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Abstract

0.895 and 0.998 respectively.

Background: Quantitative areas is of great measurement of wound significance in clinical trials, wound
pathological analysis, and daily patient care. 2D methods cannot solve the problems caused by human body
curvatures and different camera shooting angles. Our objective is to simply collect wound areas, accurately measure
wound areas and overcome the shortcomings of 2D methods.

Results: We propose a method with 3D transformation to measure wound area on a human body surface, which
combines structure from motion (SFM), least squares conformal mapping (LSCM), and image segmentation. The
method captures 2D images of wound, which is surrounded by adhesive tape scale next to it, by smartphone and
implements 3D reconstruction from the images based on SFM. Then it uses LSCM to unwrap the UV map of the 3D
model. In the end, it utilizes image segmentation by interactive method for wound extraction and measurement. Our
system yields state-of-the-art results on a dataset of 118 wounds on 54 patients, and performs with an accuracy of
0.97. The Pearson correlation, standardized regression coefficient and adjusted R square of our method are 0.999,

Conclusions: A smartphone is used to capture wound images, which lowers costs, lessens dependence on
hardware, and avoids the risk of infection. The quantitative calculation of the 3D wound area is realized, solving the
challenges that 2D methods cannot and achieving a good accuracy.

Keywords: Wound measurement, 3D, Structure from motion, Least squares conformal mapping, Smartphone

Background

The measurement of wounds is an important component
in the field of clinical research, the accuracy of which
influences doctors’ diagnosis, treatment and research pro-
grams directly [1, 2]. In the clinical field, the wound area
is considered as an effective and reliable index of later
complete wound closure [3]. It also plays a role in drug
evaluation and research of wound healing characteristics
[4]. Moreover, it can help doctors with wound classifi-
cation, treatment strategy selection, and propelling the
treatment technology forward [3]. Cardinal M et al. [3]
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show it is a strong predictor of venous leg ulcers heal-
ing by tracking the area of a skin wound within 12 weeks.
Lavery LA et al. [1] show that the diabetic foot wound area
between the first and fourth week can be used to predict
the healing effect after 16 weeks, and to assist with the
evaluation of treatment and drug use.

The wound measurement method has undergone a
transition from 1D to 2D, and then 2D to 3D. The tradi-
tional 1D ruler method [5] for measuring wound areas is
simple and widely used. It measures the external rectan-
gular of wound width by ruler, flexible rule, or adhesive
ruler, and then multiples the wound’s external rectangu-
lar width to obtain the wound area. Rahul S et al. [6]
show that the measurement result of the ruler method is
nearly 150% of the actual area, which is very inaccurate,
and it is tedious and time-consuming. The 2D method
based on image segmentation [7] is a mature method.
It uses a 2D image segmentation and adhesive scale to
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measure wound areas. Yang [8] have developed a wound
surface area calculation method using digital photogra-
phy, and they investigate its error rate. However, this kind
of method has drawbacks such as: (1) Given the exis-
tence of human body curvatures, a 2D method is difficult
to express in the whole shape of a wound, so as to get
the correct area value. (2) The 2D method can be greatly
affected by camera angle, and the use of different angles
may generate different results. Recently, Foltynski [9] have
proposed the Planimator app, which was a correction
method of area measurement based on calculated camera
tilt angle and the calculation of calibration coefficient of
linear dimensions as the weighted average. It overcomes
the large error caused by the shooting angle in the 2D
measurement, but it still cannot overcome the 2D mea-
surement problem caused by the large body curvature.
Meanwhile, when disposable paper rulers are used for area
measurement with the Planimator app, some deviations
from the true area value may occur when the ticks at these
rulers are placed at the wrong distances. On the theoreti-
callevel, Zhang B [10] proposes a stereo vision 3D method
to measure wound areas, but he does not implement it.
Sirazitdinova et al. [11] present a conceptual design of
a system using inexpensive consumer level hardware for
3D wound reconstruction. Images are recorded using the
interactive app running on the mobile device. The data is
transferred to the operational server and processed on it.
The resulting data can be shown to the patient and to the
clinician. They provide a convenient wound measurement
solution that allows patients to receive professional guid-
ance on their injuries at home. However, at present, this
is only a conceptual stage and has not been implemented.
Further experiments are needed to prove the effective-
ness of this scheme. Chen et al. [12] present an efficient
and effective 3D surface reconstruction framework for
an intra-operative monocular laparoscopic scene based
on SLAM. The 3D geometric information of the surgical
scene allows accurate placement AR augmentations based
on 3D calibration. However, their method is a 3D recon-
struction of endoscopic surgery, which does not meet our
application scenarios. SLAM is more suitable for objects
with rich geometric texture. It is easy to lose frames when
rotating, and the point cloud in the map is also very sparse.
Therefore, it is not practical for scenes that need to accu-
rately measure the wound area. Huang [13] present a new
solution to surface area measurement of vitiligo lesions
by incorporating a depth camera and image processing
algorithms. They use Kinect V1 or Kinect V2 to capture
data. Then the segmented lesion area is calculated using
depth data through a software component. Their solution
shows good performance in the smooth part of the human
body. However, if a huge block of the depth image is miss-
ing depth information, the accuracy of area measurement
will be compromised.
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In recent years, the resolution of smartphone cameras
has been getting higher and higher, and now it can reach
tens of millions of resolutions, which is enough for most
photo-taking scenes. Early smartphone image technology
focuses on how to present sharper picture quality. With
the development of camera hardware and the universal-
ity of smartphones in people’s daily lives, the development
of smartphone image technology is shifting to focus on
how to use images more effectively. Masiero A et al. [14]
have developed a mobile mapping system (MMS) using
smartphones, enabling low-cost devices to build reliable
MMS. Gatys LA et al. [15] introduce an artistic neu-
ral algorithm, combining images taken by smartphone
with many famous art works. Liu S et al. [16] propose a
method to automatically track facial markers using smart-
phones. This work inspires us to use the images acquired
by smartphone to establish a 3D model of body surface
wounds.

