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WIP1 phosphatase as pharmacological target in cancer therapy

Soňa Pecháčková1 & Kamila Burdová1 & Libor Macurek1

Received: 3 March 2017 /Revised: 13 April 2017 /Accepted: 19 April 2017 /Published online: 24 April 2017
# The Author(s) 2017. This article is an open access publication

Abstract DNA damage response (DDR) pathway protects
cells from genome instability and prevents cancer develop-
ment. Tumor suppressor p53 is a key molecule that intercon-
nects DDR, cell cycle checkpoints, and cell fate decisions in
the presence of genotoxic stress. Inactivating mutations in
TP53 and other genes implicated in DDR potentiate cancer
development and also influence the sensitivity of cancer cells
to treatment. Protein phosphatase 2C delta (referred to as
WIP1) is a negative regulator of DDR and has been proposed
as potential pharmaceutical target. Until recently, exploitation
of WIP1 inhibition for suppression of cancer cell growth was
compromised by the lack of selective small-molecule inhibi-
tors effective at cellular and organismal levels. Here, we re-
view recent advances in development of WIP1 inhibitors and
discuss their potential use in cancer treatment.
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Introduction

Genetic information is continuously endangered by erroneous
DNA metabolism as well as by various environmental factors
that include ionizing radiation or chemotherapy representing two
major non-surgical approaches in cancer therapy. Cells respond

to genotoxic stress by activation of a conserved DNA damage
response pathway (DDR) that abrogates cell cycle progression
and facilitates DNA repair. This safeguard mechanism represents
an intrinsic barrier preventing genome instability and protecting
cells against tumor development [1–4]. Depending on the mode
and level of DNA damage, DDR signaling network promotes
temporary cell cycle arrest (checkpoint), permanent growth arrest
(senescence), or programmed cell death (apoptosis). Genes cod-
ing for proteins involved in DDR are typically tumor suppressors
and are commonly mutated in cancer. The DDR pathway is
regulated by a spatiotemporally controlled cascade of posttrans-
lational modifications of key proteins including protein phos-
phorylation and ubiquitination [5]. Following DNA damage, up-
stream protein kinases ATM and ATR are activated and spread
the signal through phosphorylation of downstream transducing
kinases CHK2 and CHK1 to rapidly establish the checkpoint
arrest. Subsequently, checkpoint is reinforced by activation of
the tumor suppressor protein p53 and its transcriptional target
p21 that inactivates cyclin-dependent kinases.

After completion ofDNA repair, activity of theDDRpathway
is terminated by protein phosphatases that allow checkpoint re-
covery and restart cell proliferation. Serine/threonine phospha-
tases of PP2C family are evolutionary conserved negative regu-
lators of cell stress response pathways and function as monomer-
ic enzymes comprising of a conserved N-terminal phosphatase
domain and non-catalytic C-terminal part [6]. Protein phospha-
tase 2C isoform delta is ubiquitously expressed at basal levels
and its expression is strongly induced after exposure of cells to
genotoxic stress in a p53-dependent manner (hence its alternative
name WIP1 for wild-type p53-induced protein 1) [7]. Substrate
specificity of the chromatin-boundWIP1 matches the phosphor-
ylation sites imposed by ATM kinase, and thus, WIP1 can effi-
ciently dephosphorylate p53, γH2AX, and possibly also other
proteins involved in DDR [8, 9]. Downregulation of WIP1 by
RNA interference leads to prolongation of the G2 checkpoint
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whereas overexpression of WIP1 causes checkpoint override
[10, 11]. WIP1 phosphatase is overexpressed in multiple human
cancers and was reported to act as oncogene. Conversely, loss of
WIP1 delayed the onset of tumor development in mouse models
[12–14]. Similarly, RNAi-mediated depletion of WIP1 inhibited
cancer cell growth implicatingWIP1 as promising pharmacolog-
ical target [14]. Here, we discuss recent advances in development
of a selective WIP1 inhibitor with proven efficiency in animal
models and its potential use in cancer therapy.

