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Purpose: This study proposes a novel approach to obtain personalized estimates of

cardiovascular parameters by combining (i) electrocardiography and ballistocardiography

for noninvasive cardiovascular monitoring, (ii) a physiology-basedmathematical model for

predicting personalized cardiovascular variables, and (iii) an evolutionary algorithm (EA)

for searching optimal model parameters.

Methods: Electrocardiogram (ECG), ballistocardiogram (BCG), and a total of six

blood pressure measurements are recorded on three healthy subjects. The R peaks

in the ECG are used to segment the BCG signal into single BCG curves for each

heart beat. The time distance between R peaks is used as an input for a validated

physiology-based mathematical model that predicts distributions of pressures and

volumes in the cardiovascular system, along with the associated BCG curve. An EA

is designed to search the generation of parameter values of the cardiovascular model

that optimizes the match between model-predicted and experimentally-measured BCG

curves. The physiological relevance of the optimal EA solution is evaluated a posteriori

by comparing the model-predicted blood pressure with a cuff placed on the arm of the

subjects to measure the blood pressure.

Results: The proposed approach successfully captures amplitudes and timings

of the most prominent peak and valley in the BCG curve, also known as

the J peak and K valley. The values of cardiovascular parameters pertaining to

ventricular function can be estimated by the EA in a consistent manner when

the search is performed over five different BCG curves corresponding to five

different heart-beats of the same subject. Notably, the blood pressure predicted by

the physiology-based model with the personalized parameter values provided by
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the EA search exhibits a very good agreement with the cuff-based blood

pressure measurement.

Conclusion: The combination of EA with physiology-based modeling proved capable

of providing personalized estimates of cardiovascular parameters and physiological

variables of great interest, such as blood pressure. This novel approach opens the

possibility for developing quantitative devices for noninvasive cardiovascular monitoring

based on BCG sensing.

Keywords: cardiovascular physiology, cardiovascular monitoring, ballistocardiography, physiology-based

modeling, evolutionary algorithm (EA), personalized modeling, cuffless blood pressure estimation

1. INTRODUCTION

Cardiovascular diseases (CVDs) are disorders of the heart and
blood vessels, including heart failure, stroke and hypertension,
and represent the first leading cause of death worldwide (World
Health Organization, 2021). Early detection and intervention
of CVDs can reduce the number of preventable hospital

readmissions, thereby helping patients maintain a better quality

of life while significantly reducing healthcare costs (Wasfy et al.,
2014; Soucier et al., 2018).

Cardiovascular function and oxygen delivery to the tissues

depends on adequate hemoglobin stores, oxygen uptake from
the lungs and cardiac output (CO). This delivery system relies
on a complex interplay between the pumping action of the
heart and the biomechanical properties of the vasculature
(Chang et al., 2002; Vincent and De Backer, 2013). Thus,
effective cardiovascular monitoring should provide a quantitative
assessment of both cardiac and vascular functions (Holcroft et al.,
2006; Vincent and De Backer, 2013). Traditional monitoring
techniques, such as electrocardiography, echocardiography and
intravascular catheterization, focus primarily on the heart,
providing information on its electrical, mechanical, and fluid-
dynamical functions. A complementary approach is offered
by ballistocardiography, whose signal, the ballistocardiogram
(BCG), captures the repetitive motion of the center of mass of
the human body resulting from the blood motion within the
circulatory system (Starr and Noordergraaf, 1967). Interestingly,
the BCG signal reflects the status of the cardiovascular system
as a whole, rather than the heart alone, thereby making it
an ideal complement to traditional monitoring techniques. In
addition, the acquisition of BCG signals is not invasive and
does not require body contact, thereby eliminating the risk of
infections and making it a viable option for both hospital and
in-home monitoring.

The original device for BCG measurement used by Starr and
others was a lightweight bed suspended by long cables (Starr
and Noordergraaf, 1967). The blood flow of a subject lying on
the suspended bed resulted in the bed swinging; the capture of
the swing was the BCG signal. A replica of Starr’s suspended
bed has been built within the MU Center for Eldercare and
Rehabilitation Technology (CERT) directed by Prof. Skubic. The
suspended bed is an impractical device for BCG measurement,
especially compared to the electrocardiogram (ECG), which can

be taken on virtually any platform using electric leads placed on
the body in a standard configuration. Recently, a resurgence of
BCG research has occurred, as new sensing devices (e.g., in the
form of bed sensors, chair sensors, weighing scales) allow easier,
noninvasive capture of the BCG signal. Several of these sensors
are now available commercially (Alametsä et al., 2008; Chen et al.,
2008; Shin et al., 2008; Young et al., 2008; Inan et al., 2009, 2014;
Giovangrandi et al., 2011; Heise et al., 2011; Satu and Jukka, 2012;
Zimlichman et al., 2012; Paalasmaa et al., 2014; Helfand et al.,
2016; Katz et al., 2016; Huffaker et al., 2018).

Deciphering the cardiovascular mechanisms that determine
the shape of the BCG waveform in a particular individual is the
key to fully unlocking the potential of BCG-based monitoring
for noninvasive cardiovascular assessment. For example, Etemadi
et al. showed that the relative time delay between the ECG and
BCG peaks is an indicator of myocardial contractility (Etemadi
et al., 2011). Su et al. (2018) showed that the changes in
the amplitude of the systolic BCG peaks measured via a
hydraulic bed sensor correlated with the change in blood pressure
occurring pre- and post-exercise. In this study, we investigate
how to utilize the BCG waveform to estimate cardiovascular
parameters specific to a given subject, which could be used for
an in-depth assessment of cardiovascular function.

Specifically, we utilize the mathematical model proposed
in Guidoboni et al. (2019) to simulate the BCG waveform
based on fundamental principles of cardiovascular physiology.
The model parameters quantify aspects of cardiovascular
function that are particularly relevant for CVD monitoring,
such as ventricular elastances and arterial stiffness, and the
model simulations yield predictions of cardiovascular variables,
such as blood pressure and volumes, and the resulting BCG
waveform (Guidoboni, 2020). In Guidoboni et al. (2019),
however, model parameters were chosen as representative of
an idealized individual based on published literature. In this
study, we investigate the use of an evolutionary algorithm (EA)
to obtain personalized estimates of the cardiovascular model
parameters based on the comparison between model-predicted
and experimentally-measured BCG curves on a specific subject.

Ground truth for the cardiovascular parameters estimated via
the EA is not easily available, and this constitutes the major
challenge of this study. Some parameters may be estimated
via noninvasive techniques (e.g., Doppler imaging can be used
for arterial radii and lengths), which could be utilized on
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TABLE 1 | Summary of the participant information involved in this study.