The structure from motion method (SFM) has been
actively researched by scholars. By analyzing the motion
of the object, it can obtain 3D information from 2D
images. Since its request of images is very low, SFM can
use images taken at random sequences for 3D reconstruc-
tion. At the same time, it can save on camera calibra-
tion steps in advance, and it has strong robustness. This
inspires us to use SFM to implement 3D reconstruction of
the body surface, and then to calculate the wound area.

In this paper, we propose a 3D wound area measurement
with smartphone images. The method goes through the
process of 2D to 3D to 2D. The definition of 2D to 3D to
2D is as follows: first, we collect 2D images of tested bod-
ies by smartphone, and construct a 3D model using these
2D images; second, we unwrap the UV (Texture coordi-
nates usually have U and V coordinate axes, so called UV
coordinates.) map of the 3D model to make it into the 2D
plane; finally, we use interactive image segmentation and
scale conversion to extract and measure wound areas. The
flow of our method is shown in Fig. 1.

Our method provides a complete set of methods for
measuring wound area. Since the 3D reconstruction
method based on 2D images is adopted, it avoids the sit-
uation of frame loss in SLAM real-time reconstruction,
making the whole method more practical. At the same
time, we convert the 3D model to the 2D plane by LSCM
algorithm, and then measure the wound area through the
conversion between pixels and real length, which solves
the challenge of directly segmenting the wound on the
reconstructed 3D model. Moreover, we have verified the
accuracy, practicability and effectiveness of this method
through clinical experiments.

The contribution of our work is as follows:

1 The smartphone makes it very convenient and quick
to capture images of wounded body parts. Our
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Fig. 1 The flow of our method

3D UV unwrapping
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2D wound area
measurement

2D wound area
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method avoids wound infection, and its sampling is
simple and has limited device dependence.

2 We process a novelty pipeline of 2D to 3D to 2D
procedure. It overcomes the difficulties of shooting
angles, human body curvature, and disabled 3D
segmentation.

3 We demonstrate the efficiency and effectiveness of
our method by calculating wound areas.

Related work

Since 3D reconstruction and 3D unwrapping are very
important processes in our work, the related work can be
divided into three broad categories: (1) wound measure-
ment equipment, (2) 3D reconstruction methods and (3)
3D unwrapping methods.

Wound measurement equipment

The Visitrak [17] is an electronic device that manually
tracks wound boundaries for wound measurements. Users
first use the film coverage method to draw out wound bor-
ders and then put the film in a Visitrak transparent plate.
A pen is used to draw borders in the device interface, and
the area value of the wound is automatically calculated
with the equipment using the Kundin formula [18]. It can
cause pain and risk wound infection, even as it reaches
93% accuracy [19].

The MAVIS [20] uses the color coding principle to real-
ize 3D measurement. It uses a CCD camera to record
a set of alternate colors, which is projected onto the
wound at about 45 degrees. Then according to the cal-
ibrated camera focus, a known location projector and
the light intersection of the beam, the geometry of the
wound surface is rebuilt to calculate the area. However,
the MAVIS is large and expensive, which is difficult
to widely use in clinical scenarios. At the same time,
in the wound area < 10cm?, the MAVIS error is
above 10%.

The Silhouette mobile [21] includes a hand-held com-
puter and an integrated high-resolution digital cam-
era with an embedded laser. The laser launches two
beams of light on the edge of the wound, then the
Silhouette mobile generates the wound in a 3D model
based on the surface topography. The Silhouette mobile
can reach 95% accuracy for diabetic foot wounds. How-
ever, this expensive Silhouette mobile cannot be applied
to telemedicine, and it needs to collect data through a
visible laser.

3D reconstruction methods

The stereoscopic light method takes multiple photos at
the same angle and under different lighting conditions to
reconstruct a 3D model. The simplest stereoscopic light
method uses three light sources to illuminate the object in
three different directions, opening only one light source at
a time. It uses three comprehensive photos and the per-
fect diffuse to work out the gradient on the surface of the
object. Then the 3D model is obtained after integrating
the vector field. Basri R et al. [22] realize 3D recon-
struction under the unknown condition of light source.
Hernandez C et al. [23] further propose the use of colored
light for reconstruction. However, the stereoscopic light
method needs to know the exact location and direction of
the light source, so it is difficult to apply in real life.

The stereo vision method [24] is another commonly-
used 3D reconstruction method. In concept, this method
simulates human eyes to perceive images. It mainly
includes three ways of obtaining distance information:
directly using the rangefinder, predicting 3D information
through a single image, and restoring 3D information by
using two or more images on different viewpoints. By
simulating the human visual system, it obtains the posi-
tion deviation between the corresponding points of the
image based on the parallax principle, and recovers 3D
information.

SEM is used to detect matching feature points in an
image in order to restore the position relation between
the cameras. Harris C et al. [25] propose the defini-
tion of the corner point, and Shi J et al. [26] improve
on this and propose a better angle extraction method.
The state-of-the-art method of extracting and match-
ing feature points is the scale-invariant feature transform
method (SIFT) [27]. Besides the SIFT method, researchers
have also proposed some faster methods, such as princi-
pal component analysis scale-invariant feature transform
(PCA-SIFT) [28], gradient location-orientation histogram
(GLOH) [29], and speed up robust features (SURF) [30].
These proposed algorithms are faster than the SIFT
method in terms of speed, but weaker in terms of both
stability and accuracy. Therefore, the SIFT method is still
the best option when there is not much requirement for
computing speed. The image demand for SFM is very low,
so it can reconstruct a 3D model using video or even
randomly shot image sequences. At the same time, the
image sequence can be used for camera self-calibration
eliminating predetermined steps.
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3D unwrapping methods

A heuristic method for triangulation flattening is pro-
posed by McCartney | et al. [31]. It uses a triangle list
to describe the 3D surface flattening algorithm for 3D
unwrapping. The method is based on an optimal local
positioning of projected nodes and a sequential addition
of the nodes. It incorporates an energy model in terms
of the strain energy required to deform the edges of the
triangular mesh. It is efficient and produces good results
for nearly planar surfaces. However, the method does not
guarantee the preservation of the metric structure of the
2D mesh or even its validity.

