, the
syringe pump can be connected to the reservoir of the channel to provide a flow with a precise and
constant flow rate (Figure 2a.1) [12]. It is also possible to create fluid flow through a hydrostatic
pressure difference (Figure 2a.2) [45]. The size of the shear stress applied to the channel wall can also
be controlled by varying the channel width, even though the channel is connected to a single syringe

pump [26].
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Figure 2. Three major factors (mechanical, chemical, and biological factors) in vessel formation on
a chip. (a.1) Fluid flow was given by syringe pumps that were connected to reservoirs of the chip
(i), which had one channel for collagen and two channels for human umbilical vein endothelial
cells (HUVECS) (ii). Shear stress inhibited sprouting in the presence of interstitial flow and vascular
endothelial growth factor (VEGF) gradient (iii) [12]. Scale bars 100 um; (a.2) Angiogenic sprouting
from the vascular network (i-ii) was observed in the presence of interstitial flow (iii). Sprouting was
more active when the interstitial flow acts on sprouting in reverse direction (iv), than forward direction
(v) [45]. Scale bar 200 pum; (b) The direction of sprouting could be guided along spatial VEGF gradient
(iii) by forming two orthogonal gradient profiles on the gel region (i-ii) [21]. Scale bars 100 um;
(c) HUVECs were seeded on the hollow microchannels in the pericyte-embedded collagen gel (i) to
generate stable vascular structures through heterotypic cell-cell interactions (ii). Pericytes (x-SMA,
green) enclosed endothelial wall (CD31, red) and contributed to structural stability (iii) confirmed
by perfusing of fluorescent microbeads (green). A number of leakages could be observed when only
HUVECs were seeded (iv) [56]. Scale bars 100um. Reproduced with permission.
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Fluid shear stress is confirmed as one of the dominant factors among mechanical factors [49,51,57].
The barrier function and stability related to the permeability of the vessel wall were examined for
various values of flow rate, shear stress, transmural pressure, and average luminal pressure, and
among different parameters, the fluid shear stress was determined as the most dominant factor [57].
Shear stress lowers the permeability and ultimately increases stability by narrowing vascular cells.
Moreover, shear stress inhibits sprouting from the vascular wall through nitric oxide action, even in the
presence of interstitial flow and vascular endothelial growth factor (VEGF) gradient (Figure 2a.1) [20].

Interstitial flow also plays a major role in vessel development. In particular, the sprouting
behaviors are very different depending on the direction of interstitial flow acting upon the sprouting
vessel (Figure 2a.2) [45]. Sprouting from existing vascular networks is most active in the reverse
direction of interstitial flow. Additionally, given the gradient of the angiogenic factor with interstitial
flow together, their influence on vasculatures may be greater. For instance, sprouting in both reverse
interstitial flow and positive VEGF gradients showed a significant number of activated filopodial
protrusions into the gel, but sprouting in both forward interstitial flow and negative VEGF gradients
showed dilated morphologies [12].

Some attempts have been made to examine the effects of cellular mediators that respond
to mechanical stimuli. For example, ECs regulate their morphology such as the polarization and
alignment through the mechanism mediated by small GTPase RhoA in response to shear stress [58].
Furthermore, by culturing RhoA-blocked HUVECs in microfluidic devices, it has been confirmed that
the RhoA-mediated mechanism plays a major role in VEGF-driven vascular development, especially
extension, under shear flow [59]. Additionally, histone deacetylases have been identified to stimulate
MMP14 expression in response to interstitial flow and VEGF [60].

3.2. Chemical Factors

Angiogenic growth factors are intensely involved in angiogenesis as the name suggests [1]. VEGF
is the most important growth factor for blood vessel formation as it promotes EC migration and
proliferation through VEGF receptor-2 signaling [61,62]. Most importantly, VEGF determines the
direction of angiogenic sprouting by guiding the filopodial protrusion to a higher concentration
of VEGF [2,63]. Other angiogenic growth factors such as platelet-derived growth factor (PDGF),
transforming growth factor beta 1 (TGF-f31), and angiopoietin (Ang-1) enhance the stabilization of the
vessel wall through different cellular mechanisms [2]. There have also been attempts to quantify the
role of various angiogenic factors when they are selectively or simultaneously introduced [20,64].

The generation of a concentration gradient of angiogenic factors is crucial in vessel formation
as it guides the directions of vasculogenesis or sprouting (Figure 2b). A linear profile of chemical
concentrations can be formed in the hydrogel because the diffusion rate of a molecule is much lower in
hydrogel than in the cell medium [65]. Therefore, various shapes of gradient profiles can be obtained
by varying the configurations of microfluidic channels [9]. For example, a relatively simple device with
a single gel channel between two media channels [66,67] or a device with two gel channels between
three media channels can generate the linear gradient profiles across the gel channels [65]. In addition,
a device with a gel scaffold enclosed by three channels can form two profiles of gradients in two
orthogonal directions (Figure 2b) [21]. In these ways, different aspects of sprout formation can be
examined under the gradients of each angiogenic factor.