DNA damage response and role of WIP1
in checkpoint recovery

Various kinds of genotoxic stress activate kinases of PI3-
kinase like family, including activation of ATM by DNA
double-strand breaks (DSBs) and ATR by exposed single-
stranded DNA (ssDNA) at stalled replication forks or resected
DSBs (Fig. 1). ATM and ATR phosphorylate the effector
checkpoint kinases CHK2 and CHK1 that target phosphatases
Cdc25A/B/C leading to inactivation of cyclin-dependent ki-
nases (CDKs) and cell cycle arrest. Under basal conditions,
p53 is degraded by the E3 ubiquitin ligase MDM2 and

transcriptionally inactivated at promoters by its enzymatically
inactive homolog MDMX [15–18]. Following DNA damage,
p53 is posttranslationally modified by ATM/CHK2, ATR/
CHK1, and various acetyltransferases leading to its stabiliza-
tion and oligomerization, binding to promoters and triggering
transcription of various target genes involved in cell cycle
arrest, DNA repair, apoptosis, senescence, and metabolism
[19, 20]. CDKN1/p21 is a transcriptional target of p53 and
potent inhibitor of CDKs that promotesmaintenance of the G1
and G2 checkpoint. In non-stressed cells, expression of
CDKN1/p21 is repressed by transcription intermediary factor
1-beta (also called KAP1) [21]. Phosphorylation of KAP1 at
Ser824 by ATM and at Ser473 by CHK1/2 induced by
genotoxic stress allows de-repression of CDKN1/p21 and
contributes to checkpoint activation [21, 22].

Besides arresting the cell cycle progression, ATM pro-
motes DNA repair by phosphorylating histone variant
H2AX at S139 (called γH2AX) in the flanking chromatin
and plethora of other DNA repair proteins. γH2AX acts as a
docking platform for various mediator proteins and ubiquitin
ligases that jointly regulate recruitment of either 53BP1 or
BRCA1 proteins to the close proximity of the DNA lesion
and thus control the DNA repair pathway choice [23].
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Fig. 1 Role of WIP1 phosphatase in termination of DNA damage
response. Exposed ssDNA caused by stalled replication forks or
resected DSBs activates ATR/CHK1 pathway that targets CDC25
family of phosphatases, prevents activation of CDKs, and triggers cell
cycle arrest. DSBs induced by ionizing radiation or chemotherapy
activate ATM that orchestrates DNA repair by phosphorylating histone
H2AX at chromatin and activates the cell cycle checkpoint. This is
achieved by phosphorylation of p53 and Mdm2 that allows stabilization

of p53 and triggers expression of CDKN1/p21. In addition, p53
stimulates expression of its negative regulators Mdm2 and WIP1. After
accumulating sufficient protein levels, WIP1 inactivates p53 pathway and
dephosphorylates other targets jointly contributing to termination of the
DDR (negatively and positively regulatedWIP1 substrates shown in blue
and yellow, respectively). Persistent genotoxic stress can continuously
activate p53 leading to senescence. Very high activation of p53
pathway leads to expression of PUMA and NOXA and leads to cell death
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Whereas 53BP1 in complex with RIF1 blocks DSB resection
and promotes non-homologous end joining, recruitment of
BRCA1 stimulates resection and therefore facilitates homolo-
gous recombination (HR). After completion of DNA repair,
cells recover from the checkpoint arrest and reenter the cell
cycle. By targeting claspin, an important cofactor of ATR,
PLK1 kinase terminates the activation of CHK1 and is essen-
tial for recovery from the G2 checkpoint [24]. In addition,
various protein phosphatases directly reverse multiple phos-
phorylations imposed by ATM/ATR and CHK1/2 and thus
contribute to timely inactivation of DDR [25]. In particular,
protein phosphatase PP4 targets Ser473 of KAP1 and has been
implicated in recovery from the G1 checkpoint [26]. In con-
trast, WIP1 is needed for recovery from the G2 checkpoint
[11, 26]. Whereas expression ofWIP1 is potentiated by p53, it
acts as a strong negative regulator of p53 pathway thus
forming a negative feedback loop that allows termination of
p53 response after completion of DNA repair [11]. WIP1 in-
hibits p53 directly by dephosphorylating Ser15 and indirectly
through the stimulation of its negative regulators MDM2 and
MDMX [10, 27–30]. In fact, WIP1 activity is needed through-
out the G2 checkpoint to limit the level of p53/p21 pathway
activation and to prevent degradation of cyclin B and a per-
manent cell cycle exit [31, 32]. Similarly, WIP1 was shown to
suppress DNA damage-induced apoptosis in different cell
types [33–35]. Besides targeting p53 pathway, WIP1 contrib-
utes to termination of DDR by dephosphorylation of ATM at
Ser1981 and γH2AX at chromatin [9, 36–38]. Other reported
substrates ofWIP1 include active forms of CHK1, CHK2, and
p38 that reside mostly in nucleoplasm [10, 39, 40]. Although
WIP1 can dephosphorylate these proteins in vitro or when
overexpressed, the physiological role of the chromatin-
bound WIP1 in targeting these pathways remains unclear.
Similarly, WIP1 was reported to counteract phosphorylation
of the p65 subunit of NF-κB at Ser536 but more data are
needed to clarify to what extent WIP1 regulates NF-κB path-
way in inflammation [41].