Subject Sex Age Weight [kg] Height [cm]

1 Male 25 72.6 189

2 Male 32 72.6 180

3 Male 22 66.2 176

both healthy individuals and patients with CVD. Conversely,
some parameters can only be estimated via highly invasive and
risky procedures (e.g. ventricular catheterization is needed to
assess end-systolic and end-diastolic elastances in the ventricles),
which can only be performed when required by the specific
health conditions of a patient with CVD. Thus, in order to
properly design a study involving multiple techniques to measure
cardiovascular parameters on healthy subjects and patients with
CVD that could serve as ground truth to validate our EA
findings, it is important to assess beforehand which of the
many model parameters may be effectively estimated by the
proposed EA method. This constitutes the specific goal of the
present investigation.

The physiological relevance of the personalized solution
is evaluated a posteriori by comparing the blood pressure
estimated via the personalized model with the blood pressure
measured via a cuff placed on the arm of the subject.
When tested on three healthy individuals, the proposed EA
performed better in estimating the parameters characterizing
the function of the left ventricle than those of the right
ventricle. The EA also performed well in estimating arterial
stiffness. The satisfactory agreement between model-predicted
and experimentally-measured values of blood pressure support
the physiological relevance of these findings and show promise
for utilizing the proposed approach as a quantitative method for
noninvasive cardiovascular monitoring.

2. METHODS

In this section 2, we outline the details on the signal
acquisition (section 2.1), the physiology-based cardiovascular
model (section 2.2), and the design of the EA algorithm
(section 2.3).

2.1. Signal Acquisition and Processing for
ECG, BCG, and Blood Pressure
Three healthy subjects were recruited for data collection in
controlled laboratory settings. The sex, age, weight, and height of
the subjects are summarized in Table 1. The subjects were asked
to lie still on a suspended bed system as previously described
in Guidoboni et al. (2019), while the ECG and BCG signals
were recorded. The ECG was acquired via a 3-lead configuration
and the BCG was acquired with a three-axis accelerometer from
Kionix with 1,000 mV/g sensitivity placed on the bed frame of a
suspended bed (Kionix, 2014). The ECG and BCG signals were
collected simultaneously using an AD Instrument PowerLab
16/35 data acquisition system (ADInstruments, 2014). The ECG
and BCG signals have been filtered via a 6th order Butterworth
bandpass filter to remove the low-frequency respiratory motion

FIGURE 1 | The collection T M

f of BCG curves measured experimentally

(gray curves) are reported along with the fMk , with k = 1, . . . ,Nc = 5,

consecutive curves selected randomly as objective curves for the evolutionary

algorithm (EA) applied to Subject 1.

and the high-frequency noise. Cut-off frequencies of 0.7–40 Hz
and 1.25–15 Hz have been used for the ECG and BCG signals,
respectively (Enayati, 2019).

The R peaks in the ECG, located via the Pan-Tompkins
algorithm (Pan and Tompkins, 1985), were used to segment
the BCG signal. Thus, a family of BCG curves is obtained, as
shown in Figure 1. Let us denote by T M

f
the family of all the

BCG curves and by fM = fM(t) a single BCG curve in the
family, so that fM ∈ T M

f
. The superscript M indicates that

these curves aremeasured, as opposed to those that are predicted
by the mathematical model (as shown in section 2.2). We note
that fM has the units of a force [dyne] as it is obtained via the
following relationship:

fM(t) = m× a(t) [dyne] (1)

where m is the mass of the subject (m = 74.2 Kg for the subject
considered in this study) and a(t) is the acceleration [cm/s2]
obtained by applying the following conversion to the signal aV (t)
[V] actually measured by the accelerometer:

a(t) = G
aV (t)− offset

S
(2)

with offset = 2.5 mV, S = 1 mV, and G = 981 cm/s2 (Kionix,
2014). Since the length of a cardiac cycle may vary from beat to
beat, the length of each BCG curve may not be constant. Thus,
the k−th curve fM

k
∈ T M

f
is defined for t ∈ [0,Tck ], where Tck

is the length of the k−th cardiac cycle computed as the distance
between two consecutive R peaks in the ECG.

In addition, the blood pressure was measured via a cuff
placed on the arm of the subjects. A total of six blood pressure
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measurements were performed, three before the beginning of the
ECG and BCG data acquisition and three afterward. An interval
of 5 min was allowed between measurements. It is important
to emphasize that cuff-based blood pressure measurements may
interfere with the accelerometer-based BCG acquisition, as they
introduce spuriousmovements. Furthermore, it is likely to expect
that the blood pressure may decrease as the subject rests on
the bed for a prolonged period of time. Thus, we adopted a
protocol for blood pressure measurements to be performed both
before and after the ECG-BCG data acquisition on the suspended
bed. Ultimately, for each of the six measurements, systolic and
diastolic blood pressures (SBP, DBP) are recorded and the pulse
pressure (PP) is computed as the difference between the two,
so that PP = SBP−DBP. The average PP value over the six
measurements for the same individual is used as a comparison
with the model prediction, as illustrated in section 3.3.

2.2. Physiology-Based Cardiovascular
Model for Prediction of Blood Pressures,
Blood Volumes, and BCG Waveform
The physiology-basedmodel presented in Guidoboni et al. (2019)
is utilized to simulate the blood flow through the cardiovascular
system and to predict the resulting BCG waveform. In this study,
we mention only the features of the model that are relevant for its
combination with the EA illustrated in section 2.3, directing the
interested reader to Guidoboni et al. (2019) for the full details.

In the model, the pumping action of the ventricles is described
by the pressure generators

UL(t) = ULO aL(t), UR(t) = URO aR(t) (3)

where the subscripts L and R indicate the left and right ventricles,
ULO and URO are positive constants representing the pressure
build-up capacity in the ventricles, and aL(t) and aR(t) represent
nondimensional activation functions for the timing of ventricular
contractions defined as

aL(t) =
tanh(qL ta)− tanh(qL tb)

2
,

aR(t) =
tanh(qR ta)− tanh(qR tb)

2
(4)

for tm = mod(t,Tc) < Ts and aL(t) = aR(t) = 0, otherwise. In
Equation (4), ta = t − Ta and tb = t − Tb, with Ta, Tb, qL, and
qR positive constants. Furthermore, Ts is the length of the systolic
part of the cardiac cycle, and Tc is the length of the entire cardiac
cycle. Interestingly, Tc can be tailored to a specific individual by
means of the distance between R peaks in the ECG. The pressure
generators defined in Equation (3) are connected in series with
time-varying elastances defined as

EL(t) = ELD+ ELS aL(t), ER(t) = ERD+ ERS aR(t) (5)

where ELD, ELS, ERD, and ERS are positive constants.
Large arteries in the model play a very important role, as they

are major contributors to the BCG waveform. Specifically, the
model explicitly includes the ascending aorta (i = 2), the aortic

arch (i = 3), the thoracic aorta (i = 4), the abdominal aorta
(i = 5), the iliac arteries (i = 6), and the cerebral arteries
(i = 14). The i labels follow those utilized in Guidoboni et al.
(2019). In this study, for ease of reference, we define the set
I = {2, 3, 4, 5, 6, 14} to indicate all the arteries in the model.
Important parameters for each large artery i, for i ∈ I , are
the radius ri and the length li. All arteries are assumed to have
the same Young modulus E characterizing their stiffness. In the
model, the iliac arteries in the systemic circulation are followed by
the resistance R7 representing the peripheral vascular resistance.
Finally, leveraging the electric analogy to fluid flow (Sacco et al.,
2019), the model is completed by other capacitors, resistors,
and inductors representing the microcirculation and the venous
return to the heart.