Eck et al. [32] suggest the use of harmonic maps to
generate the 2D projection of the 3D model. It is based
on the approximation of an arbitrary initial mesh by a
mesh that has subdivision connectivity and is guaranteed
to be within a specified tolerance. The method produces
approximations of good quality, and provides an accurate
mapping function. A major disadvantage of the method is
that it requires the boundary of the 2D mesh to be prede-
fined and convex. Another drawback is that the method
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does not guarantee the validity of the resulting flat mesh,
and the method requires the boundary of the 2D mesh
domain to be predefined and convex.

The least squares conformal mapping method (LSCM)
[33] is a method from polygon mesh to texture mapping,
which can map the shape of a 3D model to a 2D tex-
ture and is relatively undistorted. The method is robust,
and can parameterize large charts with complex borders.
It introduces segmentation methods to decompose the
model into charts with natural shapes, and a new packing
algorithm to gather them in the texture space. By using the
map as a guide when creating a new 2D image, the colors
of the 2D image can be applied to the original 3D model.

Results

Comparison with the stereo vision method

An example of 3D reconstruction results is shown in
Fig. 2. For the wound part based on stereo vision recon-
struction, only the fuzzy shape of the wound can be seen.
Even the shape of the part cannot be seen clearly, and the
wound area cannot be calculated through it. However, for

(a) (b)

(d) (e)

Fig. 2 3D reconstruction comparatione of simulated wounds. a Images captured by smartphone. b Ground truths. € Looks of 2D method. d 3D
model by stereo vision. @ 3D model by ours. f Calculated results of our method. The calculated results of stereo vision is unavailable, so we have to
make the results empty here




Liu et al. BMC Bioinformatics (2019) 20:724

the wound part based on SFM reconstruction, the wound
shape can be clearly seen, and its area can be calculated
through our method.

SFM obtains the depth information of an object by
building the relationship among natural image sequence.
It then reconstructs a 3D model of the wound. Compared
to other common methods like the stereoscopic light
method and the stereo vision method, this method does
not require pre-calibration [24] or a special environment
[20]. It is a good method of reconstruction in the field of
computer vision.

The feature match results play a vital role in building
the relationship of natural image sequence. We use SIFT
characteristics [27] to match features. Compared to the
traditional Harris [34] and KLT characteristics [35], it has
immutability towards rotation, scale-zooming, and bright-
ness variation, as well as stability towards visual angle,
affine, and noise variation.

Comparison with 2D measurement

The experiment results of our method are compared
with the 2D measurement result to evaluate the accu-
racy of our method. The example of area calculation
results in our methods are as shown in Fig. 3. The results
for the wound area are calculated using our method
and the 2D method, with real values shown in Table 1.
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And the statistical index of Pearson correlation, stan-
dardized regression coefficient and adjusted R square
are listed in Table 2. The 2D measurement values and
the measured values of our method are compared in
the line chart, as shown in Fig. 4. The regression curve
of 2D method and ours are shown in Figs. 5 and 6
respectively. And the Bland-Altman plot of the 2D method
and ours are shown in Figs. 7 and 8. The distribution of
relative measurement error (relative error) and absolute
value of relative error of both methods are shown in Figs. 9
and 10. The box-plot of relative measurement error of
both methods is shown in Fig. 11.

From these results the measurements of the 2D method
are not ideal for areas with large body curvatures. The
average error rate for the 2D method is 18.40%, while the
average error rate for our method is only 2.94%. In the case
of less than 1¢m?, the average error rate for the 2D method
is 19.40%, and the average error rate for this method is
3.66%. In the case of 1cm? and above, the average error
rate for the 2D method is 17.80%, and for our method it is
2.51%.

A Mann-Whitney U test was run to determine if there
were differences in relative measurement error and in
absolute value of relative error between 2D method and
our method. As can be seen from Figs. 9 and 10, distri-
butions of the relative measurement error and absolute

I RE
D

(a) (b)

Fig. 3 Clinical experience result. a Images captured by smart-phone. b Ground truths. ¢ Results of feature matching. d 3D reconstruction results by
SFM. e Results of networking. f Results of unwrapped images (2D). g Calculated results of our method
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Table 1 Area calculation and error rate comparison of 2D system and our method (RA = real area, AC = area calculation, AE = absolute

value of relative error, MAPE = mean absolute percent error, var = variance)

AC(cm?) AE(%) AC(cm?) AE(%)
No. RA(cm?) No. RA(cm?)

