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Abstract
Introduction  Coding medicinal products described on adverse event (AE) reports to specific entries in standardised drug 
dictionaries, such as WHODrug Global, is a time-consuming step in case processing activities despite its potential for 
automation. Many organisations are already partially automating drug coding using text-processing methods and synonym 
lists, however addressing challenges such as misspellings, abbreviations or ambiguous trade names requires more advanced 
methods. WHODrug Koda is a drug coding engine using text-processing algorithms, built-in coding rules and machine 
learning to code drug verbatims to WHODrug Global.
Objective  Our aim was to evaluate the drug coding performance of WHODrug Koda on AE reports from VigiBase, the World 
Health Organization’s global database of individual case safety reports, in terms of level of automation and coding quality.
Methods  Koda was evaluated on 4.8 million drug entries from VigiBase. Automation level was computed as the proportion 
of drug entries automatically coded by Koda and was compared to a simple case-insensitive text-matching algorithm. Coding 
quality was evaluated in terms of coding accuracy, by comparing Koda’s prediction to the WHODrug entries found on the 
AE reports in VigiBase. To better understand the cases in which Koda’s coding results did not match with the WHODrug 
entries in VigiBase, a manual assessment of 600 samples of disagreeing encodings was performed by two teams of expert 
drug coders.
Results  Compared with a simple direct-match baseline, Koda can increase the automation level from 61% to 89%, while 
providing high coding quality with an accuracy of 97%.
Conclusions  Even though Koda was designed for use in clinical trials, Koda achieves automation level and coding quality 
for drug coding of AE reports comparable with the performance observed in a previous evaluation of Koda on clinical trial 
data. Koda can thus help organisations to automate their drug coding of AE reports to a large degree.
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Key Points 

WHODrug Koda is one of the first drug coding engines 
using artificial intelligence.

Originally developed for the use in clinical trials, Koda 
reaches equally good performance on adverse event 
reports.

Koda can automatically code large proportions of drugs, 
including ambiguous drug names, using its internal cod-
ing rules and additional information about the drug, such 
as route, indication and country.

Designed to code only when confident, Koda can iden-
tify challenging cases and leave these for manual coding 
while making helpful suggestions for a large proportion 
of inputs.

1  Introduction

Drug coding to standardised terminologies is a crucial 
data processing step to enable structuring drug informa-
tion from various data sources such as Electronic Health 
Records (EHRs) systems, Electronic Data Capturing systems 
for clinical trials and spontaneous reporting databases for 
postmarketing surveillance of drugs [1–3]. In EHRs, men-
tions of medications can be found in clinical notes or coded 
directly to a drug dictionary [4]. Being able to accurately 
associate patients to drug exposures allows the statistical 
utilisation of the data for epidemiological studies in these 
real-world data sources [5]. The use of standardised drug 
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terminology in EHR systems can also facilitate the exchange 
of information between different parts of healthcare [6, 7]. 
In clinical trials, coding concomitant medications uniformly 
can be challenging due to multicentric trials across several 
countries. Coding trade names of local markets into a global 
drug dictionary allows identification of the active ingredi-
ents involved and thus the harmonisation of inclusion and 
exclusion criteria across all drug markets. In postmarketing 
surveillance, coding reported medications to standardised 
terminologies is necessary to link the adverse events (AE) 
to the appropriate medicinal products and subsequently to 
identify safety signals for the associated active ingredients 
across all related products or groups of products sharing 
similar properties [2, 3].

In the three aforementioned contexts, data about medica-
tions may be first entered in the respective systems in free-
text form before being handled manually or programmati-
cally in a second standardisation step, where the verbatim 
descriptions of the medications are coded to a standardised 
terminology. Even with some degree of automation, this task 
can be time-consuming [8] and fully automating it is non-
trivial. Verbatims might contain abbreviations, misspellings, 
or ambiguous trade names, or might not match directly to a 
record in the drug terminology for other reasons, and thus 
require either trained experts or support of advanced techni-
cal tools, either based on synonym dictionaries or on artifi-
cial intelligence (AI).

In this paper, we evaluate one such system, WHODrug 
Koda, an AI-powered drug coding engine that is designed to 
automatically code drug verbatims to entries in WHODrug 
Global [2], with the help of optional, user-provided addi-
tional drug information. Originally developed for the pur-
pose of coding concomitant drugs in clinical trials, WHOD-
rug Koda could be used in the context of coding drugs 
reported on the AE reports used in postmarketing surveil-
lance. The purpose of this paper was therefore to evaluate 
WHODrug Koda in such a context by quantifying the algo-
rithm’s effectiveness and accuracy on reported drugs found 
in VigiBase, the WHO global database of individual case 
safety reports. In this article, individual case safety reports 
from VigiBase are referred to as AE reports and WHODrug 
Koda is referred to as Koda.

2 � Background

2.1 � Drug Coding

In Natural Language Processing (NLP), in general and espe-
cially medical NLP, the task of mapping a concept of interest 
given in free text (either recognised during Named Entity 
Recognition [NER] or given in a free-text data field) to a 
specific, unambiguous entry in a terminology of choice is 

a challenging task and still an open area of research [4]. 
During subsequent analysis, the concept may then be repre-
sented by the entry in the terminology. This allows grouping 
semantically identical or related concepts into a single term 
and limits the number of concepts in the analyses [4, 9]. 
Most data-mining pipelines based on free text include such 
a mapping step. For example, numerous studies based on 
clinical text describe a mining algorithm to extract clinically 
relevant information and map that information to appropriate 
terminologies (e.g. medical conditions mapped to SNOMED 
CT [10–12] or MedDRA [13, 14] codes, temporal expres-
sions mapped to the ISO-TimeML standard [15, 16]).