The outputs of the physiology-based closed-loop model
summarized above are the time-dependent distributions of
pressures and volumes of blood as it flows in all vascular
compartments. In particular, the computed blood volume in the
left ventricle as a function of time allows us to calculate the
end-diastolic volume (EDV), the end-systolic volume (ESV), the
stroke volume (SV), the CO, and the ejection fraction (EF).
Furthermore, the computed volume waveforms can be used to
obtain the BCG waveform fP (t) as the acceleration of the center
of mass of the human body resulting from the motion of blood
through the cardiovascular system. The superscript P indicates
that this waveform is model-predicted, as opposed to those
measured experimentally (as shown in section 2.1). Specifically,
fP (t) is computed as

fP (t) = ρb

∑

n∈N

d2Vn

dt2
(t) yn [dyne] (6)

where ρb is the blood density, the waveforms Vn(t) represent
the blood volume occupying the cardiovascular compartment n
at time t, with n ∈ N = I ∪ {lv, rv}, and yn represent the
distance in the head-to-toe direction between the cardiovascular
compartment n, with n ∈ N , and the plane of the heart valves.
We note that N comprises the left and right ventricles, i.e.,
{lv, rv}, in addition to the large arteries, i.e., I . The values of all
model parameters that are not explicitly estimated via the EA
described in section 2.3 are assumed to be the same as those
reported in Guidoboni et al. (2019).

2.3. Evolutionary Algorithm for Searching
Personalized Parameters in the
Physiology-Based Cardiovascular Model
An EA is utilized to search for the parameter values of
the cardiovascular model described in section 2.2 that
yield a satisfactory match between the model-predicted and
experimentally-measured BCG waveforms, which we denoted by
fP (t) and fM(t), respectively, for a given individual. We recall
that an EA is a computational technique that abstracts from
the mechanisms of evolution to search for optimal solutions to
a problem. The EA search mechanism is inspired by Darwin’s
Theory of Evolution: similar to individuals evolving inside a
species according to their fitness in the environment, solutions
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TABLE 2 | Summary of the model parameters in the genotypes considered in the

evolutionary algorithm (EA).

Genotype Symbol Unit Description

Gr ri , i ∈ I cm arterial radii

G l li , i ∈ I cm arterial lengths

Gy yn, n ∈ N cm coordinates for BCG calculation

G lv ELS mmHg cm−3 left ventricular end-systolic elastance

ELD mmHg cm−3 left ventricular end-diastolic elastance

ULO mmHg pressure build-up capacity in the left

ventricle

qL s−1 strength of left-ventricular activation

Ts s length of the systolic part of the cardiac

cycle

Grv ERS mmHg cm−3 right ventricular end-systolic elastance

ERD mmHg cm−3 right ventricular end-diastolic elastance

URO mmHg pressure build-up capacity in the right

ventricle

qR s−1 strength of right-ventricular activation

Gvas E mmHg arterial young modulus

R7 mmHg cm−3 s peripheral resistance

in an EA evolve in the search space in order to optimize an
objective function (Ranganathan et al., 2018).

The genotype G in our EA comprises the set of parameters
in the cardiovascular model whose optimal values are subject
to search. In the following, we will denote by g ∈ G a specific
choice for the parameter values, also referred to as genetic

coding. Mutation rules will vary depending on the anatomical
and physiological meaning of each parameter in G. To this end,
it is convenient to write G as the union of the parameter sets
pertaining to:

• The radii and lengths of the major arterial segments in the
model, defined as Gr = {ri, i ∈ I} and Gl = {li, i ∈ I},

• The coordinates of the cardiovascular compartments with
respect to the heart valves, defined as Gy = {yn, n ∈ N },

• The function of the left ventricle, defined as Glv =

{ELS, ELD,ULO, qL,Ts},
• The function of the right ventricle, defined as Grv =

{ERS, ERD,URO, qR},
• The function of the vasculature, defined as Gvas = {E,R7}.

Finally, we can write G = Gr∪Gl∪Gy∪Glv∪Grv∪Gvas. A summary
of the model parameters in the genotypes that are subject to the
EA search is provided in Table 2.

The phenotype P represents the manifestation of a given
genotype which, in our case, is given by the outputs of the
cardiovascular model. In the following, we will denote by p ∈ P

a specific phenotypic instance. The objective function directing
the EA search focuses only on the fitness of the BCG waveform
fP (t), but additional cardiac variables are used to ensure that
the search results are physiologically acceptable. Specifically, we
write P = Pfit ∪ Pacc, with Pfit = {fP (t), t ∈ [0,Tc]} and
Pacc = {EDV, ESV, SV, CO, EF}.

The overall EA strategy is illustrated in Figure 2. We consider
Nc consecutive curves f

M
k

(t), with k = 1, . . . ,Nc and t ∈ [0,Tck ]

as objective curves for the evolutionary search. An alternative
choice could have been to create a single template representing
the whole curve bundle. We opted for selecting real curves rather
than a template in order to preserve the natural curve features
as much as possible, including their different temporal lengths,
while considering multiple curves in order to capture, rather
than discard, beat-to-beat variations. In this study, we considered
Nc = 5.

It is a physiological fact that no beat is exactly equal to next in
any given person. As a consequence, it is physiological to expect
that part of the genetic code G will present beat-to-beat variations
and should, therefore, be treated independently when applying
the EA algorithm to the Nc objective curves selected for the
search. This is the case for Glv, Grv, and Gvas, which characterize
the strengths of the ventricle contractions and the response of the
vasculature. The mean radii, lengths, and locations of the major
arteries, on the other hand, may vary with age or with the onset
of disease conditions but are not expected to vary over the few
minutes required for the BCG acquisition. To account for these
differences in the expected genotype variations, we proceed as
follows. We select one of the Nc objective curves and we apply
the EA to search for Gr , Gl, and Gy in addition to Glv, Grv, and
Gvas. The values for gr ∈ Gr and gl ∈ Gl obtained during this
preliminary search are then used to narrow down the interval for
the radius and length variations considered when applying the
EA to the remainder of the curves. In this study, we considered
fM1 out of fM

k
, for k = 1, . . . ,Nc, for the preliminary search. The

information about the height of the subject is used to limit the
search range for gy ∈ Gy in all simulations. The strategy adopted
in the EA implementation is detailed below.Whenever necessary,
we will highlight the algorithm variations depending on whether
it is applied to fM1 or to the remainder of the curves.