2D ours 2D ours 2D ours 2D ours
1 2.02 2.1456 1.9641 6.22 2.77 60 0.78 0.8173 0.7533 478 343
2 027 0.1544 0.2581 42.82 441 61 3.03 3.1793 2.9266 493 341
3 1.90 1.9257 1.8883 135 061 62 435 43271 43493 0.53 0.02
4 5.03 29112 5.2029 4212 344 63 367 54157 3.5271 4757 3.89
5 9.91 94237 9.9797 491 0.70 64 125 1.1972 1.2581 423 0.65
6 0.20 0.1820 0.2078 9.00 3.89 65 3.64 36731 36411 091 0.03
7 1.33 1.2343 1.3485 7.19 139 66 1.85 24991 1.8362 35.08 0.75
8 12.50 7.5514 13.2206 39.59 5.76 67 0.39 0.4435 0.3890 13.71 0.26
9 1.09 1.0202 1.1145 6.41 2.25 68 0.15 0.1520 0.1450 1.35 332
10 0.1 0.1015 0.1065 7.74 3.19 69 061 0.6762 0.5812 10.84 473
11 0.99 0.6230 1.0458 37.07 5.64 70 112 1.1793 1.1410 529 1.98
12 6.74 6.9441 6.6396 3.03 149 71 0.18 0.1984 0.1795 10.22 0.28
13 0.23 0.2195 0.2347 456 2.04 72 0.89 0.7812 0.9094 1222 2.18
14 0.23 0.2355 0.2255 240 1.95 73 0.28 0.2810 0.2825 0.34 091
15 6.20 54769 6.3677 11.66 2.70 74 034 0.2691 0.3529 20.84 3.79
16 0.59 0.5509 0.6075 6.63 297 75 0.96 04828 0.9796 49.70 2.04
17 0.88 0.8151 0.9091 7.38 3.30 76 2.72 1.6988 2.8421 37.54 449
18 3.99 40891 39113 248 197 77 148 0.8552 1.5444 4222 435
19 0.72 0.8002 0.7487 11.14 3.99 78 3.05 4.0327 2.9880 3222 2.03
20 2.98 3.0852 2.9614 353 0.62 79 161 0.9655 1.5669 40.03 2.68
21 1.80 2.7304 1.7449 51.69 3.06 80 0.36 0.1964 03722 4545 339
22 2.04 1.9410 2.0404 4.85 0.02 81 2.79 2.2028 2.8371 21.05 1.69
23 247 2.6954 24928 9.13 0.92 82 2.20 13042 2.3150 40.72 523
24 5.96 5.0697 6.0596 14.94 167 83 1.66 1.6802 1.6637 122 022
25 3.06 2.1524 3.1713 29.66 3.64 84 1.69 1.2231 1.7594 27.63 411
26 097 0.7183 1.0164 25.94 478 85 436 47699 4.1851 9.40 4.01
27 349 34324 34955 1.65 0.16 86 2.50 2.5650 2.5028 2.60 0.1
28 12.14 12.6043 12.1365 3.82 0.03 87 2.29 2.1020 23011 8.21 049
29 4.65 39788 4.7489 14.44 2.13 88 5.12 5.5105 50762 7.63 0.85
30 0.84 0.6692 0.8794 20.34 4.69 89 041 0.5473 0.3989 3349 2.70
31 0.89 0.8189 0.9227 7.99 367 90 8.10 9.5860 7.9691 18.35 1.62
32 8.17 6.0788 8.5622 25.60 4.80 91 0.38 0.5559 0.3731 46.29 1.82
33 1.40 14173 13779 1.24 1.58 92 229 2.0965 22347 845 241
34 137 1.2933 1.3213 5.60 3.56 93 045 0.2244 04401 50.14 2.20
35 0.74 0.6854 0.7051 7.38 471 94 0.76 0.7058 0.7765 7.3 2.17
36 1.35 1.1543 14025 14.50 3.89 95 8.03 79612 8.1409 0.86 1.38
37 0.59 04972 1.6038 15.73 234 96 3.25 3.7312 3.2752 14.71 0.78
38 5.10 3.6088 53373 29.24 465 97 11.26 11.8617 11.2349 523 0.22
39 144 1.3620 14128 542 1.89 98 3.78 3.8444 3.7817 1.70 0.04
40 0.1 0.1249 0.1131 13.57 2.85 99 0.80 1.0795 0.7856 34.93 1.80
41 0.89 0.8149 0.9306 844 457 100 047 0.5556 04623 18.21 1.65
42 2.14 2.0095 2.1400 6.10 0.00 101 1.00 1.0367 1.0077 3.67 0.77
43 027 0.2066 0.2830 2349 483 102 046 0.5045 04387 9.66 462
44 441 4.1795 45546 523 3.28 103 0.50 0.3250 05174 35.00 349
45 225 1.7818 2.2985 20.81 2.15 104 6.98 55115 70106 21.04 044
46 1.59 1.1074 1.6206 30.35 1.92 105 2.28 14454 2.3099 36.60 1.31
47 1.04 1.6420 1.0235 57.88 1.58 106 0.31 0.2947 0.3106 492 0.20
48 202 23111 1.9642 1441 2.76 107 0.35 0.3352 0.3586 423 246
49 2.13 24079 2.0971 13.05 1.55 108 473 49577 4.5500 481 381
50 2.64 24554 2.6605 6.99 0.78 109 045 0.40.5 04575 10.33 1.66
51 0.15 0.2385 0.1383 59.03 7.83 110 0.22 0.2280 0.2019 3.66 823
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Table 1 Area calculation and error rate comparison of 2D system and our method (RA = real area, AC = area calculation, AE = absolute
value of relative error, MAPE = mean absolute percent error, var = variance) (Continued)

AC(cm?) AE(%) AC(cm?) AE(%)
No. RA(cm?) No. RA(cm?)

2D ours 2D ours 2D ours 2D ours
52 0.23 0.1250 0.2439 4566 6.03 111 0.50 04164 0.5394 16.72 7.87
53 0.57 0.5687 0.5419 0.24 493 112 0.64 0.9773 0.5563 5271 13.08
54 1.1 0.8933 1.2041 19.53 847 113 136 0.9864 14244 2747 474
55 159 1.2239 1.6628 23.02 458 114 162 24508 15403 51.28 492
56 167 2.3435 15873 4033 495 115 230 1.3004 24115 4346 485
57 2.34 2.9862 22232 2761 499 116 3.13 4.1409 2.9426 3230 5.99
58 349 44483 3.3186 2746 491 117 418 3.3670 43813 1945 482
59 6.91 7.8040 6.5722 12,94 489 118 853 74215 89107 12.99 446

MAPE(2D) = 18.40%, MAPE(3D) = 2.94%, var(2D) = 0.0254, var(3D) = 0.0004

value of relative error for 2D and ours were not similar, as
assessed by visual inspection. Relative measurement error
for 2D and ours were statistically significantly different, U
=5668.5, z = -2.467, p = 0.014 <0.05, using an asymptotic
sampling distribution for U. And absolute value of relative
error for 2D and ours were statistically significantly differ-
entas well, U=1753.5.5,z = -9.932, p = 0.000 <0.05, using
an asymptotic sampling distribution for U.