3.3. Biological Factors

The examples of EC types commonly used for vascularization on chips are HUVECs, human
microvascular ECs (HMVECs), and human artery ECs (HAECs). Although the differences in their
functional characteristics regarding angiogenesis are poorly understood, there has been a study
comparing the functional angiogenic ability of HAECs and HUVECs using microfluidic systems [68].
In the 3-D microenvironment, HAECs exhibited excellent angiogenic potential compared to HUVECs
through particular mRNA upregulation, which was not revealed in a 2-D culture system. There have
also been some attempts to increase physiological relevance by culturing organ-specific cell lines
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for mimicking the functionality of organs [22,69,70]. In addition, studies using hEPCs that have
a substantial proliferative capacity were reported [42,71], and recently, specialized techniques for
differentiating induced pluripotent stem cells (iPSCs) into ECs, which may enable personalized
vasculature-on-a-chip, are being developed [71-74].

While it is difficult to consider invivo neovasculature as functionally fully-developed
vessels [75,76], the stability of in vivo neovasculature can be improved by co-culturing ECs with mural
cells such as vascular smooth muscle cells, fibroblasts, and pericytes [77-79]. Structural robustness
is improved as the mural cells gather and wrap around the neovasculature. Mural cells also induce
paracrine signals by several signaling pathways, which greatly enhance the functional stability of the
vascular wall [80-82].

A distinct advantage of microfluidic systems is the ability to co-culture multiple cell types on
a single chip [56,83,84] as several types of cytokines are secreted by the cells during heterotypic cell
interactions, and such paracrine signaling cannot be observed in a conventional single cell culture
environment [85]. A number of attempts have been made to create mature and stable vascular
networks by co-culturing ECs and mural cells in vitro (Figure 2c) [56,86]. Moreover, when BM-hMSCs
and ECs are co-cultured in a microfluidic system, BM-hMSCs were differentiated into mural cells by
interaction with ECs, and angiogenic sprouting was actively achieved [19,76,87-89]. Furthermore,
it is possible to control cell-cell interactions spatiotemporally when co-culturing multiple cell types
in a microfluidic device, by seeding cells in selective compartments or at different time points.
Nonetheless, the functionality of engineered vasculature cannot last for more than a few weeks
in current in vitro experimental setups [90-92]. We hope that creative methods will be developed to
overcome this limitation.

4. Applications

Some applications have been developed to use a vasculature-on-a-chip to study diseases
in vitro. These developments may allow the investigation of malfunctions of the vessel wall itself
(e.g., endothelial dysfunction), as well as the involvement of blood vessels in the functional abnormality
of the nearby tissue and organ (e.g., cancer). With the recent advancements in microfluidic technology,
vast amounts of studies are undergoing, and we have listed the broad overview of applications in the
table below (Table 1). Furthermore, in the following sections, we will introduce the particular examples
of developed in vitro vascular disease models including vasculature-related organ regeneration on an
in vitro chip and also describe drug screening platforms.

Table 1. Summary of applications using engineered vasculature.

Applications Objectives Highlighted Features References
Thrombosi Stimulating thrombus formation by TNF-« [56,93]
rombosis Stimulating thrombus formation by mechanical cue [93,94]
Endothelial Inflammatory endothelial activation [95]
Dysfunction Immune Response Binding of T cells to ECs [96]
Neutrophil extravasation [97]
Ath lerosi Promoting thrombus formation under plaque geometry [25,94]
therosclerosis High permeability in atherosclerotic endothelium [98]
Tumor Angiogenesis 3-D tumor angiogenesis by controlling microenvironment [15,33,99-106]
Cancer (Organ-specific) Extravasation [23,107-110]
Cancer Metastasis Intravasation [39,110]
Adhesion of CTCs to endothelium [111]
Lung Engineering functional alveolar-capillary interface [112,113]
Heart Engineering functional cardiac tissue [114,115]
Liver Engineering functional hepatic tissue [69,115,116]
Kidney Engineering functional renal tissue [117,118]
Organ Artery Mimicking 3-D artery architecture [119]
Regeneration Skin Co-culturing of skin equivalents with vascular cells [120]
Blood Membrane-based cell culture [121-125]
-Brain Gel-based cell culture [126-128]
Barrier Validating functionality by TEER measurement [121-123,129]
Lymphatic System Lymphangiogenesis [130-132]

Drug Screening Identifying effects of drug [113,133,134]