STEP 1: INITIAL POPULATION. An initial population of M =

300 genotypes is obtained by computing mutations according
to specific rules. In the following, we will denote by U(a, b)
a uniform distribution in the range [a, b] and by N (0, σ ) a
normal distribution with mean equal to zero and SD equal to
σ . Uniform distributions will be used in cases where upper and
lower bounds for the range of parameter values can be set a
priori, either by means of available measurements or domain
knowledge. When such information is not available, a normal
distribution is adopted.When the EA is applied to fM1 , mutations
are generated according to the following scheme:

gri = U

(

gri,inf , min(gri,sup, g
r
i−1)

)

gri ∈ Gr i = {3, 4, 5, 6}

(7)

gli = U

(

gli,inf , g
l
i,sup

)

gli ∈ Gl i ∈ I ,

(8)

g
y
n =

{

U(ḡ
y
n ,α

yḡ
y
n ) for αy > 1

U(αyḡ
y
n , ḡ

y
n ) for αy < 1

g
y
n ∈ Gy, n ∈ N .

(9)

glv = ḡ lv +N

(

0, σ lv
)

glv ∈ Glv

(10)
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FIGURE 2 | Illustration of how a priori knowledge about the subject, domain knowledge, experimental measurements, and predictions of a physiology-based

mathematical model are combined in the EA to identify cardiovascular parameters for a specific subject.

grv = ḡ rv +N

(

0, σ rv
)

grv ∈ Grv

(11)

gvas = ḡ vas +N

(

0, σ vas
)

gvas ∈ Gvas

(12)

Equations (7) and (8) show that radii and lengths for each of the
major arteries, namely for each i ∈ I , are selected via a uniform
distribution based on the ranges [gr

i,inf
, gri,sup] and [gl

i,inf
, gli,sup]

reported in the literature (refer to Tables 4, 5). An additional
anatomical constraint has been included in Equation (7) in order
to ensure that that the radius decreases when moving down

the arterial tree. Equations (10–12) show that the functional
parameters for the ventricles and the vasculature are computed
as mutations of the baseline values, indicated with bars, by means
of normal distributions (as shown in Table 3). In this study,
we assumed the SDs to be equal to half of the baseline values.
Equation (16) shows that the genetic code gy ∈ Gy is selected
via a uniform distribution between the baseline values ḡ

y
n , for

i ∈ N and their scaled valued by means of a factor αy, which is
assumed to be equal, larger, or less than 1 depending on whether
the subject is as tall as, higher, or shorter than a reference height.
In this study, we assumed the reference height to be 180 cm and
we set αy = 1.1 for Subject 1 (height: 189 cm), αy = 1.0 for
Subject 2 (height: 180 cm), and αy = 0.85 for Subject 3 (height:
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TABLE 3 | Summary of the baseline values and the SDs utilized in the EA

simulation.

Parameter Unit Baseline Value Standard Deviation

ELS mmHg cm−3 1.375 0.6875

ELD mmHg cm−3 0.04 0.02

ULO mmHg 50 25

qL s−1 6.28 3.14

Ts s 0.35 0.175

ERS mmHg cm−3 0.23 0.115

ERD mmHg cm−3 0.01 0.005

URO mmHg 26 13

qR s−1 6.28 3.14

E mmHg 3000 1500

R7 mmHg cm−3 s 0.35 0.175

All baseline values are the same as those reported in Guidoboni et al. (2019) except for

Ts, whose baseline value has been estimated from the ECG recording. The values for the

SDs are assumed to be half of the baseline values.

TABLE 4 | Summary of the ranges for the arterial radii utilized in this study.

Artery Unit pr
i,inf pr

i,sup Reference

Ascending (i = 2) [cm] 1.49 1.91 Wolak et al., 2008

Aortic arc (i = 3) [cm] 1.14 1.42 Wolak et al., 2008

Thoracic (i = 4) [cm] 0.92 1.28 Joh et al., 2013

Abdominal (i = 5) [cm] 0.80 1.10 Joh et al., 2013

Iliac (i = 6) [cm] 0.492 0.725 Joh et al., 2013

Carotid (i = 14) [cm] 0.26 0.36 Krejza et al., 2006

TABLE 5 | Summary of the ranges for the arterial lengths utilized in this study.

Artery Unit pl
i,inf pl

i,sup Reference

Ascending (i = 2) [cm] 4 5 Goldman and Schafer, 2011

Aortic arc (i = 3) [cm] 3.85 5.9 Boufi et al., 2017

Thoracic (i = 4) [cm] 12.9 15.7 Redheuil et al., 2011

Abdominal (i = 5) [cm] 13 16 Drake et al., 2009; Goldman

and Schafer, 2011

Iliac (i = 6) [cm] 3.7 7.5 Bergman, 2007

Carotid (i = 14) [cm] 20 24.4 Choudhry et al., 2016

176 cm). In so doing, we leverage the available information on a
specific subject to obtain an a priori estimate for Gy and narrow
its range for the EA search. All baseline values are the same as
those reported in Guidoboni et al. (2019) except for Ts, which has
been estimated from the ECG recording as the average of the time
interval between each R peak and the end of the following Twave.

This procedure for determining the initial population is
slightly modified when it is applied to each of the remaining
selected curves fM

k
, for k = 2, . . . ,Nc. Specifically, g

lv, grv, gvas,
and gy are selected as in Equations (10–12, 16), whereas gr and
gl are selected via a uniform distribution within a range of ±3%
of the fittest genotypes obtained upon the convergence of the
EA applied to fM1 . Ultimately, this procedure gives the initial

population ofM genotypes, denoted as gj ∈ G, with j = 1, . . . ,M,

that can be used to start the EA on each of the fM
k

curves, with
k = 1, . . . ,Nc, individually.