Function of WIP1 is controlled in context of the cell cycle.
Expression of WIP1 protein is low in G1, peaks in S/G2, and
decreases duringmitosis [42].WIP1 is phosphorylated at mul-
tiple residues within the catalytic domain during mitosis
which promotes its degradation by APC/cdc20 in
prometaphase [42]. Absence of WIP1 in mitosis may allow
cells to recognize low levels of endogenous DNA damage
present in condensed chromosomes. These sites are labeled
by γH2AX during mitosis and they are repaired after mitotic
exit in subsequent G1 phase. During interphase, WIP1 is con-
stitutively phosphorylated at Ser54 and Ser85 by HIPK2 ki-
nase that results in a rapid turnover of WIP1 [43]. Keeping
basal levels of WIP1 low probably allows cells to fully acti-
vate DDR in the presence of genotoxic stress, whereas p53-
dependent induction of WIP1 expression allows termination
of DDR after completion of DNA repair.

WIP1 phosphatase as an oncogene

About a half of human solid tumors exhibit somatic mutations in
the TP53 gene that cause a deficient response to genotoxic stress
and are commonly associated with poor prognosis [44, 45]. On
the other hand, tumors carrying wild-type TP53 frequently accu-
mulate mutations in other genes that functionally compromise
the p53 pathway and thus potentiate cell proliferation. As de-
scribed above, WIP1 phosphatase is a negative regulator of
DDR pathway and enhanced activity of WIP1 can contribute
to tumor development.

WIP1 is encoded by PPM1D gene located at chromosom-
al locus 17q23.2 and its amplification was reported in about
10% of breast cancers [46, 47]. Importantly, amplification of
PPM1D occurred significantly more often in breast tumors
that retained wild-type TP53 [46, 47] (Fig. 2). Similarly,
common amplification of PPM1D was found in ovarian
clear cell carcinoma, where mutations in TP53 are relatively
rare, but not in a more common serous carcinoma that typ-
ically contains mutated TP53 [50, 51]. Besides breast and
ovarian cancer, PPM1D copy numbers gain or overexpres-
sion at mRNA level were reported also in glioma, neuro-
blastoma, and medulloblastoma [47, 51–58]. High expres-
sion of WIP1 was also observed by immunohistological
methods in a fraction of lung adenocarcinomas and gastric
and colorectal cancers [55, 59, 60]. However, caution should
be taken when interpreting the histopathological data, since
none of the currently available antibodies was sufficiently
validated in histological assays and the staining pattern does
not correspond with expected nuclear localization of WIP1.
Besides amplification, nonsense mutations occur in a hotspot
region of the exon 6 of PPM1D [61, 62]. These point mu-
tations of PPM1D result in expression of C-terminally trun-
cated variants of WIP1 that exhibit higher protein stability
and disable full activation of the checkpoint after genotoxic
stress [62]. Besides breast and ovarian cancer, this type of
mutations has been found in brainstem gliomas, lung adeno-
carcinoma, and prostate cancer [61–67]. WIP1 truncating
mutations are considerably less common than PPM1D am-
plifications (usually below 1%) and their occurrence was
reported to further increase after chemotherapy [66].
Although gain-of-function mutations in PPM1D efficiently
suppress p53 function, their pathogenic role in cancer devel-
opment still needs to be experimentally tested.