As can be seen from Fig. 11, the 2D method has 4
significant outlier while ours only have one. The sample
outliers of our method are also outliers of the 2D method
(no.112), and the error is much larger than that of our
method. Meanwhile, it can be seen that the relative mea-
surement error of our method is much smaller and more
concentrated than that of the 2D method. This shows that
our method has not only better accuracy, but also better
robustness.

As can be seen from Figs. 7 and 8, the mean difference
value of the 2D method is -0.1, the standard deviation
of the difference value is 0.714, and the 95% consistency
limit is -1.5 to 1.3.0ur method had a difference of 0.01, a
standard deviation of 0.112, and a 95% consistency mar-
gin of -0.21 to 0.23. Only 5 groups of the two methods
and true knowledge were outside the consistency limit
(5/118=4.24%), and the overall proportion was relatively
small. Therefore, it can be considered that the two meth-
ods and truth value have good consistency and can be
used in clinical practice. However, in terms of the differ-
ence mean and the standard deviation of the difference,
the 2D method in the upper arm of the difference mean
is 10 times smaller, indicating that our method is closer to

Table 2 The statistical index of 2D method and our method

Method Pearson Standardized Adjusted R square
correlation regression
coefficient
Ours 0.999 0.895 0.998
2D method  0.961 0.110 0.924

the truth value. Meanwhile, the standard deviation of our
difference is 6 times smaller than that of the 2D method,
indicating that the difference stability is also better than
that of the 2D method.

It is obvious that our method is better than the 2D
method for the measurement results of a large wound,
minor wound, and arbitrary shape wound, and the average
accuracy rate is above 97%. The variance of the 2D method
is 0.0254, while the variance of our method is only 0.0004,
meaning the wound area size and shape are less of a factor
for our method.

In the measurement of skin wounds, the aim of quanti-
tative measurement is to extract the wound area from the
3D model and calculate it accurately. We use the 2D to 3D
to 2D method to complete the measurement. It not only
overcomes the error caused by the position of the cam-
era and the curvature of the body to the 2D measurement
method, but also guarantees the accuracy of the damage
area extracted from the 3D model [33]. Therefore, our
method is more accurate than the 2D method.

Comparison using different devices and methods

Table 3 compares our method with other commonly used
measurement methods, advanced commercial equipment
and the state-of-the-art methods in terms of accuracy,
need for calibration, risk of infection, and so on with the
same dataset.

It can be seen from Table 3 that the accuracy of our
method is higher than other methods and devices widely
used at present. In addition, our method uses non-contact
photography to collect wound images without a compli-
cated pre-calibration process and has no special require-
ments on light. Meanwhile, the 2D software method needs
the photograph angle to be as perpendicular as possible
to the wound, and stereo vision may cause matching fail-
ure. The MAVIS requires the equipment to be placed at
45 degrees to take a shot. Huang’s [13] method still has a
large error in parts with a large curvature of human body
as well as the Yang’s [8]. In contrast, our method is not
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limited by shooting angle, easy to operate, can be widely — Discussion

applied, and avoids wound infection and pain. Moreover, = The wound parts acquired from the stereo vision method
our method requires only a smartphone with an ordinary  are fuzzy. The stereo vision method is used to calculate
PC to complete measurement. It has practical application  the 3D coordinates of spatial points in projective geom-
value and possibilities, and even can be applied to remote  etry by means of space ray intersection. This method is

medical treatment. relatively loose in camera calibration and correction and
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reduces the amount of computation. Compared with it,
SEM performs better in the reconstruction of the wound
3D model and requires less equipment.

Compared with 1D and 2D measurement methods, the
accuracy of our method is high, especially in areas with a
large curvature. Compared with the 3D method, the accu-
racy of this method is the same as that of the commercial
equipment while our method does not need calibration.
It is harmless and has little dependence on equipment.
Wound area measurement can be done using a smart-
phone and an ordinary computer. Moreover, this method
has the potential to be applied to telemedicine. Therefore,
the smartphone based 3D wound area quantitative mea-
surement in clinical and forensic applications have great
prospects, and is worth further exploration and research.

As for the resolution of the camera, different cameras
can bring different results. If the camera resolution is
too low, the wound boundary will become very blurred,

so that neither interactive segmentation nor automatic
segmentation can be completed, and accurate results can-
not be obtained by digital methods. Of course, if the
resolution is increased, the ability of the image to express
the wound itself is also enhanced, which is undoubtedly
beneficial to the wound edge segmentation.

At the same time, this method has the possibility of
further improvement. First, since 3D reconstruction and
interactive segmentation are involved, out method takes
about 16 minutes to be completed. And 3D reconstruction
based on SFM requires multi-angle image information of
wound area for feature point matching and point cloud
location calculation. Therefore, the more images, the bet-
ter the reconstruction effect will be, and the higher the
measurement accuracy will be. However, this will lead to
a long operation time, and shortening the operation time
of 3D reconstruction will be an urgent problem for the
method in this paper. Second, although the interactive
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Table 3 The Comparison of our method, other commonly used methods and business equipments

Method Accuracy(%)  Calibration Infection Angle effect Light Tele- Facility Computational
medicine time reference
Ours 97.06 No Little No natural Yes monocular 16min
light camera + PC
2D method 81.60 No Little Yes natural Yes monocular Tmin
light camera + PC
Ruler method 52.10 No Little No natural No ruler Tmin
light
MAVIS 85.26 Yes No Yes darkroom  No MAVIS 10min
Visitrak 92.17 No Low No natural No Visitrak + trans- 4min
light parent film
Huang [13] 86.02 No Low No natural No Kinect V2 + PC 8min
light
Yang [8] 84.31 No Little Yes natural Yes monocular 2min
light camera + PC +

color patches

segmentation method on 2D images can bring excellent
segmentation results, it consumes more energy. Due to the
characteristics of clinical medicine and forensic medicine,
there is still no good automatic segmentation method at
present. And if the segmentation result is coarse, it is
bound to affect the final result. We consulted with clinical
and forensic experts. In practice, because the edge of the
wound is different from the border in other pictures, the

definition of the wound margins relies on the experience
of medical experts. In order to make the segmentation of
wound as correct as possible, we used an interactive seg-
mentation method. In the future, deep learning method
can be considered to complete the automatic segmenta-
tion of the damaged area after a large number of real
injury images training, so as to save human workload and
improve the measurement accuracy at the same time.
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Conclusion