STEP 2: PHYSIOLOGICAL CHECK. For each of the genotypes
gj in the initial population, the corresponding phenotype pj,
with j = 1, . . . ,M, is computed via the physiology-based
cardiovascular model. In order to be physiologically acceptable,
we require the values of the cardiac variables inPacc to fall within
some broad ranges reported in the literature and summarized
in Table II of Guidoboni et al. (2019). The rationale behind
the physiological check is that, in reality, the human body is
capable of adapting ventricular and vascular parameters so that
their combined action leads to proper cardiovascular function.
Thus, not all randomly selected genotypes may lead to acceptable
results. Even though this step may raise concerns about its
applicability in disease conditions, the ranges utilized for the
check are meant to be quite loose and only provide a way
to exclude obviously erroneous genetic combinations. Thus, as
more clinical and experimental data become available on the
cardiac variables in Pacc in health and disease, they can be
used to enrich the domain knowledge and adjust the ranges for
the physiological check. The generation of genotypes for the
initial population continues till, after removal of unacceptable
genotypes under the physiological check, a population of M =

300 physiologically-acceptable genetic codes is achieved.
STEP 3: FITNESS RANKING. The phenotypes pj are ranked

according to their fitness, which we assume to be the similarity

between the model-predicted BCG waveform p
fit
j ∈ Pfit and the

selected objective curve fM
k

, for k = 1, . . . ,Nc. We remind that
this is done independently for each of the Nc objective curves. In
this study, the similarity is quantified by means of the Euclidean
distance between the phenotypic and objective curves, which
is computed as follows. The measured waveform fM

k
(t) is not

available in analytic form, but rather as a sequence of values
fM
k,s

= fM
k

(ts) at discrete time instants ts ∈ [0,Tck ] as provided
by the accelerometer. Since, by construction, all EA-generated
curves are defined over the same time interval [0,Tck ] as the
experimentally-measured objective function fM

k
, the values of

the EA curves at the time instants ts can be easily calculated and
will be denoted by fP

k,s
. Then, the Euclidean distance between the

functions fM
k

(t) and fP
k
(t) is computed as the Euclidean distance

d between their discrete versions (ts, f
M
k,s

) and (ts, f
P
k,s
) as

dk =

√

∑

s

(

fM
k,s

− fP
k,s

)2
for k = 1, . . . ,Nc . (13)

The best 100 curves according to the fitness ranking are selected
as parents for offspring generation.

STEP 4: OFFSPRING GENERATION. The offspring genotypes
are produced as follows:

gri = gri,p + U

(

(gri,inf − gri,p) , (min(gri,inf , g
r
i−1)− gri,p)

)

gri ∈ Gr i = {3, 4, 5, 6}, (14)

gli = gli,p + U

(

(gli,inf − gli,p), (g
l
i,sup − gli,p)

)
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gli ∈ Gl i ∈ I , (15)

g
y
n =

{

U(ḡ
y
n ,α

yḡ
y
n ) for αy > 1

U(αyḡ
y
n , ḡ

y
n ) for αy < 1

g
y
n ∈ Gy, n ∈ N (16)

glv = glvp +N

(

0, σ lv
)

glv ∈ Glv (17)

grv = grvp +N

(

0, σ rv
)

grv ∈ Grv (18)

gvas = gvasp +N

(

0, σ vas
)

gvas ∈ Gvas (19)

where the subscript p indicates the genetic code of the parent.
We note that the interval of variation for g

y
n, with n ∈ N , is

assumed to be the same for parents and offsprings. All offsprings
undergo the physiological check described in STEP 2. A total
of λ = 3 physiologically-acceptable offsprings are produced
by each parent. Finally, the physiologically-acceptable offpsrings
and their parents are ranked according to their similarity to the
objective curve fM

k
under consideration and the fittest λ =

100 genotypes are selected to form the generation advancing
in the evolution. Utilizing this procedure, we ensure that (i)
the population size is kept constant at M = 300 through the
generations, and that (ii) only the fittest individuals advance from
one generation to the next.

STEP 5: CONVERGENCE CHECK. The J peak and the K valley
are among the most important traits characterizing the BCG
waveform; they are detectable as the most prominent maximum
and minimum following the R peak in the ECG (Starr and
Noordergraaf, 1967). Let us denote by AM

J,k
(resp. AM

K,k
) and TM

J,k

(resp. TM
K,k

) the magnitude of the J peak (resp. K valley) and
its timing with respect to the preceding R peak calculated for
each of the k selected objective curves, with k = 1, . . . ,Nc.
The location of the J peak and the K valley, along with their
magnitudes and timings with respect to the R peaks in the ECG,
are illustrated in Figure 3. The EA convergence is assessed by
evaluating whether there is an offspring satisfying the following
two criteria:

1. The predicted J-K magnitude and timings must be within a
5% range when compared to those computed for the objective
curve under consideration;

2. The offspring must be within the top Nfit = 20 curves in the
fitness ranking (as shown in Step 3).

We note that, by requiring the fitness ranking of the offspring
to be high enough (second criterium), we aim at finding a
solution that is close in an average sense to the measured
curve while, simultaneously, maximizing the similarity with
the J-K features (first criterium). If such an offspring exists,
convergence is reached, otherwise, the EA continues to the
next generation.

A maximum limit of 30 generations has been set as a stopping
criterium in case convergence is not achieved.

STEP 6: SOLUTION FEATURES. Once the EA has reached
convergence, the representative features of the EA solutions
are computed as the average over the three best-ranked
curves, namely

A
P

J,k =
1

3

3
∑

b=1

AP ,b
J,k

A
P

K,k =
1

3

3
∑

b=1

AP ,b
K,k

(20)

T
P

J,k =
1

3

3
∑

b=1

TP ,b
J,k

T
P

K.,k =
1

3

3
∑

b=1

TP ,b
K,k

. (21)

This holds for each EA run pertaining to the k = 1, . . . ,Nc

selected curves from the measured BCG.
STEP 7: A POSTERIORI BLOOD PRESSURE ESTIMATION.

Ultimately, the EA provides a personalized estimate for the
cardiovascular parameters summarized in Table 2 which, via the
solution of the physiology-based model described in section 2.2,
yields an estimate of the distributions of blood volumes and
blood pressures within the cardiovascular system of a specific
subject. To evaluate the reliability of these estimates, we compare
the blood pressure values measured with a cuff directly on the
subject, as described in section 2.1, with the blood pressure values
predicted by the model with the personalized parameters. The
cuff measures the pressure at the level of the brachial artery
in the arm which, however, is not explicitly included among
the major arteries of our cardiovascular model (as shown in
section 2.2). To address this issue, we leverage the results of the
Anglo-Cardiff Collaborative Trial, which included approximately
12, 000 individuals across East Anglia and Wales in the United
Kingdom (McEniery et al., 2008). The study provides specific
relationships that can be used to estimate the brachial pressure
from the central aortic pressure. Interestingly, our cardiovascular
models provide the central aortic pressure directly as the blood
pressure in the ascending aorta (i = 2). In McEniery et al.
(2008), differences in the diastolic values of the central aortic and
brachial pressures were found to be negligible, thereby suggesting
to assume the two values to be the same. Conversely, the systolic
brachial values were found to be higher than the corresponding
central aortic values, with specific increments and intervals of
variability provided as a function of age and gender, as shown
in Figure 1 of McEniery et al. (2008). Since in this study, we are
considering threemale subjects in the range of 20–29 years of age,
we adopt an increment of 20mmHgwith an interval of variability
of the± 10 mmHg.