Drug coding or drug mapping is an example of a stand-
ardisation task where the concepts to be mapped are 
medicinal products and the terminologies used are drug 
dictionaries such as RxNorm, the Anatomical Therapeu-
tic Chemical (ATC) classification system, or WHODrug 
Global. Developed by the US National Library of Medicine 
(NLM), RxNorm has been created to address the need for 
interoperability across medical information systems. It pro-
vides standardised drug codes based on ingredient(s), dose 
form and strength(s), and links these codes to other drug 
terminologies, such as the National Drug File Reference 
Terminology (NDF-RT) or the National Drug Code (NDC) 
directory used by the US FDA [3]. RxNorm has been used 
for drug NER [17]. The ATC system is a hierarchical clas-
sification system developed and maintained by the WHO 
Collaborating Centre for Drug Statistics Methodology that 
classifies active drugs according to the organ or system on 
which they act, as well as their therapeutic, pharmacological 
and chemical properties. WHODrug Global [2] is a resource 
for drug coding in international databases. It has global cov-
erage of trade names from 167 different drug markets and is 
developed and maintained by the Uppsala Monitoring Centre 
(UMC), the WHO Collaborating Centre for International 
Drug Monitoring. WHODrug Global contains information 
about medicinal products and active substances intended for 
human and medicinal use, both of conventional and natu-
ral origin. The records included in the dictionary are clas-
sified as trade names (the name under which a medicinal 
product is marketed), generic records (substance informa-
tion) or umbrella records, which describe a drug category 
(e.g., Hormonal contraceptives for systemic use or Cough 
and cold preparations). In the remainder of the paper, we 
refer to WHODrug Global as WHODrug. All drug names 
in WHODrug have one or more assigned ATC codes, rep-
resenting either an official code assigned by the WHO Col-
laborating Centre for Drug Statistics Methodology or addi-
tional UMC-assigned codes. UMC-assigned ATC codes are 
included due to the specific use cases of WHODrug, when 
official ATC codes are not sufficient for efficient analysis of 
medicinal products and their properties.
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In postmarketing surveillance and clinical trials, drug 
coding involves coding the verbatim describing the active 
substance or product used by the patient to a drug terminol-
ogy. Additional information, such as the strength, the dos-
age form or the indication of the product may be used to 
inform the coding decision [18]. Since the verbatim might 
be entered manually, it can contain abbreviations, misspell-
ings, and the trade name, with or without the corresponding 
active ingredients, and might not be formatted consistently, 
depending on data entry conventions. Drug coding can also 
be challenging when the trade names used are ambiguous. 
Aircort, for example, is a trade name that is marketed in both 
Morocco and Italy; however, while it represents a product 
containing Beclometasone dipropionate in Morocco, Aircort 
represents a product containing Budesonide in Italy. Even 
within a single drug market, ambiguous trade names can be 
found: Losec is a trade name in Sweden marketed in different 
pharmaceutical formulations such as injections and tablets. 
Depending on the form, different variations of the active 
ingredient are used, for example the omeprazole magne-
sium variation is used in tablets and the omeprazole sodium 
variation is used in injection formulations. Addressing these 
challenges, which present varying degrees of complexity, 
may require the expertise of trained coders and makes drug 
coding a time-consuming task. In the context of safety case 
processing, based on a survey of pharmaceutical compa-
nies, the drug and AE coding part of the case processing 
is estimated to take 1–4 min per case [8]. Although drug 
coding appears to be performed manually to a large degree, 
in both the postmarketing surveillance and the clinical trials 
contexts, there have been some recent efforts to automate 
the task [19, 20].

Tools for drug coding through direct matches of the ver-
batim, with or without transformation, to drug terminolo-
gies can be referred to as auto-encoders and the process 
itself auto-coding or auto-encoding [2, 18]. Direct matches 
are coded automatically to the drug terminology of interest 
[18] and synonym lists are commonly created by organisa-
tions during manual coding to record and reapply coding 
decisions. However, the creation and maintenance of such 
synonym lists requires considerable amounts of manual 
work. In order to facilitate some of this work, some drug-
coding systems proposed use reordering of tokens or differ-
ent text-processing steps. Systems developed for RxNorm, 
for example, identify the different parts of the drug name, 
i.e., ingredient, product name, strength and form, and stand-
ardise to the appropriate format [1, 17, 21]. Neither synonym 
lists nor text-processing methods can, with certainty, select 
between ambiguous drug names.

More advanced, AI-based systems may help in dealing 
with ambiguities. To our knowledge, there are very few such 
systems in use. One study explored the use of deep neural 
networks to code non-standardised drug order texts in EHRs 

to ATC codes [22]. The authors evaluated their drug-coding 
system as a ranking system and reached a Mean Reciprocal 
Rank of 98% on their dataset comprising fewer than 1000 
drug-order texts from one medical centre. In another study, 
Abatemarco and colleagues [20] proposed a deep neural 
network approach to WHODrug coding and other case pro-
cessing tasks. They trained two different models towards this 
task, a drug entity recognition model that identifies the drug 
mentions in the case narrative and a subsequent classifier 
mapping the detected entities to WHODrug. They reported a 
top-5 accuracy score of 98% for the mapping task. However, 
a system that can only reliably predict the correct record in a 
top-5 list would require a human expert to select the correct 
record in all cases. Therefore, such a system is only support-
ing, instead of automating, the task. In contrast to drug cod-
ing, the task of drug name extraction or NER of drugs has 
been more frequently approached using machine-learning 
methods and, in recent years, deep neural networks have 
been applied for drug name extraction [20, 23, 24].