In this paper, we implemented a wound measurement
method based on 3D transformation and smartphone
images. A smartphone is used to capture wound images,
which lowers costs, lessens dependence on hardware, and
avoids the risk of infection. The structure from motion
method (SFM) and the least square conformal mapping
method (LSCM) are introduced into the measurement
of the wound area. A quantitative calculation of the 3D
wound area is realized, which solving the challenges that
2D methods cannot and achieving a good accuracy of 0.97.

First, based on SFM, the 3D model of a wound is
reconstructed by feature extraction, sparse reconstruc-
tion, clustering and intensive reconstruction. Then, based
on LSCM, the UV of the 3D model is mapped onto a 2D
plane. Finally, the interactive image segmentation method
and scale conversion method are used to extract and
measure the wound areas.

Our method uses a contactless smartphone camera and
software processing to complete the body surface wound
location from 2D to 3D to 2D. Our method overcomes the
defects of traditional methods, which can cause wound
infection and face human subjective factors. On the other
hand, it solves the problem of human curvature and the
problem of shooting angles which cannot be overcome in
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the 2D measurement method of a computer software sys-
tem based on the wound image. Moreover, it solves the
shortcomings of equipment complexity and equipment
dependence in commercial settings.

Methods

The main purpose of this paper is to measure the area
of a surface wound precisely and quantitatively. We pro-
pose a pipeline consisting of 3D reconstruction and model
mapping combined with image segmentation for measur-
ing wound area quantitatively. The pipeline consists of
three phases: (1) 3D reconstruction of the wound part
of the body according to multiple images based on SFM;
(2) mapping the 3D model to the 2D plane, using LSCM
to do UV unwrapping (texture coordinates usually have
two axes of U and V, thus called the UV coordinates); (3)
we use the interactive image segmentation method and
the scale conversion algorithm to extract and measure the
wound area. The flowchart of the whole pipeline is shown
in Fig. 12.

3D reconstruction based on SFM

SFM [36] estimates the 3D structure from a sequence of
2D images. It first determines the spatial and geometric
relationship of the target by moving the camera. It then
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Fig. 12 A flowchart of the proposed method. The method consists of three phases: 3D reconstruction, UV unwrapping and 2D calculation. (1) In the
first phase, multiple images of one object are captured by smart-phone, the features of them are extracted and matched through SIFT. Then the 3D
model of the object is reconstructed based on SFM, and goes through the process of sparse & dense reconstruction and networking. (2) In the
second phase, the UV of the 3D model is unwrapped to a 2D image based on LSCM. (3) In the lase phase, the wound area on the 2D image is
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uses the numerical method to recover 3D information by
detecting the matching feature point set in multiple uncal-
ibrated images. The schematic diagram of SFM is shown
in Fig. 13. SFM extracts feature points from adjacent
multiple images at different times, and establishes corre-
sponding relationships. Then we calculate the structure
and motion of the object, and generate the reconstruction
of the 3D model of the sparse point cloud.

The overall block diagram of 3D reconstruction based
on structure from motion is shown in Fig. 14. We start by
extracting image features using SIFT, which searches all
image locations on the scale, and then uses the Gaussian
differential function to identify potential interest points
for scale and rotation invariance. The standard space of
an image is defined as the function L(x,y,0). It is usually
given by the convolution of G(x, y, o) with the input image
I(x,y) of a sigma variable. The calculation formula is as
follows:

Lx,y,0) = G(x,y,0) *I(x,9), (1)
G 1 @) )
@y 0)=—7e 2", 2)

Where, o is the scale, * is the convolution operation.
In each candidate position, the location and scale are
determined by a fitting model. We use the DOG function
D(x,y,0) to find out the most stable key points in the scale
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space. The function D(x,y,0) can be evaluated on two
adjacent scales. The formula is:

D(x;y; G) = (G(xryy kO) - G(x,y;U)) *I(xry)’ (3)

Where, k is a constant factor between these two scales, *
is the convolution operation. Based on the gradient direc-
tion of the image, each key point is assigned one or more
directions. The scale of key points is used to select the
Gaussian smooth image I with the closest scale, so that
all calculations are carried out in a scale-invariant way. In
this scale o, for every graph sample I(x,y), the gradient
size m(x,y) and direction (x,y) is precomputed in terms
of pixel differences. We have chosen the histogram of the
scale in which the key points are located and its statisti-
cal radius is 3 x1.5 0. The calculation formula of gradient
size and direction is as follows:

B=(Uxy+1) —1xy—-1), (5)

m(x,)’) =V A2 + BZ; (6)

0(x,y) = tan™* (i) , (7)

All subsequent operations on the image data are trans-
formed by the direction, scale, and location of key points,
in order to provide invariance to these transformations.