Amplification of PPM1D was initially suggested to
promote breast cancer development through inactivation
of the p53 and p38 MAPK pathways [52, 68]. In the same
time, however, MMTV-driven overexpression of PPM1D
in mice did not promote mammary tumor formation within
2 years suggesting that oncogenic properties of WIP1 may
be relatively low [52, 69]. About one third of breast tu-
mors with PPM1D overexpression showed also amplifica-
tion of ERBB2 suggesting that these two oncogenes may
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cooperatively promote breast cancer development [70].
Ablation of PPM1D in mice impaired spermatogenesis
and decreased levels of B and T lymphocytes, both prob-
ably reflecting the decreased ability to respond adequately
to endogenous DNA breaks occurring during meiosis or
immunoglobulin gene rearrangements, respectively [71,
72]. Importantly, deletion of PPM1D strongly suppressed
breast tumorigenesis in mice bearing MMTV-driven onco-
genes ERBB2 or HRAS1 through the inactivation of p38
MAPK and p53 pathways [73]. Loss of PPM1D also dra-
matically delayed development of Eμ-myc-induced lym-
phomas in a p53-dependent manner [74]. In context of the
colon, WIP1 was found to be highly expressed in the stem
cell compartment and loss of PPM1D suppressed
APC(Min)-driven polyp formation in mice suggesting that
WIP1 might be involved also in development of colorectal
cancer [75].

Exact molecular mechanism(s) by which WIP1 contributes
to cell transformation still needs to be fully addressed. Data
from the PPM1D knock-out mice and clinical specimens sug-
gest a strong correlation between oncogenic behavior ofWIP1
and the functional p53 pathway. In addition, gain-of-function
mutations in PPM1D promote cell proliferation by overcom-
ing p53 function, and conversely, loss of PPM1D slows down
proliferation only in p53-proficient cells further supporting the
model in which active WIP1 allows cells to overcome the
tumor-suppressing barrier imposed by p53 pathway (Fig. 3).
Whereas overexpressed WIP1 may not be sufficient to fully
transform the cells, it can become more important under con-
ditions of activation of oncogenes. It is well established that
oncogene activation causes replication stress and induces se-
nescence. An attractive possibility is that WIP1 may prevent
oncogene-induced senescence and thus allow accumulation of
mutations caused by proliferation under condition of replica-
tion stress. In addition, WIP1 was reported to regulate epige-
netic changes in heterochromatin which may increase the C-
to-T substitutions and thus contribute to genome instability
[76]. Finally, overexpressed WIP1 was shown to impair
DNA repair through nucleotide excision and base excision
pathways [77, 78]. It should be noted that all these mecha-
nisms by which WIP1 activity promotes genome instability
are not mutually exclusive, and they may jointly contribute to
tumorigenesis.

Predicted structure of WIP1 phosphatase

Development of highly potent and specific small-molecule
inhibitors is greatly facilitated by 3D structural data of the
target proteins [79]. Since WIP1 structure has still not been
determined, molecular models based on its homology with
PPM1A (sharing ∼35% sequence identity) represent the only
resource of information about WIP1 structure [80, 81]. Like
the other PP2Cs, WIP1 acts as monomer consisting of the N-
terminal catalytic domain (amino acids 1-375) and a presum-
ably unstructured C-terminal tail [82]. Conserved negatively
charged amino acids in the catalytic domain bind two Mg2+/
Mn2+ ions and stabilize interaction of WIP1 with the phos-
phorylated substrate. A unique flap sub-domain resides in the
catalytic domain close to the active site and can influence
binding of different substrates by allosteric modulation [80].
Part of the flap domain is a basic amino acid-rich region
(called B-loop; amino acids 235–268) that was proposed to
bind to negatively charged phosphate on substrates [81].
In vitro studies established that WIP1 can specifically recog-
nize two distinct substrate motifs, namely pSQ/pTQ (present
in ATM, p53, MDM2, γH2AX, Chk1, Chk2) and pTxpY
(present in the active form of p38 MAPK) [8]. In comparison
to other PP2Cs, catalytic domain of WIP1 contains a proline-
rich region (Pro-loop) that was proposed to mediate protein-
protein interactions. However, the Pro-loop is not evolution-
ary conserved and its function in control of WIP1 activity still
remains unclear. Translocation of WIP1 to the nucleus is con-
trolled by two nuclear localization sequences (NLS). One
NLS resides in the C-terminus (amino acids 535–552), while
the other is located within the catalytic domain (amino acids
247–250) [62, 83]. Presence of the two NLS sequences ex-
plains why the C-terminally truncated mutants of WIP1 local-
ize normally in the nucleus.