3. RESULTS

We begin by comparing the BCG curves measured
experimentally with those predicted by the EA algorithm
(section 3.1). Next, we examine the EA performance in terms
of estimating various parameters in the cardiovascular model
(section 3.2). Finally, the values of PPs estimated by the algorithm
are compared with those measured with the cuff placed on the
arm of each subject (section 3.3).
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FIGURE 3 | The electrocardiogam (ECG; top) and fM waveform (bottom) acquired synchronously are reported. R peaks in the ECG are marked with red circles and

their time location is indicated by red dashed vertical lines. Amplitude and timing for the J peak are reported for the k−th curve (refer to AM

J,k and TM

J,k ), whereas the

amplitude and timing for the K valley are reported for the following (k + 1)−th curve (refer to AM

K,k+1 and TM

K,k+1).

3.1. Comparison Between Experimental
and Predicted BCG Curves
Figure 4 reports the BCG curves fM

k
, with k = 1, . . . , 5 measured

experimentally (in black) and the corresponding three best-
ranked fP curves predicted via the EA (in colors) obtained
for Subject 1. Analogous figures for Subjects 2 and 3 can be
found in the Supplementary Material. Notably, the agreement
between the measured and predicted curves in the systolic part
of the cardiac cycle is quite satisfactory, with a clearly detectable
similarity in terms of J-K features. During diastole, though, the
predicted curves are much flatter than the measured curves,
capturing only loosely the peaks and valleys that are exhibited
experimentally. This result is not unexpected, since the diastolic
features of BCG are known to be more challenging to capture
both experimentally and theoretically (Starr and Noordergraaf,
1967; Guidoboni et al., 2019).

A quantitative comparison between the J-K features in the
experimental and predicted curves for each of the three subjects
included in the study is summarized in Table 6 by means of
average percent errors in the amplitudes of the J and K peaks
defined as

1(A
P

J ,A
M
J ) =

1

5

5
∑

k=1

|A
P

J,k − AM
J,k

|

|AM
J,k

|
× 100 ,

1(A
P

K ,A
M
K ) =

1

5

5
∑

k=1

|A
P

K,k − AM
K,k

|

|AM
K,k

|
× 100

and in the timings of the J and K peaks defined as

1(T
P

J ,T
M
J ) =

1

5

5
∑

k=1

|T
P

J,k − TM
J,k

|

|TM
J,k

|
× 100 ,

1(T
P

K ,T
M
K ) =

1

5

5
∑

k=1

|T
P

K,k − TM
K,k

|

|TM
K,k

|
× 100 .

Remarkably, the mean percent errors in the timings are
approximately one order of magnitude lower than the percent
errors in the amplitudes.

3.2. Estimation of Cardiovascular
Parameters via the EA
We recall that the main output of the EA algorithm is
the personalized estimate of the physiological and anatomical
parameters in G for a given subject. Detailed results are reported
in Figure 5 in the case of Subject 1. Analogous figures for
Subjects 2 and 3 can be found in the Supplementary Material.
For each parameter, we consider the three best-ranked curves
and we report the mean as the bar height, along with the
maximum and the minimum values as black brackets. The
results indicate that the proposed EA algorithm is capable of
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FIGURE 4 | Comparison among the BCG curves fMk , with k = 1, . . . , 5 measured experimentally (in black) and the corresponding three best-ranked curves

computed via the EA (in colors) for Subject 1.

estimating in a consistent manner, over the five selected objective
curves, all the parameters characterizing the left ventricle (ELS,
ELD, ULO, qL, and Ts) and the arterial Young modulus (E).
Some of the parameters characterizing the right ventricle can
also be estimated quite consistently (ERD, URO), while others
show marked differences among the results obtained for the five
curves (qR, ERS). Similar marked differences are displayed by
the estimates for peripheral vascular resistance (R7). The values
of some estimated parameters (Ts, ULO, E, ERD, URO) turn
out to be close to the baseline values reported in Table 3, while
others deviate markedly. Interestingly, though, the EA estimates
preserve relationships between relative parameter values without
explicitly enforcing them, such as the facts that (i) ULO is larger
than URO, implying that the capacity for pressure build-up in
the left ventricle is larger than that in the right ventricle; and (ii)
ELS (resp. ERS) is larger than ELD (resp. ERD), implying that the
end-systolic elastance is larger than the end-diastolic elastance
in both the left and right ventricles. Finally, the estimated values
for radii, lengths, and locations of the arterial segments are also
reported in Figure 3. They exhibit small differences as a result of
the constraints imposed on the genotype generation.

A quantitative comparison of the cardiovascular parameters
estimated via the proposed EA method for the three subjects
included in the study is summarized in Table 7. For each
estimated parameter, we report the mean value calculated over
five objective curves, along with the minimum and maximum
values (annotated in italics in parenthesis) obtained over all

TABLE 6 | Quantitative comparison between the J-K features in the

experimentally-measured (M) and EA-predicted (P ) curves.

Features Subject 1 (%) Subject 2 (%) Subject 3 (%)

1(A
P

J ,AM

J ) 12.9 15.2 21.1

1(A
P

K ,AM

K ) 17.3 11.4 29.6

1(T
P

J , TM

J ) 1.7 1.2 1.5

1(T
P

K ,TM

K ) 1.5 2.5 3.3

Percent errors (1) in the amplitudes (A) and the timings (T) are computed for each subject.

the curves for the same subject. Since a ground truth for the
estimated parameters is not available, we utilized the width of the
interval of the estimated parameters as an indicator of the EA
potential for parameter estimation. More precisely, we utilized
bold fonts to indicate in Table 7 those results for which the
semidistance between the maximum and minimum is less than
1/3 of the estimated mean value. Interestingly, the estimates
of ELD, ULO, Ts, and URO satisfy this criterion for all three
subjects, whereas the estimates of ELS, qL, ERS, qR, and E were
satisfactory only for two out of three subjects. The value of the
peripheral resistance R7 resulted to be poorly estimated in all
subjects. It is also worth noticing that the results for all three
subjects confirm that the ULO is estimated to be larger than
URO, and that ELS (resp. ERS) is estimated to be larger than
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FIGURE 5 | Summary of the physiological and anatomical parameters estimated by the EA for each of the k = 1, . . . , 5 selected BCG objective curves for Subject 1.

ELD (resp. ERD), thereby supporting the physiological relevance
of the findings.