2.2 � Drug Coding with WHODrug Koda

WHODrug Koda is an automated coding engine custom 
built by UMC. Koda is one of the first AI-based drug coding 
systems available for use.1 The purpose of Koda is to assist 
coders in interpreting free-text drug information selecting 
the most appropriate drug name in WHODrug. Koda can 
scale-up coding capacity and support drug coders in their 
manual work.

For a given drug entry, Koda does one of the follow-
ing: (1) select a WHODrug record with high certainty; (2) 
suggest a set of WHODrug records to choose from; or (3) 
leave the entry uncoded, in cases requiring human exper-
tise. Inputs to Koda consist of a verbatim and optional fields 
about the route, indication and country in which the product 
was obtained. In the case of ambiguous drug names, Koda 
harnesses the additional information, if provided, to iden-
tify the correct WHODrug record. Koda also has the ability 
to select the most appropriate of the ATC codes assigned 
to a WHODrug record per intended use, meeting regula-
tory expectations for coding concomitant medications in 
clinical trials [26]. However, because ATC selection is usu-
ally not part of AE case processing, evaluating Koda for 
its ATC selection capabilities is out of scope in this study 
and we evaluated Koda on its WHODrug coding capabilities 
exclusively.

To select the correct record in WHODrug, Koda uses a 
combination of text-processing algorithms, built-in coding 
rules and machine learning. The machine learning module 
was trained on a dataset of millions of reported drugs in 
VigiBase, combined with annotations established by a team 

1  A trial web interface is available for WHODrug users [25].
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of drug-coding experts. It is retrained by UMC on every new 
WHODrug version to ensure that Koda stays up to date with 
new additions and changes in the dictionary.

To ensure that Koda follows the most recent coding 
guidelines for coding concomitant drugs, it also uses built-in 
coding rules. The coding rules have been developed in col-
laboration with a reference group consisting of experienced 
coders from the industry and are aligned with accepted best 
practices (such as the WHODrug Best Practices [27]) and 
regulatory expectations [26]. Three coding rules can be tog-
gled in Koda to enable user-specific coding conventions: the 
preferred base rule, the generic rule, and the country rule. 
Koda can fall back on these coding rules in cases where 
route and indication information cannot disambiguate the 
drug names. The preferred base coding rule allows Koda 
to select the base substance in cases where the trade name 
is ambiguous. For example, the trade name Doxycyclin Al 
contains different salt variations of Doxycycline depending 
on the pharmaceutical formulation. In cases where Koda 
is unable to code to one specific trade name, the preferred 
base substance Doxycycline will be selected. The generic 
rule allows Koda to select the generic record in the diction-
ary if a trade name is marketed with the same name as a 
generic record. For example, the generic record Magnesium 
will be selected even though there is a trade name with the 
same name but different active ingredients. The country rule 
allows Koda to utilise the country information to select the 
correct trade name in the dictionary.

An independent study performed at Novo Nordisk evalu-
ated Koda for its coding performance for coding concomitant 
drugs in clinical trials [19]. The authors found that 79% of 
the concomitant drugs in their dataset could be coded to a 
WHODrug record with a high certainty by Koda. Koda could 
additionally make suggestions for 15% of the drugs, leaving 
6% of the drugs uncoded. For 96% of the drugs coded with 
high certainty, Koda’s prediction agreed with the existing cod-
ing done by Novo Nordisk internal coding practices. During 
manual evaluation of a sample of 181 disagreeing drug encod-
ings, the assessors found the Koda encoding to be at least as 
acceptable and precise as the Novo Nordisk encoding for 90% 
of the drugs. The performance of Koda for drug coding on AE 
reports is as yet unknown. Evaluation of Koda for drug coding 
on AE reports is the purpose of this study.

3 � Methods

3.1 � Evaluation Data

Figure 1 shows the creation of the evaluation dataset. In 
a first step, we extracted all AE reports first received in 
VigiBase between 1 January 2020 and 31 December 2020 
(included). The deduplicated version of VigiBase for this 

time period was used, where duplicate removal had been 
performed using the vigiMatch algorithm [28]. For each 
reported drug, we extracted the description of the drug—
the original, verbatim description of the drug received from 
the primary source of the report, the indication (when pro-
vided), the route of administration (when provided), and the 
country where the drug was obtained (when available, oth-
erwise inferred as the primary source country of the report) 
(Table 1). In this study, each instance of verbatim, route, 
indication and country for a given reported drug is referred 
to as a Koda input and represents one reported drug in our 
evaluation dataset.

As Koda does not handle non-Latin characters, we excluded 
all Koda inputs containing at least two non-Latin characters2 
(see step 2 in Fig. 1). In step 3, we also excluded reported 
drugs that, at the extraction date, had not been mapped in  
VigiBase to any WHODrug record (e.g., invalid drug information, 
drugs awaiting manual coding). The remaining Koda inputs  
constituted our final evaluation dataset, all written using the 
Latin alphabet and associated with a valid WHODrug record. 
Newline characters were removed from all free-text fields. 
No additional pre-processing was applied. As our evaluation 
dataset is extracted from VigiBase, each Koda input has a 
corresponding VigiBase encoding, which is what the drug 
has been mapped to in VigiBase. This VigiBase encoding is 
considered a gold-standard label and is used to evaluate the 
Koda prediction. Importantly, none of the reports included 
in the evaluation dataset and their associated gold-standard 
labels were used to train Koda.