Small-molecule inhibitors of WIP1

Based on data from PPM1D knockout mice and also from
RNAi-mediated depletion of WIP1 in cancer cell lines,
WIP1 was proposed as potential pharmacological target
[73–75]. Since the structure of WIP1 is still unknown, the
potential inhibitors of WIP1 were found by high-throughput
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Fig. 2 Amplification of PPM1D locus in breast cancer. Breast invasive
carcinoma dataset (n = 817, [48]) was analyzed for PPM1D amplification
(11%), TP53mutation (31%), and ERBB2 amplification, overexpression,
or mutation (18%) using cBioPortal [49]. Amplification of genes was
analyzed using putative copy number alterations from GISTIC.

Expression analysis was based on mRNA Expression z scores (RNA
Seq V2 RSEM) where threshold was set at fourfold difference.
Tendency to mutual exclusivity between PPM1D and TP53 mutation as
well as tendency to co-occurrence between PPM1D and ERBB2
activation were statistically significant
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screening of extensive chemical libraries. During the last de-
cade, several compounds antagonizing WIP1 activity were
developed; however, only one of these inhibitors exhibits high
specificity toWIP1 and shows promising results in preclinical
analysis.

Inorganic compound arsenic trioxide (ATO) was shown to
inhibit WIP1 in vitro (IC50 >100 μM) and WIP1 depletion
promoted ATO-induced apoptosis, probably by enhancing ac-
tivation of Chk2/p53 and p38 pathways [84]. However, other
studies demonstrated that ATO induced apoptosis by targeting
multiple signal transduction pathways, suggesting that its se-
lectivity to WIP1 is low [85]. Compound M321237 was iden-
tified by screening of a chemical library based on its ability to
inhibit WIP1 activity in vitro [86]. Cell viability assay showed
that M321237 sensitized MCF7 cells to doxorubicin. In vivo
experiments reveled that administration of M321237 decreased
tumor volumes in xenograft models; however, the selectivity of
M321237 towards WIP1 has never been validated. Similar
screening approach led to identification of CCT007093 that
inhibited WIP1 in vitro with IC50 = 8.4 μM [87]. Cell viability
in the presence of CCT007093 was suppressed in p53-
proficient cancer cells carrying amplified PPM1D [87]. On
the other hand, CCT007093 suppressed UV-induced apoptosis
in skin keratinocytes by preventing activation of JNK,

suggesting low specificity of the inhibitor towards WIP1 [88].
In addition, CCT007093 was shown to suppress cell prolifera-
tion regardless of the presence of WIP1 in U2OS cells
confirming an off-target effect of the inhibitor [89]. Further,
treatment of cells with CCT007093 did not affect levels of
p53-pS15 and γH2AX, both well-established substrates of
WIP1 [89]. These data suggest that CCT007093 does not in-
hibit WIP1 in cells and highlight the urgent need for validation
of specificity of small-molecule inhibitors in cellular models
including the CRISPR/Cas9-mediated knock-out of the expect-
ed target gene.

Compared to previous compounds, SPI-001 and its ana-
logue SL-176 were determined as non-competitive inhibitors
of recombinant WIP1 with IC50 = 110 and 86.9 nM, respec-
tively [90, 91]. Moreover, SPI-001 was determined to be ap-
proximately 50-fold more specific against WIP1 than to an-
other PP2C phosphatase, PPM1A [90]. Both SPI-001 and SL-
176 suppressed the cell proliferation in human breast cancer
MCF7 cells with overexpressed wild-type PPM1D in a dose-
dependent manner [91]. In human colorectal carcinoma HCT-
116 cells expressing truncated WIP1, treatment with SPI-001
did not affect cell proliferation but combined treatment with
SPI-001 and doxorubicin enhanced inhibition of cell growth
through the increased phosphorylation of p53 at Ser15 [92]. In
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Fig. 3 Model for WIP1 involvement in tumorigenesis and in therapeutic
response. Activation of oncogenes (such as RAS and MYC) causes
replication stress, stimulates p53 activity, and results in permanent cell
cycle arrest called oncogene-induced senescence (OIS). Inactivating
mutation of TP53, overexpression of WIP1, or amplification of PPM1D
leads to suppression of p53 pathway, disables establishment of OIS, and
promotes tumor formation. Inhibition of WIP1 does not affect