3.3. Central Aortic Pressure and Brachial
Pressure
To further verify the capability of the EA algorithm to yield
physiologically-meaningful solutions, we compare the brachial
pressure measured experimentally with the pressure predicted
by the cardiovascular model equipped with the personalized
parameters provided by the EA search. The results obtained
for Subject 1 are reported in Figure 6, where the horizontal
lines indicate the mean (solid line), maximum, and minimum
values (dashed lines) of the six systolic and diastolic pressure
measurements acquired with a cuff placed on the arm of the
subject (refer to section 2.1). Analogous figures for Subjects 2 and

3 can be found in the Supplementary Material. Figure 6 (Left)
shows the pressure waveforms in the ascending aorta (i = 2)
predicted by the cardiovascular model for the three best-ranked
curves obtained by the EA performed on fM1 . FollowingMcEniery
et al. (2008), we apply a 20 mmHg increment (vertical yellow
segments) to the predicted systolic value of the central aortic
pressure to estimate the systolic value of the brachial pressure.
Differences in the diastolic values of the central aortic and
brachial pressure are neglected. Figure 6 (Right) reports the
results for the brachial pressure predicted by the cardiovascular
model for Subject 1 with the personalized model parameters
yielded by the EA search performed on each of the k = 1, . . . , 5
objective curves fM

k
. The height of the colored bars represents

the mean value over the three best-ranked curves obtained for a
given k, whereas the black brackets indicate the maximum and
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TABLE 7 | Summary of EA estimated parameters for the three subjects involved in the study.

Parameter Unit Subject 1 Subject 2 Subject 3

ELS mmHg cm−3 0.37 (0.32,0.43) 0.37 (0.28,0.48) 0.78 (0.50,1.50)

ELD mmHg cm−3 0.08 (0.07,0.10) 0.09 (0.08,0.10) 0.06 (0.04,0.08)

ULO mmHg 66.92 (62.22,71.84) 80.22 (74.21,87.31) 74.23 (58.11,90.89)

qL s−1 13.54 (12.25,16.10) 12.85 (10.48,16.02) 15.76 (3.51,26.08)

Ts s 0.37 (0.35,0.38) 0.37 (0.36,0.38) 0.37 (0.36,0.39)

ERS mmHg cm−3 0.42 (0.32,0.60) 0.37 (0.30,0.52) 0.37 (0.26,0.42)

ERD mmHg cm−3 0.019 (0.011,0.024) 0.018 (0.012,0.023) 0.020 (0.010,0.037)

URO mmHg 20.15 (11.76,24.90) 21.73 (16.58,26.16) 23.95 (18.28,30.67)

qR s−1 9.98 (6.62,15.66) 8.36 (6.48,10.42) 9.71 (7.84,11.34)

E 103 mmHg 2.60 (2.30,2.97) 4.04 (3.45,4.88) 4.60 (3.33,8.22)

R7 mmHg cm−3 s 0.14 (0.09,0.19) 0.19 (0.14,0.27) 0.11 (0.06,0.16)

Mean values are reported along with the minimum and maximum values (in italics, in parenthesis). Bold fonts are used to indicate the instances for which the semidistance between

maximum and minimum is less than 1/3 than the estimated mean value.

minimum values. The pulse pressure, defined as the difference
between systolic and diastolic values, is highlighted with solid
colors in the bars.

A comparison between the values of PP measured
experimentally and predicted by the proposed EA method
for each subject of three subjects is summarized in Table 8.
The measured values correspond to the average PP values
over a total of six measurements obtained with the cuff, as
described in section 2.1. The values reported in italics in
parenthesis indicate the minimum and maximum values
in the single measurements. The EA-predicted values are
obtained through the following steps: (i) a central aortic
pressure waveform (refer to Figure 6) is obtained via the
cardiovascular model (refer to section 2.2) with the set of model
parameters corresponding to the three best-ranked curves;
(ii) a factor of 20 ± 10 mmHg is added to the systolic value
of the simulated central aortic pressure to obtain the systolic
brachial pressure, as suggested by the population-based study
of McEniery et al. (2008) (refer to section 2.1); (iii) the PP
is calculated as the difference between the estimated systolic
brachial pressure and the diastolic blood pressure; (iv) the
PP values are averaged over the three best-ranked curves for
each of the five objective curves for each subject, with the
overall minimum and maximum values reported in italics in
parenthesis. Since a ground truth for the central aortic pressure
is not available for this study, the fact that the predicted PP values
are within the measured intervals for all three subjects is very
promising and provides supportive indirect evidence that the
parameters estimated via the proposed EA method actually bear
physiological relevance.

4. DISCUSSIONS

The novelty of the approach proposed in the present study
consists in leveraging a physiology-based mathematical model
to incorporate substantial domain knowledge in an EA whose
objective is to attain optimal fitness between model-predicted
and experimentally-measured BCG curves on a given subject

(refer to Figure 4 and Table 6). By doing so, we are able to
obtain personalized estimates of cardiovascular parameters (refer
to Figure 5 andTable 7) and of variables of physiological interest,
such as the central aortic and brachial pressures (see Figure 6 and
Table 8).

In the current implementation of the algorithm, we opted for

selecting Nc = 5 consecutive experimental BCG curves rather

than a single template representing the whole data acquisition.

This choice is motivated by the fact that amplitude, timing, and
length of each BCG curve embody the action and function of

the ventricles and the vasculature during a single heart-beat and

may as well vary in the next. Thus, we do not expect the EA

estimates for the personalized cardiovascular parameters to be
the same from beat-to-beat, even for healthy subjects such as
those considered in this study, but rather to be in the same
ballpark, as shown in Figure 5. A limitation of the current study
is that the values of the estimated parameters are not directly
comparable to independent measurements. Radii, length, and
locations of the main arteries, Gr , Gl, and Gy could be acquired,
for example, using Doppler imaging. Such information could
either be used as a posterior verification of the EA predictions or
as a priori knowledge that would narrow the EA search range for
that specific subject. The measurement of other parameters, such
as the ventricular elastances, requires invasive techniques based
on catheterization. The capability of the proposed approach
to yield physiologically-meaningful solutions is confirmed by
the good agreement between the PP values predicted by the
cardiovascular model personalized via the EA method and the
experimental measurements (refer to Figure 6 and Table 8). This
result is particularly encouraging, considering that the blood
pressure values were not included in any of the feature sets
utilized in the EA for the physiological check (refer to Step 2,
section 2.3), fitness evaluation (refer to Step 3, section 2.3), and
convergence (refer to Step 5, section 2.3). This finding suggests
that our approach could be used to obtain BCG-based cuffless
blood pressure measurements, along with noninvasive estimates
of central aortic pressure and valuable parameters describing
cardiovascular function.
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FIGURE 6 | Left: Comparison between the central aortic pressure corresponding to the three best-ranked curves selected by the EA search performed on fM1 for

Subject 1 (yellow curves) and the blood pressure measured at the arm with a cuff of the subject (horizontal black lines). The 20 mmHg increment applied to the

systolic value of predicted central aortic pressure is also indicated (vertical yellow segments). The mean (solid black lines) maximum and minimum value (dashed black

lines) of the repeated blood pressure measurements are reported. Right: Comparison between the experimentally measured brachial pulse pressure (PP) (horizontal

blue lines) and the brachial pressure predicted by the EA for each of the k = 1, . . . , 5 objective curves for Subject 1. The PP is indicated with solid colors. Maximum

and minimum values obtained for the three best-ranked curves for each fMk , with k = 1, . . . ,Nc, are reported in black brackets.