3.2 � Construction of the Gold Standard

The WHODrug records created by UMC’s internal coding 
processes and stored in VigiBase formed our gold-standard 
labels and were used to evaluate the correctness of Koda 
encodings. During UMC’s coding processes, reported drugs 
on AE reports in VigiBase are coded by an automated process 
that is independent of Koda and consists of directly matching 
verbatims to WHODrug in combination with text-processing 
algorithms, as well as a compiled synonym list. When this 
is not successful, the more challenging cases are manually 
coded by an expert who investigates the information on the 
report to make the coding decision. The coding experts follow 
UMC’s internal coding rules, which are based on WHODrug 
Best Practices [27], to assure high quality and consistency of 
the coded data. They also feed coding decisions back to the 
automated process by updating the synonym list to reuse the 
coding decisions on similar contexts in the future.

2  We chose to cut-off at two characters because some single charac-
ters such as unit specifiers (such as mg [U+338E]) could have been 
poorly encoded, but the text may nevertheless contain enough infor-
mation for Koda.
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A significant proportion of the manual coding step 
involves resolution of ambiguous drug names, also referred 
to as non-unique trade names. They share the same drug 
name in WHODrug but include different active ingredients 
and thus correspond to different records in the dictionary 
[27]. To differentiate ambiguous drug names in WHOD-
rug, in the B3-format3 of the dictionary, trade names are 
appended with an alphabetically ordered list of active ingre-
dients. Ambiguous drug names appear in WHODrug if:

(a)	 a product is marketed under the same trade name with 
different active ingredients; ASTAFEN [KETOTIFEN 

FUMARATE] is marketed in Turkey and ASTAFEN [PAR-
ACETAMOL] is marketed in the Republic of Korea;

(b)	 a product is marketed under the same trade name with 
different salt variations of the same moiety, possibly in 
different pharmaceutical forms; ACIFRE [OMEPRA-
ZOLE] includes the preferred base in the capsules form 
and ACIFRE [OMEPRAZOLE SODIUM] includes the 
salt variation in the vials form;

(c)	 the active ingredients of a product have been modi-
fied without a change to the trade name, resulting in 
two records reflecting both the old product and the new 
product; ACTON [CORTICOTROPIN] is not marketed 
any longer; however, a new product ACTON [PAR-
ACETAMOL] is currently on the market with the same 
name but different active ingredients;

(d)	 a product’s trade name has the same name as a generic 
record in WHODrug but different active ingredients; 
CALCIUM is the generic record that represents the sub-
stance information in WHODrug; CALCIUM [ASCOR-
BIC ACID;CALCIUM;COLECALCIFEROL] is also a 
trade name in Egypt with a different content;

(e)	 a trade name is the same as an umbrella term; the trade  
name PROBIOTICS [BIFIDOBACTERIUM LONGUM; 
LACTOBACILLUS ACIDOPHILUS;LACTOBACILLUS 
RHAMNOSUS] has the same name as an umbrella collec-
tive term PROBIOTICS [UMBRELLA TERM].

To measure Koda’s performance against ambiguous drug 
names, we defined a Koda input to reference an ambiguous 
drug name if the gold-standard WHODrug record fulfilled 
any of the five above-mentioned criteria in the WHODrug 
March 2021 release.

3.3 � Models

This study used the March 2021 release of Koda, with the 
preferred base, generic and country rules turned on. It 
coded drug entries to the March 2021 release of WHOD-
rug (B3-format), selecting records at high certainty, as sug-
gested, or leaving them uncoded.

Fig. 1   Steps for the extraction of the evaluation dataset and the gen-
eral data statistics after each step

Table 1   Description of Koda input fields

a ISO 3166-1 alpha-3 country code or unknown

Field name Field type Possibly 
missing

Koda input 
requirement

Verbatim Free text No Mandatory
Route of  

administration
Structured  

(70 values possible)
Yes Optional

Indication Free text Yes Optional
Country Structured  

(251 valuesa)
No Optional

3  WHODrug Global is provided in two formats, the B3-format and 
the more detailed C3-format [27].
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To give Koda a baseline comparator and to show how 
much simple automation can be used to solve the task of 
drug coding on AE reports, we compared Koda’s coding 
results to the encodings created by a case-insensitive text-
matching algorithm, where verbatims were searched against 
all drug names in the March 2021 release of WHODrug in 
B3-format. This baseline algorithm coded to the record for 
which the drug name in WHODrug matches the verbatim 
exactly, disregarding letter case differences. No preprocess-
ing was performed on the verbatim to keep the model as 
simple as possible. Based on the text-matching approach 
described above, ambiguous drug names were only matched 
when the verbatim provided the list of active ingredients in 
the correct format, or, alternatively, if they corresponded 
exactly to a generic record. This behaviour corresponded to 
a coding convention allowing ambiguous drug names to be 
coded to a generic record if it exists.

3.4 � Evaluation Metrics

Automation level was measured by the proportion of Koda 
inputs coded by Koda at high certainty. The proportion was 
compared with the baseline model described in the para-
graph above, where a successful match to a WHODrug drug 
name was considered coded.