proliferation of cancer cells with mutant TP53 whereas it allows partial
reactivation of p53 pathway in cells with wild-type TP53 slowing down
their proliferation. Combination of WIP1 inhibition with MDM2
antagonist nutlin-3 or with DNA damage-inducing chemotherapy allows
maximal activation of p53 pathway leading to induction of cell death or
senescence and preventing tumor growth
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conclusion, SPI-001 and SL-176 are promising lead com-
pounds but further analysis is needed to validate their speci-
ficity and efficiency in cellular and animal models. Another
strategy for development of WIP1 inhibitors was based on
modification of short peptides derived from natural WIP1
substrates [8, 93, 94]. Substitution of the pT to pS in the pT-
X-pY peptide sequence corresponding to p38 prevented its
dephosphorylation by WIP1. Further modification led to de-
velopment of a cyclic thioether peptide c(MpSIpYVA) with
micro-molar inhibitory activity towards WIP1 (Ki = 5 μM).
These cyclic peptide inhibitors mimic substrates of WIP1 and
block its enzymatic activity in vitro. Further improved cyclic
peptide (F-pHse-I-pY-DDC-amide) significantly increased the
inhibitory activity and selectivity for WIP1 with Ki = 2.9 μM
[93]. The disadvantage of this peptide is poor bioavailability
resulting in weak absorption into cells [95]. Therefore,
phosphopeptide-based inhibitors have not been tested in cell
viability assays to address their anti-proliferative effect.
However, the cyclic peptide could be used in future in differ-
ent drug delivery system, such as nanoparticles.

The most promising compound with high selectivity to
WIP1 phosphatase was identified by combination of biochem-
ical and biophysical screens that employed inhibition of WIP1
enzymatic activity and high-affinity binding as readouts, re-
spectively [80]. Both screens identified compounds with over-
lapping structures containing an amino acid-like core region
(referred to as capped amino acids, CAA) flanked by additional
groups that influence pharmacokinetic properties [80]. From
this series, compound GSK2830371 has been further devel-
oped and showed improved cell permeability and pharmacoki-
netics. According to WIP1 homology model with PPM1A
structure and by photo-affinity labeling of WIP1, the binding
sites of CAA were located in the Flap domain outside of the
active site thus resulting in allosteric inhibition of WIP1.
GSK2830371 inhibited WIP1 in vitro with IC50 = 13 nM.
This compound selectively inhibited WIP1 phosphatase while
other 21 phosphatases showed no inhibition of enzyme activity
in vitro. Cell proliferation experiments revealed that
GSK2830371 efficiently suppressed proliferation of tumor
cells carrying PPM1D amplification while retaining wild-type
TP53, including hematological cancer, neuroblastoma, and
breast cancer cell lines [57, 80, 89, 96, 97]. Importantly,
U2OS-PPM1D-KO cells where PPM1D was knocked-out by
CRISPR/Cas9 did not respond to GSK2830371 further
confirming its specificity to WIP1 at cellular level [89].
Inhibition of WIP1 by GSK2830371 upregulated expression
of p53 target genes including CDKN1A, PUMA, and BAX
and caused cell cycle arrest but was not sufficient to induce cell
death [80, 89, 96, 98]. In addition, GSK2830371 suppressed
growth of B cell lymphoma and neuroblastoma in xenograft
mouse models demonstrating efficiency of this compound
in vivo [80, 96]. Importantly, these studies also demonstrated
that GSK2830371 is orally bioavailable. However, relatively

low stability of GSK2830371 in blood could limit its clinical
use. Further modification of GSK2830371 as a lead compound
will hopefully allow development of a small-molecule WIP1
inhibitor with more favorable pharmacokinetic properties.