Pl(xayaz)

Traw
Rotation, R

Projection centre

Fig. 13 Schematic diagram of SFM. A target point P1 (X, y, 2) in the space passes through the horizontal, vertical, and rotational motions to point
Py(x',y",2"), point (X, Y) and, (X', Y') respectively represent the imaging point in a 2D plan for Py (x,y,z) and P2 (x',y',2")
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Fig. 14 Block diagram of 3D reconstruction based on SFM. The block diagram shows the main process of 3D reconstruction. Visualization process
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The characteristics of the images are matched accord-
ing to the feature point set extracted from all relevant
images. In feature matching between two images, consid-
ering image I and ] are the two images, there may be a
feature in image I corresponding to two characteristics in
image J. In order to solve the above problems, we use F
matrix and the random sampling consistency algorithm
(RANSAC) [37] to optimize and filter the results after
initial matching. The F matrix can associate the pixel coor-
dinates between two images, and the pixel coordinates of
each matched pair of features should be satisfied:

X
[x'y 1]F |y |, 8)
1

F is the basic matrix, (X, Y), and (X', Y") are the pixel
coordinates of the feature points corresponding to two
images, respectively.

Then, according to the matching results, the 3D recon-
struction module uses SFM [38] for sparse reconstruction.

After sparse reconstruction, the collected images are
clustered using clustering multi-view stereo (CMVS) [39].
CMVS can optimize the input of SFM and reduce the time
and space cost of intensive matching. Then, through the
patch-based multi-view stereo (PMVS) [40], each image
cluster is reconstructed independently. Finally, using the
Poisson surface reconstruction algorithm [41], the points
are connected and networked. In this way, we set the infor-
mation of the input point as a surface information model
composed of a seamless triangular face, which constructs
a 3D model according to the 3D point cloud.

3D unwrap based on LSCM

The segmentation of a 3D model is based on two kinds of
3D models: one is the analogy of existing models [42], and
the other is models from software modeling [43]. It is dif-
ficult to segment a precise local area of the model from 3D
reconstruction. In order to guarantee accuracy of wound
area segmentation, we adopt LSCM [33] to unwrap the
surface of a 3D model onto a 2D plane. The block diagram
of 3D unwrapping is shown in Fig. 15.

3D model

Fig. 15 Block diagram of 3D unwrapping. The block diagram shows the main process of 3D unwrapping, and the visualization process diagrams are

provided at some steps
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The conformal mapping, or conformal equivalence [44],
defines a one-to-one mapping between two surfaces that
preserves the local angle and local similarity. Mathemati-
cally, the conformal mapping is defined as follows: when
the mapping U maps a domain (x, v) to a surface U (i, v),
each (u,v) satisfies:

oU(u,v) U, v)

N (u,
@, v) ou av

)

The conformal mapping is defined on the Riemann sur-
face. In formula (9), N (1, v) is the unit norm vector on the
surface U (u, v).

LSCM [33] is a new quasi-conformal parameterization
method based on a least-square approximation of the
Cauchy-Riemann equations. The schematic diagram of
LSCM is shown in Fig. 16. Consider a triangulation mesh
K = (V,T), where V = {v1,v9,...,V,}, v; is a set of vertex
positions, and T = {t1, £y, ..., t}, ti = {vi1, Vi, vi3} is a set
of triangles consisting of triples of vertices, with i1, i2, and
i3 denoting the vertical index in V. Since each triangle ¢;
has a uniquely defined norm, ¢; can be imposed on a local
orthonormal basis (x,y) with the normal direction along
the z-axis.

Consider a triangulation mesh K = (V, T), where V =
{vi,v2,... vy}, vi is a set of vertex positions, and T =
{t1,t2, o tm}> ti = {vi1, vin, vi3} is a set of triangles consist-
ing of triples of vertices, with i1, i2, and i3 denoting the
vertical index in V. Since each triangle ¢#; has a uniquely
defined norm, ¢; can be imposed on a local orthonormal
basis («, y) with the normal direction along the Z-axis.

Based on the Riemann equation, a mapping U : (x,y) —
(u,v) is said to be conformal on a triangle #; if and only if
the following equation holds true:

ou U

oL o, 10
8x+l8y (10)
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As formula (9) cannot be strictly enforced on the whole
surface, the violation of the equation can be defined as the
conformal energy in a square sense:

au au
Eisom = Y I=— +i—PA(t), (11)
et ox ay

Where A(t;) is the area of the triangle ¢;.

By calculating the smallest value of E ), in formula
(11), the planar coordinates (i, v) of the 3D triangle net-
work in the parameter space is obtained, which means the
3D network is expanding in the parameters of a 2D plane.

Wound segmentation and area calculation
The particularity of clinical medicine requires maintain-
ing of the authenticity of image damage. However, due
to the different types of light, color and wounds, ensur-
ing accurate segmentation of all images for the automatic
segmentation method for 2D images is difficult. There-
fore, we use an interactive image segmentation method
to artificially modify the image segmentation results and
carry out the extraction of the wound area. The wound
extraction and calculation process is shown in Fig. 17.
We attach two lengths of known adhesive tape to the
outside of the damaged area, which form X and Y direc-
tions. The user uses the mouse to mark the scale of X
and Y in the image, and the system automatically labels
the pixel length as L, and L,, as shown in Fig. 18. We use
the scale conversion method according to the ratio of the
known length and the pixel length in X, Y direction, using
formula (12) to transform the pixel area into the actual
area. The measurement length is accurate to 1 mm and the

measurement area is accurate to 1 mm?.
Swound = 7— X — X Simg- (12)
L, Ly

Vs of the triangular section of the 3D model

Fig. 16 Schematic diagram of LSCM. V and V'represent T and T' respectively in a 2D plane. Uy, Uy, Us, Us are respectively the fixed points V4, Vs, V3,
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Extracting the
wound area

Wound image

Visualization process diagrams are provided at some steps

Fig. 17 Block diagram of extraction and calculation. The block diagram shows the main process of extraction and calculation of a skin wound.

Scale
conversion

Calculating the
wound area

Experiment

Experiment setup

The experimental operating environment is a 4 core
2.00GHz CPU, 8GB memory computer. The computer
visual library OpenCV and Visual Studio 2015 are used
to complete the wound area measurement of our method.
UV (Texture coordinates usually have U and V coordi-
nate axes, so called UV coordinates.) unwrapping based
on LSCM uses Blender open source software.