Coding quality indicates how good Koda was at select-
ing or suggesting the correct drug record for a given input. 
This was measured in terms of accuracy as well as precision, 
recall and F1 score, comparing Koda’s prediction against 
the gold-standard drug encoding present in our evaluation 
dataset. The accuracy was computed overall and per Koda 
confidence level (high certainty, suggested or uncoded). 
For the high-certainty cases, we directly compared the drug 
encoding in the gold standard with the drug encoding pre-
dicted by Koda. A positive match was obtained when the 
gold-standard encoding and Koda encoding were identical, 
while a mismatch was obtained in any other case. A similar 
strategy was used to compare Koda’s suggested encodings 
to the gold standard. A positive match was obtained when 
one of the suggested encodings was identical to the gold 
standard at the detail level provided by the B3-format. The 
coding quality was then computed as the proportion of posi-
tive matches between the outputs from Koda and the gold 
standard. Precision, recall and F1-score were computed for 
all Koda inputs as the macro average across all WHODrug 
records present in the gold standard and as a weighted aver-
age of the metrics per WHODrug record, weighing each 
record by its prevalence in the gold standard. In all precision, 
recall and F1 computations, any suggested or uncoded Koda 
prediction counts as a false negative for the associated gold-
standard WHODrug record.

3.5 � Manual Evaluation of Mismatches to the Gold 
Standard

To better understand Koda’s coding quality, we manually 
evaluated cases in which Koda failed to predict the gold-
standard encodings. For this, we randomly sampled 200 
high-certainty mismatches, 200 suggested encodings where 
no suggestion matched the gold standard, and 200 Koda 
inputs left uncoded by Koda. We consequently categorised 
each mismatch and summarised the results on Koda's confi-
dence levels. The assessment was done by five drug coding 
experts divided into two independent teams. Inter-annotator 
agreement for each confidence level was measured between 
the two teams using Cohen’s kappa statistic to judge the 
reliability of the assessments and as an indirect measure for 
the difficulty of the task.

For the high-certainty samples, we considered four cat-
egories of mismatches: (1) Koda’s encoding was more pre-
cise; (2) the gold-standard encoding was more precise; (3) 
both were acceptable; and (4) both were incorrect.

For the suggested samples, the categories were (1) the 
gold-standard encoding was more precise than any of Koda’s 
predictions; (2) at least one Koda suggestion was more pre-
cise; (3) both the gold-standard encoding and at least one 
Koda suggestion were acceptable; and (4) none of the encod-
ings was acceptable.

Finally, for the uncoded samples, we considered the three 
following categories: (1) the gold-standard encoding was 
correct; (2) the gold-standard encoding needed manual 
review based on the available information from the Koda 
input; or (3) the gold-standard encoding was not correct.

3.6 � Effect of Route, Indication and Country Fields

Koda was designed to not only automate simple cod-
ing decisions but to also enable the coding of ambiguous 
drug names. Fields such as indication, route, and country, 
while optional, are assumed to provide additional context 
to Koda when the verbatim alone is not enough to resolve 
these ambiguous drug names. To test this hypothesis, we 
performed a masking experiment on a sample of Koda inputs 
in the evaluation dataset. Due to computational limitations, 
it was not possible to perform this experiment for all Koda 
inputs from the gold standard that had been coded to an 
ambiguous drug name. We therefore randomly sampled 
2500 Koda inputs from the set of unique Koda inputs where 
all fields were non-empty and where the gold-standard label 
was an ambiguous drug name (ambiguous, as defined in 
Sect. 3.2). We refer to these 2500 unique ambiguous Koda 
inputs as the Verbatim-Route-Indication-Country (VRIC) 
dataset.

From the VRIC dataset, five additional synthetic datasets 
were derived through masking combinations of the optional 
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fields: (1) the V dataset, retaining only the verbatim field 
while route, indication and country fields are masked; (2) the 
VC dataset, where the verbatim and country were kept but 
the route and indication were masked; (3) the VRC dataset, 
where only the indication was masked; (4) the VIC dataset, 
where only the route was masked; and finally (5) the VRI 
dataset, where only the country field was masked. Together, 
these five datasets were run through Koda with identical 
coding rule configuration. Country was treated slightly dif-
ferently from the route and indication fields because the 
country field is linked to the country coding rule of Koda. 
Country information is also typically present on AE reports 
but not necessarily available in the clinical trial context.

In our analysis, we used the VRIC dataset with all fields 
present as a reference dataset, which we compared against 
the masked versions to see how the additional fields affected 
Koda’s automation level and the WHODrug record selection.

4 � Results

4.1 � Evaluation Data Overview

After step 1 in our dataset preparation as depicted in Fig. 1, 
we had extracted 2,643,724 reports that had been received 
in VigiBase in 2020 and after duplicate removal. These cov-
ered 184 countries and territories and contained 6,210,569 
reported drugs, with an average of two reported drugs per 
report.

Our final evaluation dataset contains 1,936,062 reports 
from 181 countries and territories and 4,845,505 Koda 
inputs, all written using the Latin alphabet and associated 
with a valid WHODrug record. The 4,845,505 Koda inputs 
can be grouped into 907,153 unique Koda inputs.

The top-five countries represented on the reports, as well 
as the reporter qualifications, are presented in Tables 2 and 
3, respectively. The drugs in the dataset have been coded to 
63,010 distinct WHODrug records. The top-five reported 
WHODrug records and the most common ATC level 2 codes 
associated with reported drugs are presented in Tables 4 
and 5, respectively. Statistics about the number of times 
a WHODrug record has been reported and the number of 
unique inputs associated with them is presented in Table 6.