Targeting of WIP1 phosphatase in cancer therapy

Restoration of p53 function was shown to cause tumor regres-
sion in a mouse model setting ground for development of
various compounds capable of inducing the p53 pathway in
cancer cells [99]. As described above, inhibition of WIP1 can
suppress proliferation of cancer cells by activation of p53
pathway. The highest response is observed in cancer cells with
the amplified PPM1D (such as MCF7) or truncated WIP1
(such as U2OS), suggesting that these cells might be addicted
to the high level of WIP1. In contrast, healthy cells with basal
expression ofWIP1 are relatively resistant toWIP1 inhibition.
Although inhibition of WIP1 strongly suppressed prolifera-
tion of cells with high activity of WIP1, it failed to induce
massive cell death of cancer cells that would be desirable in
cancer therapy [80, 89]. Several studies showed that depletion
of WIP1 by RNA interference sensitized cancer cells to DNA
damage-inducing chemotherapy [92, 100, 101]. Similarly,
GSK2830371 potentiated cytotoxic effect of doxorubicin in
breast cancer cells, neuroblastoma, and lymphoma [89, 96,
97]. These results suggest that treatment with WIP1 inhibitor
could allow to decrease the efficient dose of doxorubicin and
thus reduce its undesired side effects [102, 103]. Similarly,
inhibition of WIP1 increased sensitivity of cells to ionizing
radiation and to etoposide suggesting that a broader range of
potentially beneficial treatment combinations may exist.

Reactivation of the p53 pathway by MDM2 inhibition has
been suggested as a promising therapeutic strategy in cancers
retaining wild-type TP53 and several MDM2 antagonists are
currently in clinical trials [104–107]. MDM2 antagonist
nutlin-3 and its orally bioavailable analogues RG7388 and
RG7112 disrupted interaction between p53 and MDM2 lead-
ing to stabilization of p53 [108, 109]. MDM2 antagonists
efficiently induced apoptosis in p53-proficient neuroblastoma
and ovarian clear cell carcinoma and blocked tumor growth in
xenograft models [109–112]. Combined treatment with
GSK2830371 and nutlin-3 further increased the level of p53
pathway activation and potentiated induction of senescence
and apoptosis in MCF7 and HCT116 cells [89, 97, 98, 113].
These data suggest that inhibition of WIP1 that leads to in-
creased phosphorylation of p53 may synergize with com-
pounds that promote stabilization of p53. Besides nutlin-3,
other MDM2 antagonists were reported to reactivate p53
and to strongly induce apoptosis of cancer cells, including
RITA that binds to p53 at its N-terminus. Whereas the speci-
ficity of nutlin-3 has recently been confirmed by CRISPR/
Cas9-mediated deletion of p53, cytotoxic effect of RITAwas
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completely independent on the presence of p53, further
highlighting the need for validation of the small-molecule in-
hibitors using modern gene-targeting approaches [114].

WIP1 activation in p53 negative tumors

As described above, WIP1 is a major negative regulator of
p53 pathway. Besides direct or indirect inactivation of p53
pathway, WIP1 was reported to control the expression level
of a pro-apoptotic protein Bax through dephosphorylation of a
transcriptional factor RUNX2 [115, 116]. This pathway is
particularly important in p53-negative cancer cells, where
WIP1 activity promotes cisplatin-induced apoptosis. These
results led to postulation of an attractive model in which acti-
vation of WIP1 can increase sensitivity of p53-negative cells
to chemotherapy while protecting the healthy cells (carrying
wild-type p53) from possible side effects. However, until now,
selective potentiation of WIP1 function remains challenging.
One of the possibilities for pharmaceutical intervention could
be regulation of WIP1 stability in cells. Turnover of WIP1 in
cells is relatively fast (half-life about 90 min) and phosphory-
lation of WIP1 by HIPK2 potentiates its degradation by pro-
teasome [117]. Indeed, depletion of HIPK2 enhanced the sta-
bility of WIP1 and recently has been reported to increase the
sensitivity of p53-deficient Saos2 cells to cisplatin [117, 118].
It will be interesting to address the ability of pharmacological
inhibitors of HIPK2 tomodulateWIP1 levels in cells. Another
possibility to increase WIP1 levels in cells might be selective
induction of PPM1D expression, possibly by RNA-guided
activation of endogenous human genes [119]. Clearly, more
research is needed to explore suitable approaches for selective
WIP1 induction and to experimentally test its benefit for erad-
ication of p53-negative tumors.