Dataset

Simulated wound

Simulated wounds are used to compare the 3D recon-
struction method in this paper with the popular stereo
vision method. They are obtained by arbitrarily tailoring
the coordinate paper. We use scissors to cut out different

shapes and sizes on the coordinate paper to simulate the
2D wounds, and the cut is not in accordance with any rule.
The process method is shown in Fig. 19.

The simulated wound of the rectangle and its superpo-
sition are the regular wounds, and other shape wounds are
irregular wounds. Due to the more realistic significance of
irregular wounds, in the experiment, there are 12 regular
wounds and 28 irregular wounds. The comparison exper-
iment attaches the simulated wounds to parts of the larger
body curvatures like fingers, wrist, arm, ankle, etc.

Real wound

Real wounds are used to verify the accuracy of our
method. They are obtained from the mammary depart-
ment of the Xiyuan Hospital in China. The patients total
54 in number and range in age from 21 to 50, with a total

> X

recorded by the system

Fig. 18 Schematic diagram of area calculation. For the example, the actual lengths [, and /, are 5 cm?. The pixel lengths L, and L, are automatically
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Fig. 19 The production of simulated wound. We use scissors to cut out different shapes and sizes on the coordinate paper to simulate the wounds

of 118 wounds. The area of the wound ranges from 0.11
to 12.5cm?, with 44 at less than 1cm? and 74 at 1em? and
above. We get the wound images at multiple angles using
an Iphone6 and the method above. The spatial resolution
of the image is 72 dpi x72 dpi, the color resolution of
which is 3264 pixel x2448 pixel and the bit depth is 24.

Ground truth

The film coverage method is the most accurate measure-
ment in the relative field. The sterile transparent film is
covered in the wound area and the shape of the area is
depicted artificially. Then the film is put on a coordi-
nate paper. The area is obtained by counting the number
artificially. Most researchers in the field of wound mea-
surement use this method as the real value for wound or
simulated wound area [17, 45].

The real value of the wound area in this paper is
obtained by means of counting done multiple times by
multiple people, and then taking the average of the
counted numbers. Among them, the coordinate paper on
each grid is 1mm?, and each wound is reviewed by at
least 3 counters. For an incomplete grid of less than one,
we artificially judge whether it is less than half of the
area. When it is less than half grid, it is not calculated,
otherwise, it is calculated as a whole grid.

Implementation

The stereo vision method

We use an advanced 3D reconstruction device of stereo
vision ZED [46] to set the baseline. ZED equipment is an
advanced stereovision camera with stable results. It simu-
lates human body parts with a simulated wound attached
to the body parts with larger curvatures. We have con-
ducted three times of parameter pre-calibration, and its
mean variance is 0.0008. The pre-calibration parameters
in our experiment are as follows: in the left sensor, the
fx = 1399.17, fy = 1399.17, cx = 983.48, cy = 521.523,

k1 = —0.17355, k2 = 0.027811; In the right sensor,
fx = 1399.49, fy = 1399.49, cx = 962.345, cy = 514.697,
k1 = —0.17177, and k2 = 0.026456; the stereo baseline=
119.958, the stereo convergence= 0.010710, the rx (tilt) =
0.008133, the rz (roll) = 0.001022. Because the ZED
camera can perceive depths between 50cm (1.8feet) and
20meters (65feet), the experiences are taken from distance
greater than 50cm. The example of 3D reconstruction
results is shown in Fig. 2.

The 2D method

We put the adhesive tape scale next to the wound, forming
an XY axis, and then shooting it with the data acquisition
device in the vertical direction of the wound. Measure-
ments are taken with close placement of the adhesive
tape scale from the wound edges (0.5-1cm). When the
wound is in a large part of human curvature, a picture
cannot show the whole wound, we consider one wound as
two wounds and shoot them vertically respectively. The
images are then fed into commercial 2D measurement
software, where the edges of the wound are artificially
portrayed and the area of the wound is calculated. The
2D software originates from a Chinese judicial identifica-
tion center, where all the people depicting the wound were
doctors, legal medical experts or medical students.

Our method
The requirement of data acquisition equipment in our
method is low. Any digital camera, smartphone, and other
type of camera can be used to capture wound images.
The acquisition process is not limited to the left and right
movement of the acquisition equipment. It can be shot at
any angle, distance, or even the same acquisition device.
The device used for acquiring data is the iphone®6.

We use the smartphone around the simulated wound for
shooting. The angle between the two images is not greater
than 30 degrees, and the number of photos is not less than
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(e) (f)

images. h The calculated result of our method

(8) (h)

Fig. 20 Wound area measurement process of a real wound. a The image captured by smart-phone. b The result of feature matching. ¢ The spares
reconstruction result. d The dense reconstruction result. e The result of networking. f The reconstructed 3D model. g The result of unwrapped

20. We keep the target fixed during shooting. Then, we use
the method to reconstruct a 3D model of the simulated
wound.

For real wounds, we use the same method to take images
and reconstruct a 3D model, and use our method to
unwrap the wound area UV of the 3D model. Users trace
the contour points of the whole damage area sequen-
tially along the contour of the damaged area on the 2D
image of the wound. The system selects and saves the
selected points automatically, and connects each two adja-
cent points with a straight line. When the whole area is
drawn, the system automatically connects the two points
at the beginning and end, forming a closed polygon. Result
for the whole process are shown in Fig. 20.

Ruler method

The ruler method is a simple method of wound measure-
ment, and it is also the most used method in clinic. By
measuring the length and width of the external rectangu-
lar wound with a ruler, a flexible ruler or a self-adhesive
ruler, the measurement value of the wound area can be
obtained by multiplying the length and width.

Visitrak method

The Visitrak device method is an electronic device that
manually tracks the wound boundary for wound mea-
surement. The user first describes the wound boundary
with the method of film covering, and then places the
film under the Visitrak transparent plate, and draws the
boundary in the device interface with a pen. The device
automatically calculates the length, width and area value
of the wound with the Kundin formula.
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