The presence of a route or indication field in the dataset 
does not imply that they are informative. Of all Koda inputs 
in the dataset, 46% have an informative indication4 and 51% 
have an informative route5. Only three Koda inputs in this 
dataset have country reported as unknown.

4.2 � Automation Level and Coding Quality

On the evaluation dataset, Koda shows an automation level 
of 89%. This is significantly higher than our direct-match 
baseline, which is automatically coding 61% of the drug 
entries in this dataset. For an additional 6% of inputs, Koda 
makes one or more suggestions, while leaving 5% of inputs 
uncoded (Fig. 2a). Figure 2b shows the coding quality of 
Koda’s high-certainty encodings. Koda codes at high cer-
tainty with an accuracy of 97%; this means that for 97% of 
the cases, Koda’s high-certainty predictions agree with the 
gold-standard encoding. Similarly, in Koda′s suggested pre-
dictions, 76% of the suggested encodings contain the gold-
standard WHODrug record (Fig. 2c).

Manual inspection of a sample of inputs showed that 
Koda’s coding quality is affected by verbatims that contain 
non-trivial misspellings, and verbatims with much additional 
information such as unrelated text, or strength without units. 
Koda also struggles on verbatims describing combination 
products—products containing more than one ingredient—
that are listed in various formats. Collective terms such as 
vitamins or antibiotics, which should often be coded to an 
umbrella term, also seem to be particularly challenging for 

Table 2   Top-5 report countries 
in the evaluation dataset

Country %

USA 43
Korea 12
Germany 6
UK 6
France 4
Rest of the world 29

Table 3   Top-5 report 
qualification in the evaluation 
dataset

Reporter qualification %

Consumer 39
Physician 24
Other health professionals 19
Pharmacist 13
Lawyer 3
Unknown 2

Table 4   Top-5 reported drugs in the evaluation dataset

Drug %

Other anti-acne preparations for topical use [umbrella term] 2.0
Adapalene 1.2
Revlimid 1.0
Humira 1.0
Zantac 0.9

4  Indication present and not containing the phrase ‘unknown indica-
tion’.
5  Route present and not ‘unknown’, ‘other’, or derived from verbatim.
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Koda to code. In a few cases, Koda’s performance was nega-
tively affected by the indication information, mainly when 
the reported indication was rare or formulated in an unusual 
way, and therefore very different from the training dataset.

We observed that 61% of the Koda inputs for which Koda 
provided suggestions had been coded manually in the gold 
standard. Similarly, 98% of the inputs Koda left uncoded 
had been coded manually in the gold standard. Many of the 
uncoded Koda inputs were identical or referred to a very 
specific brand of over-the-counter products, showing that 
only very few unique Koda inputs are left fully uncoded by 

Koda. Even when coding as suggested, Koda suggests only 
a single WHODrug record for most inputs (Fig. 3), and, 
for more than 99% of inputs, Koda suggests six or fewer 
WHODrug records (Table 7).

The evaluation result of Koda’s coding quality across all 
Koda inputs, including those that Koda chooses to leave as 
suggested encodings or uncoded requiring human input, is 
presented in Table 8. Compared with the direct-match base-
line with an accuracy of 60.4%, Koda increases accuracy to 
86.0%. We find that Koda reaches a macro average F1 score 
of 87.6% and weighted average F1 score of 88.2%, which is 
significantly higher than the direct-match baseline (64.4% 
and 66.1%, respectively).

4.3 � Mismatches to the Gold Standard

Manual evaluation of the 200 sampled Koda predictions 
coded at high certainty that did not match the gold standard 
showed that Koda’s predictions were as good as or more 
precise than the gold standard in over 90% of the samples 
(Fig. 4), with an inter-annotator score of 0.83 (Cohen’s 

Table 5   Top-5 reported ATC codes in the evaluation dataset

ATC​ Anatomical Therapeutic Chemical

ATC level 2 %

V91 Homeopathic preparation 1.2
V90 Unspecified herbal and traditional medicine 0.5
R01 Nasal preparations 0.5
D03 Preparations for treatment of wounds and ulcers 0.2
N05 Psycholeptics 0.1

Table 6   Descriptive statistics of WHODrug records in the evaluation dataset

Number of unique Koda 
inputs per WHODrug 
record

Number of unique verbatims 
reported per WHODrug 
record

Number of unique routes 
reported per WHODrug record 
(total = 67)

Number of unique indications 
reported per WHODrug record 
(total = 26,379)

Minimum 1 1 0 0
25th percentile 1 1 1 1
Median 3 1 1 1
75th percentile 11 2 2 4
Maximum 98,033 281 34 1487

(a)

(b) (c)

Fig. 2   a Koda’s automation level showing percentages of high cer-
tainty, suggested encodings and uncoded Koda inputs compared with 
the direct-match baseline. b Agreement between high-certainty Koda 

encodings and gold standard. c Agreement between Koda suggestions 
and gold standard
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kappa), which suggests strong agreement between the teams 
[29].

Similarly, in the 200 samples for which Koda suggested 
one or several WHODrug records that did not contain the 
gold-standard WHODrug record, the two teams found that 
approximately 50% of Koda’s suggestions were as good as 
or better than the gold standard (Fig. 4). The gold standard 
was considered more correct in 48% of the mismatches by 
Team 1 and 44% by Team 2. None of the encodings were 
judged acceptable in 1.5% and 7.5% of mismatches accord-
ing to Team 1 and Team 2, respectively. The inter-annotator 
agreement score for this evaluation was 0.81, which can also 
be considered strong agreement [29].