In the long term, this study aims at contributing to the quest
for noninvasive techniques capable of providing meaningful
insights into the thermodynamic efficiency of cardiac function.
Without direct left ventricular inductance catheters, clinicians
must rely on indirect estimations from right heart catheters or
algorithms from echocardiograms, each affected by risks and
limitations (Ikonomidis et al., 2019). By providing noninvasive
estimates of left-ventricular end-systolic elastance and central
aortic pressure based on a mechanistic interpretation of the
BCG signal, this study could provide clinicians with a rapid
and insightful assessment of cardiac function that could be used
at the bedside of the critically ill patient and offer practical
solutions for outpatient monitoring. To get a sense of how these
results could be used in practice, let us look at the parameters
estimated for Subjects 1 and 2 in Table 7. Based on the EA-
guided interpretation of the BCG signal, the pressure build-up
capacity in the left ventricle (ULO) for Subject 2 is approximately
20% higher than in Subject 1, while being very close for the
right ventricle (URO). This difference does not constitute a
problem per se; rather, it shows how the BCG could be used
to establish a cardiovascular baseline for each individual. In the
case of outpatient monitoring, longitudinal measurements over
the course of months could help detect a deterioration in left-
ventricular function by, for example, providing a quantitative
trajectory of decreasing ULO values. In the case of critically
ill patients, frequent monitoring (possibly continuous) may be
advisable in order to enable early detection of cardiogenic shock.
Similarly, this method could be used to track changes in left-
ventricular end-systolic and end-diastolic elastances (ELS, ELD),
whose changes are indicative of heart failure with reduced and
preserved EF, respectively (Guidoboni et al., 2019). Our group is

TABLE 8 | Comparison between the pulse pressure (PP) values measured via a

cuff placed in the arm and the PP values predicted as a result of the

cardiovascular parameters estimated via the proposed EA method.

Pulse Pressure [mmHg] Subject 1 Subject 2 Subject 3

Measured 57.5 40.5 57.3

(53,62) (35,47) (52,60)

Predicted 61.1 41.6 44.7

(51.1,71.1) (31.6,51.6) (34.7,54.7)

Variability intervals are reported in italics in parenthesis.

currently conducting studies on human subjects and on swine to
provide further data supporting the theoretical findings reported
in the article, hopefully, bring us closer to making this vision
a reality.

Limitations from both the experimental and modeling
viewpoints should be considered when evaluating the findings
of our study. The BCG sensing modality utilized in this study
is a suspended bed equipped with an accelerometer. While
providing a signal that is very close to the true acceleration of
the center of mass of the human body (Starr and Noordergraaf,
1967), this sensing modality is primarily used in research
laboratories and is not amenable to clinical or in-home use.
Despite differing in shape among sensing modalities, all BCG
waveforms exhibit a major peak (i.e., J peak) and a major
valley (i.e., K valley) (Giovangrandi et al., 2011). Thus, by using
only the J-K amplitudes and timings in the convergence of the
EA algorithm, the approach described in this study could be
extended to other BCG technologies. An ongoing study in the
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Surgical Intensive Care Unit (MU Health Care, Columbia, MO)
has recently shown that measures of timing between ECG and
BCG signals acquired on critically ill patients by means of a
three-axis accelerometer positioned under the head pillow are
feasible and reproducible (Zaid et al., 2021), thereby showing
good potential for applications of the proposed methodology
beyond a laboratory setting.

Additionally, our results show that the agreement between
model-predicted and experimentally measured BCG curves is
better in the systolic part than in the diastolic part of the
cardiac cycle (refer to Figure 4). It is known that the BCG signal
is stronger during systole when the ventricular contractions
occur and the blood from the left ventricle is ejected and
channeled through the aorta (Starr and Noordergraaf, 1967;
Kim et al., 2016). Thus, the experimental measurements are
much more reliable during systole than diastole. Furthermore,
the physiological-based cardiovascularmodel for BCGprediction
used in this study is capable of simulating the systolic peak
and valleys of the BCG waveform with much greater accuracy
than those in the diastole (Guidoboni et al., 2019). Due to
these experimental and theoretical limitations, we based our
convergence criteria on systolic features of the BCG waveform.
In future studies, with the advances of BCG technologies and
physiological understanding of the BCGwaveform, these features
could be extended to include also the diastolic part of the cardiac
cycle. An aspect that could be considered in evaluating the
performance of the proposed EA method is a different choice
for Nc representing the number of consecutive BCG curves to
be selected as objective curves. The choice of Nc = 5 adopted in
this study is motivated by the need of consideringmultiple curves
while maintaining the overall computational load affordable.
Optimal choices for Nc may be explored in conjunction with
the effect of breathing, which may affect the BCG curves over
longer intervals.

5. CONCLUSIONS

This study presented a novel combination of a physiology-
based mathematical model and an evolutionary algorithm to
obtain personalized estimates of cardiovascular parameters
and variables of physiological interest, such as blood pressure,
with the goal of developing quantitative tools for noninvasive
cardiovascular evaluations based on BCG sensing. The approach
proved capable of estimating many ventricular and arterial
parameters with consistency when five consecutive BCG
curves were selected for the subjects considered in this study.
Furthermore, the good agreement between the blood pressure
estimated with the model and measured experimentally with

a cuff shows that the proposed approach is physiologically
meaningful and may provide theoretical support to the
further development of cuffless methods for blood pressure
measurements (Solà and Delgado-Gonzalo, 2019; Le et al.,
2020; Pandit et al., 2020). Investigations evaluating the
applicability of the proposed approach to situations where
the data acquisition is not as controlled as in a laboratory
setting are currently under-way. Preliminary results obtained
when monitoring critically ill patients hospitalized in the
Surgical Intensive Care Unit (University Hospital, MU
Health Care System) suggest that measurements of BCG
amplitudes and timings are feasible and reproducible (Zaid
et al., 2021), thereby yielding promise for future extension of
this study.
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