Bioengineering 2017, 4, 8 7 of 18

4.1. Endothelial Dysfunction

Endothelial dysfunction is a major physiological mechanism that can cause thrombosis,
atherosclerosis, and inflammatory diseases [135-137]. Continuous efforts are being made to
elucidate the underlying principles of endothelial dysfunction and related diseases, but with a
considerable number of factors involved in such complex mechanisms, most studies using in vitro
microfluidic models are somewhat limited in describing the phenomena [138-141]. Other examples of
vasculature-on-a-chip confirmed that inflammatory endothelial activation mediated by tumor necrosis
factor alpha (TNF-«) and disturbed flow [93,95] resulted in high permeable and prothrombotic states
of the endothelium [56]. In particular, Kim et al., verified that increased endothelial permeability
was due to inflammatory stimulation by probing nanoparticle translocation across an EC monolayer
(Figure 3a) [98]. Other studies have demonstrated that atherosclerotic lesions or thrombus formation
highly occurred at inflamed endothelial sites [25,94].
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Figure 3. Representative figures of applications using vasculature-on-a-chip. (a) Increased permeability
of inflamed endothelium was demonstrated with translocation of nanoparticles over an EC monolayer
and immunostaining of VE-cadherin (green) and nuclei (blue) [98]. Scale bars 20 um; (b) The bone
microenvironment was replicated to investigate extravasation of breast cancer cells (red) from
microvasculature (green) [23]; (c¢) Microfluidic model of the blood-brain barrier (uBBB) was
characterized, and its validity was demonstrated [121]; (d) HUVECs morphology was investigated
quantitatively depending on anti-angiogenic drug concentrations to find optimal effective concentration
which minimizes both the number of migrated HUVECs and their morphological changes [24].
Reproduced with permission.
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4.2. Vasculature-On-A-Chip and Cancer

Cancer is another area in which in vitro disease model research into the function of the vasculature
is crucial. We have categorized and reviewed the vascular involvement in two following sections:
tumor angiogenesis and cancer metastasis.

4.2.1. Tumor Angiogenesis

During the generation of primary tumors, blood vessels affect nearby tumors by adjusting
microenvironments that control several mechanical and chemical stimuli. They also provide oxygen
and other nutrients to the tumor and play a major role in metastasis [142,143]. Therefore, a
complete understanding of tumor angiogenesis is essential in treating the tumor [5]. Several studies
utilized microfluidic devices to study tumor angiogenesis through co-culturing tumors and the
endothelium [33,144]. Particularly, Buchanan et al. investigated the correlation between shear stress
and tumor-expressed angiogenic factors using a 3-D microfluidic tumor vascular model, where they
co-cultured tumor and ECs [33]. EC migration was measured under different pH conditions of collagen
gel and several combinations of cell types [144]. Different characteristics of tumor angiogenesis related
to ECM conditions were also investigated [15,144].

4.2.2. Cancer Metastasis

Cancer metastasis is of clinical importance because approximately 90% of cancer-related mortality
is due to cancer metastasis [145]. It is recognized that extravasation of CTCs have exhibited great
organ specificity [146], and it has also been confirmed that extravasation occurs more in specific
microenvironments [147]. The multi-organ microfluidic chip designed by Xu et al., successfully
reproduced growth, invasion, metastasis, and proliferation of lung cancer cells within the target
organ [29]. Moreover, they confirmed that the extravasated lung cancer cells damaged distant
organs through sensing the expressions of related proteins. Bersini et al. mimicked the process
of breast cancer metastasis to bone by replicating the bone microenvironment with BM-hMSCs
that secreted bone-marker proteins [10]. The higher metastasis rate was confirmed in this bone
microenvironment condition. Furthermore, the generation of 3-D microvascular networks within the
bone or muscle-mimicking microenvironments enabled the in vitro investigation of organ-specific
cancer cell metastasis (Figure 3b) [23].

4.3. Vasculature in Organ-On-A-Chip

Blood vessels connect different organs in the body and contribute to the organ functions by
providing nutrients and oxygen [148,149]. In this regard, numerous studies have been conducted to
mimic physiologically appropriate responses by incorporating the vasculature into organs-on-chips
(Table 1). In fact, we direct readers with special interests to other review articles that each describes a
particular organ-on-a-chip model such as the lung, kidney, and liver [7,22,90,150]. Furthermore, we
will focus this section on the reconstruction of the blood-brain barrier (BBB) and lymphatic system that
are studied in in vitro microfluidic systems.