Of the 200 mismatches that Koda left uncoded, the gold-
standard encoding was found to either be incorrect or require 
manual review in more than 80% of the samples. The Cohen 
Kappa inter-annotator score for these samples was 0.89, 
indicating strong agreement between the two teams [29].

4.4 � Effect of Route, Indication and Country Fields

None of the Koda inputs in the VRIC dataset with confi-
dence level suggested transitioned to high certainty when 
one or more of the optional fields were masked. We thus 
provide the results of the effect of the optional fields only 
for the 2124 entries coded by Koda at high certainty in the 
VRIC dataset. For each of the dataset variations (VRC, VIC, 
VC, VRI and V), we report the changes in encoding and 
Koda’s confidence in Table 9.

As can be seen in Table 9, Koda can still resolve ambigu-
ous drug names even when additional fields are removed. 
Addition of the country field seems to have a larger effect, 
compared with route and indication, on increasing the auto-
mation level from suggested to high certainty: 129 entries 
were demoted to suggested when the country field was 
removed (Table 9, row VRI), while only 9 were demoted to 
suggested when the route and indication fields were removed 
(Table 9, row VC). The combined effect of removing all 
additional fields had the greatest impact, with 246 entries 
being demoted to suggested (Table 9, row V). No records 
were demoted to uncoded for any of the masked datasets.

Most entries stayed at high certainty when additional 
fields were removed. However, upon removal of these addi-
tional fields, a small proportion of these high-certainty coded 
Koda inputs were coded to a different WHODrug record. 
When route and indications were removed (Table 9, row 
VC), 105 entries at high certainty were coded to a different 
WHODrug record, while 81 entries at high certainty were 

Fig. 3   Number of options provided by Koda when coding as suggested

Table 7   Centre and dispersion of the number of options for suggested 
encodings

Min minimum; max maximum; pctl percentile

Min Median 75th pctl 95th pctl 99th pctl Max

1 1 2 4 6 42
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coded to a different WHODrug record when all fields were 
masked (Table 9, row V). Removing only route (Table 9, row 
VIC) led to more changes in the chosen WHODrug record 
than removing only indication (Table 9, row VRC), while 
the removal of only the country field (Table 9, row VRI) did 
not change the WHODrug record chosen for this dataset.

Of the 105 Koda inputs whose WHODrug record changed 
when route and indication were masked (Table 9, row VC), 
86 were changed to an entry with the same active moiety; 61 
of 86 were coded to the preferred base substance. Similarly 
for the case when all fields were masked (Table 9, row V), 
78 were changed to a WHODrug record with the same active 
moiety, of which 59 were coded to the preferred base sub-
stance. These results show that Koda can select a sensible, 
but less specific, WHODrug record even when route and 
indication fields are missing.

5 � Discussion

Our evaluation revealed Koda’s performance for drug coding 
on AE reports to be on par with its performance on drug cod-
ing of concomitant drugs in clinical trials, on both automa-
tion level and coding quality [19]. Furthermore, Koda could 
automatically code significantly more than a simple text-
matching baseline and managed to automate the coding of 
inputs with ambiguous drug names to a large extent. Ambig-
uous drug names were resolved mostly by Koda’s internal 
coding rules, while the country field marginally increased 
Koda’s confidence level, and the route and indication 
fields maintained Koda’s confidence level but marginally 

Table 8   Macro average precision, recall and F1 score across all WHODrug records in the gold standard, and the average of these metrics per 
WHODrug record weighted by the classes’ prevalence in the gold standard for WHODrug Koda and our direct-match baseline

Accuracy Macro average Weighted average

Precision  Recall F1 Precision Recall F1

Koda 86.0% 91.0% 86.7% 87.6% 94.9% 86.0% 88.2%
Direct-match baseline 60.4% 71.9% 62.1% 64.4% 88.6% 60.4% 66.1%

Fig. 4   Manual assessment results for Koda’s three confidence levels
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influenced the choice of WHODrug record. Records of trade 
names are more likely to be coded to generic records of the 
base substance in the absence of route and indication fields, 
leading to correct but less precise encodings. Built-in coding 
rules are thus an important component of Koda’s intelligence 
compared with standard text processing-based systems.

Not only could Koda automate the coding of a large pro-
portion of cases, but also for approximately half of the non-
automated cases, Koda suggested one or multiple WHODrug 
records, significantly reducing the search space of possible 
records. These suggestions were found to be sensible for 
three of four inputs, and manual evaluation of mismatches 
with the gold standard revealed that Koda’s effective cod-
ing quality is likely even higher. From a coder’s perspec-
tive, Koda can reduce manual coding effort to a minimum 
in many cases, including non-trivial ones. Koda cannot how-
ever support all coding decisions, with 5% of all inputs from 
the evaluation dataset remaining uncoded.

Even though route and indication are optional, their pres-
ence improved the record selection. Since indication is pro-
vided in free text, it allows greater room for error due to 
variations in its content. Machine learning can help in cases 
where information is entered in free text, but it requires high-
coverage training datasets. Even though a well-trained model 
should generalise to new, unseen input, it may fail if the data 
are too different from what was seen during training, which 
was also seen in this study. Therefore retraining and continu-
ous evaluation of the model is crucial.