Role ofWIP1 in immune response and hematopoiesis

Besides well-established roles of WIP1 in regulation of stress
response pathways, there is emerging evidence implicating
WIP1 in differentiation of hematopoietic progenitors and in
the immune response (recently reviewed in [120, 121]). In
particular, PPM1D knock-out mice show a p53-dependent
block in T cell and B cell maturation in the thymus and bone
marrow, respectively [122, 123]. In addition, WIP1 is highly
expressed in various kinds of stem cells, and PPM1D knock-
out mice show increased apoptosis in stem cell compartments
[33, 75, 124]. Interestingly, apoptosis in WIP1-deficient intes-
tinal and mesenchymal stem cells was rescued by loss of p53,
whereas apoptosis of hematopoietic stem cells (HSC) was p53
independent [33, 75, 124]. Loss of WIP1 led to hyper-
proliferation of HSC due to the activation of mTORC1 path-
way and led to premature exhaustion of HSC [124]. On the

other hand, deletion of p53 rescued the differentiation of
WIP1-deficient HSCs into erythroid and myeloid lineages
and the repopulation defect in lethally irradiated mice [124].
Finally, mice lacking WIP1 showed increased number of neu-
trophils and were prone to chronic inflammation such as the
DSS-induced colitis [41, 125]. Whereas some of the defects in
the immune response observed in WIP1 deficient mice can be
explained by abnormal activation of the p53 pathway, others
are likely p53 independent. More research is needed to iden-
tify molecular mechanisms by which WIP1 regulates the ac-
tivity of NFκB and mTORC pathways and production of cy-
tokines during the immune response.

Conclusions and future directions

Data from cell biology and mouse genetics highlight WIP1
as an important negative regulator of p53 pathway and a
terminator of the DNA damage response. When
overexpressed, WIP1 impairs p53 function and contributes
to tumorigenesis, usually in combination with activation of
other oncogenes. Conversely, loss of WIP1 significantly
delays tumor development in mice and similarly depletion
of WIP1 by RNA interference allows reactivation of p53
pathway and inhibits proliferation in p53-proficient tu-
mors. Until recently, specific inhibition of WIP1 represent-
ed a major challenge and lack of selective small-molecule
inhibitors limited exploitation of WIP1 as pharmacological
target in cancer therapy. Situation has changed by devel-
opment of the compound GSK2830371 that has validated
specificity towards WIP1 and efficiently reactivates p53
pathway in various cancer types, including breast cancer,
neuroblastoma, and lymphoma. In combination with DNA
damage-inducing chemotherapy or with MDM2 antago-
nists (such as nutlin-3), WIP1 inhibition promotes cancer
cell death or senescence, while it has little effect on viabil-
ity of healthy cells. Importantly, GSK2830371 is orally
bioavailable and its ability to suppress cancer cell growth
in vivo was demonstrated in xenograft models. In the same
time, GSK2830371 is rapidly inactivated in plasma, which
may limit its further clinical use. Therefore, further devel-
opment of GSK2830371 derivatives with more favorable
pharmacokinetic properties is highly desirable. Also, solv-
ing the 3D structure of WIP1 could stimulate development
of even more selective WIP1 inhibitors. Current results
suggest that inhibition of WIP1 will be most efficient in
cancers with wild-type p53 and amplification or gain-of-
function mutations of PPM1D, and thus, determination of
the status of TP53 and PPM1D in the tumors will be im-
portant for predicting the therapeutical outcome of WIP1
inhibitors. Identification of additional factors that control
the ability of cells to reactivate p53 pathway is needed to
allow prediction of the cancer cell sensitivity to WIP1

J Mol Med (2017) 95:589–599 595



inhibitors. MDM2 and MDMX that are commonly
overexpressed in tumors seem to be attractive candidates
for testing the sensitivity to MDM2 antagonists and WIP1
inhibitors. Although loss of WIP1 is well tolerated in mice,
there is emerging evidence that WIP1 plays a role in dif-
ferentiation of cells of the immune system. In light of these
newly arising physiological roles of WIP1, it will be im-
portant to address possible side effects of a temporary in-
hibition of WIP1 during therapeutical intervention.
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