4.3.1. Blood-Brain Barrier

The BBB is a physiological barrier of the central nervous system (CNS), which regulates the
transport system between the brain and blood. The BBB disturbs the passage of drugs to the brain
and restricts effective therapy for CNS diseases [151]. Additionally, the BBB can be a particular target
because the malfunction of the BBB caused by neuronal diseases results in additional conditions [152].
Recently, the development of microfluidic devices mimicking the BBB in vitro has become a field of
active research. Membrane-based multilayer devices are often used to investigate the BBB [121,123,124].
Booth et al. incorporated trans-endothelial electrical resistance electrodes in a device to demonstrate
the validity of the in vitro BBB system (Figure 3c) [121]. Furthermore, co-culturing of ECs, pericytes,
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and glial cells improved the physiological relevance with the BBB [123]. There was also an attempt to
recapitulate a neurovascular system in which neurons, astrocytes, and microglia formed the neural
chamber and ECs constructed a vascular channel [124]. While most of the research on the BBB
in microfluidics relied on membranes, some studies reported different techniques to circumvent
the membrane usage. One study designed microholes in a microfluidic device and entrapped
HUVECs [153]. The HUVECs trapped in the holes represented the engineered BBB, and the addition
of an astrocyte-conditioned medium altered the permeability. Kim et al., fabricated a device with
3-D printing to mimic brain microvasculature [127]. In another example, HUVECs, astrocytes, and
neurons were co-cultured within the collagen gel along the patterned microchannel for simulating
physiological characteristics of the BBB [128].

4.3.2. Lymphatic System

The lymphatic system is part of the circulatory system in the body, and its malfunction may
attribute to various diseases such as inflammation and cancer metastasis [154,155]. Rare in vitro
models have been reported to examine interactions between lymphatic endothelial cells (LECs) and
their microenvironment for lymphangiogenesis [132,156,157]. In particular, Kim et al., quantified
the angiogenic sprouting of LECs towards the fibrin matrix by controlling various growth factors
and interstitial flow in microfluidic devices that contained fibroblasts-embedded in fibrin gel [130].
In addition, anti-lymphangiogenic drugs have also been tested to confirm the efficacy of common drug
effects, demonstrating a well-designed in vitro lymphatic model.

4.4. Drug Screening Related to Vascular Diseases

Microfluidic systems offer new opportunities for pharmaceutical testing as the assays enable
visualization of biological dynamics and reduction of the amount of cells and reagents required
to evaluate their performance [24,158]. Dereli-Korkut et al., fabricated three-layered devices, and
encapsulated cancer cells in hydrogel [159]. This microfluidic platform assessed the viability of cancer
cells against anticancer compounds. Theberge et al., designed a cell-based assay by co-culturing
HUVEC:s, fibroblasts, and macrophages [17]. They confirmed effects of the MMP12 inhibitor on
vascularization and showed that cellular communications were critical to angiogenesis. The HUVEC
monolayers generated by Kim et al., were used for quantitatively investigating the effects of an
anti-angiogenic drug [24]. They monitored cell viability, gaps between ECs, and proliferation rates
at different doses and multiple treatment times (Figure 3d). Bai et al., performed a study that
treated injected cancer cell aggregates at different dosages of drugs to suppress the dissemination of
cancer cells [160]. This study evaluated the singular and combined effects of drugs to obstruct the
dissemination of cancer cells. Korin et al., mimicked vascular stenosis by incorporating a narrow
channel and evaluated the efficacy of shear-targeting drugs [158]. The study estimating the performance
of polymeric vehicles for gene delivery was also reported [161].

5. Conclusions and Future Perspectives

A microfluidic platform provides a systematic and controllable investigation of not only
vascularization itself but also diseases that are closely linked to disorders of the vascular network.
However, there are a few prerequisites for an epoch of microfluidics-based disease models. Firstly,
further development of smooth integration methods for a flow system to vasculature-on-a-chip
devices will be beneficial. While integration of the flow system is an essential part of providing a
shear-driven biophysical stimulation to the in vitro system, maintaining constant flow requires a
specific pump-integrated system or periodic filling of the medium in the case of the gravity-driven
source. Secondly, the precision of the chemical gradient in a microfluidic device should be improved.
Although chemical concentrations play a significant role in cell dynamics, even the latest methods
are not capable of controlling the concentration gradient with the precision to fine tune cell dynamics.
Another important future study could be investigating the effects of using different EC types as well
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as developing an in vitro lymphatic system. Most of the current efforts are placed using particular
cell lines, but a proper demonstration of the characterization of available EC types including LECs
will enhance the capacity for on-chip investigation of vascular diseases. Lastly, the durability of the
engineered vessels in a microfluidic device should be improved. Due to several technical deficiencies,
the engineered vasculature lasts for only a couple of weeks, limiting the current applications to acute
illness and early stages of chronic diseases. Therefore, advances in a microfluidics-based disease model
to overcome the limitations stated above will be a milestone for a new paradigm shift.
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