In this study, we evaluated Koda for its ability to code 
drugs on AE reports, while in a previous study, Koda had 
been evaluated for its ability to code concomitant drugs in 
clinical trials. In the context of EHRs, drug coding may be 
applied to free-text drug fields or as the mapping step follow-
ing the NER of drugs. Evaluating Koda’s coding capabilities 
on drug mentions in EHRs would be an interesting future 
study. When coding drug verbatims that were extracted from 
narratives in EHRs, Koda’s performance might be negatively 
affected since they might differ in nature and since additional 
drug information might be challenging to extract from the 
narratives.

There are several limitations to consider when interpret-
ing the results of our study. First, we have only evaluated 

Koda using its default configuration with all coding rules 
turned on. The default configuration partly reflects UMC’s 
internal coding conventions and is thus much in line with 
how the gold standard was developed. A different configura-
tion may affect the results negatively.

Second, the baseline in this study was chosen for its sim-
plicity and does not make use of synonym lists that organi-
sations may develop as part of their automated coding pro-
cesses. The addition of a synonym list to the baseline would 
likely increase its automation level. Constructing such a 
synonym list is a non-trivial, manual task that often requires 
domain-specific knowledge and maintenance. A comparison 
with more intelligent, automated drug coding systems for 
WHODrug would be of interest, however, to the best of our 
knowledge, no such systems are publicly available.

Third, in the manual evaluation of the mismatches to the 
gold standard, assessors were provided the same information 
as Koda, namely verbatim, route, indication and country, 
instead of the full AE report, which is used in practice dur-
ing manual drug coding. As a result, there may be cases 
where the gold-standard encoding was in fact more correct 
based on the information derived from the entire AE report, 
but was judged to be as good or worse than Koda’s predic-
tion. This approach was chosen to be fair to Koda, which can 
only use the verbatim, route, indication and country informa-
tion to produce its predictions.

Furthermore, our results should be interpreted consider-
ing the difficulty of the drug coding task. Many Koda predic-
tions mismatching with the gold standard were nevertheless 
deemed acceptable and since several assessments made by 
the two evaluation teams were different, we can deduce that 
there is a certain amount of imprecision to drug coding, 
which makes evaluation of drug coding systems harder. 
Additionally, differences between the WHODrug versions 
used by Koda or the gold standard may affect the accuracy 
of both Koda and the baseline method when compared with 
the gold standard.

Moreover, while Koda is an independent system devel-
oped and maintained by an independent team and sharing 
no modules or code with UMC’s automated drug coding 
processes for VigiBase reports, there is a possible influence 
on Koda’s development from the automated processes used 

Table 9   Result of masking experiment, masking various fields

High Certainty
Verbatim Route Indication Country Same WHODrug 

record
Changed WHODrug 

record

Suggested

VRIC Provided Provided Provided Provided 2,124 (100.0%) - -
VRC Provided Provided Masked Provided 2,089 (98.3%) 27 (1.3%) 8 (0.4%)
VIC Provided Masked Provided Provided 2,036 (95.9%) 87 (4.1%) 1 (0.0%)
VC Provided Masked Masked Provided 2,010 (94.6%) 105 (5.0%) 9 (0.4%)
VRI Provided Provided Provided Masked 1,995 (93.9%) 0 (0.0%) 129 (6.1%)
V Provided Masked Masked Masked 1,797 (84.6%) 81 (3.8%) 246 (11.6%)
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during the creation of the gold standard in the form of trans-
fer of knowledge and learnings.

Finally, during the creation of our gold-standard dataset, 
all reported drugs considered invalid during manual coding 
were excluded. Koda’s ability to recognise these inputs as 
invalid and leave them uncoded would be worth evaluating 
during future studies but was outside the scope of this evalu-
ation of Koda.

6 � Conclusion

Drug coding to a standardised dictionary, such as WHOD-
rug, is an essential step in case processing activities for phar-
macovigilance; however, it is a non-trivial task due to the 
varying data quality for the reported drugs, variation in sub-
mitted information, as well as presence of ambiguous drug 
names. Auto-encoders based on text-processing algorithms 
and synonym lists commonly used during drug coding can 
usually only automate the coding of drug names that have 
a single record in the drug dictionary. Resolving ambigu-
ous drug names is however harder and perhaps represents 
the fundamental challenge for automation in drug coding. It 
requires additional decision making in the form of coding 
conventions to choose the correct record among a list of 
possible candidates. Automating or supporting this process 
could save a significant amount of time for drug coders.

WHODrug Koda is a product developed for the specific 
purpose of automatically coding free-text drug information 
of concomitant drugs in clinical trials to WHODrug. Evalu-
ation of Koda’s coding performance on AE reports was the 
focus of this study. In our dataset of reports from VigiBase, 
Koda achieved an automation level gain of 46% compared 
with the simple baseline, requiring no human assistance. 
While Koda is designed as a human-in-the-loop coding sys-
tem, its high automation level minimises manual interaction. 
Human assistance is only required in particularly difficult 
cases and is in many cases supported by sensible coding sug-
gestions provided by Koda. Koda appears to handle ambigu-
ous trade names very well and at high quality with the help 
of additional information, even when additional information 
is not provided, by following configurable coding rules.

Koda’s ability to automatically code reported drugs on 
AE reports at a high confidence level (including drugs with 
ambiguous names) and suggest WHODrug records in cases 
identified as more challenging appears to be a novelty. To 
the best of our knowledge, there are no such systems in use 
whose performance have been systematically studied.

Even though Koda was designed for concomitant 
drug coding in clinical trials, it achieves high automation 
level and coding quality for drug coding of AE reports in  
VigiBase. Koda can thus be a valuable tool for automating 

and supporting coding practices during case processing for 
pharmacovigilance while ensuring high data quality.
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