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Contacts used in finite element (FE) models were considered as the best simulation for
interactions in the temporomandibular joint (TMJ). However, the precision of simulations
should be validated through experiments. Three-dimensional (3D) printing models with
the high geometric and loading similarities of the individuals were used in the validation.
This study aimed to validate the FE models of the TMJ using 3D printing models. Five
asymptomatic subjects were recruited in this study. 3D models of mandible, disc, and
maxilla were reconstructed according to cone-beam CT (CBCT) image data. PLA was
chosen for 3D printing models from bottom to top. Five pressure forces corresponding
to the central occlusion were applied to the 3D printing models. Ten strain rosettes
were distributed on the mandible to record the horizontal and vertical strains. Contact
was used in the FE models with the same geometries, material properties, loadings,
and boundary conditions as 3D printing models to simulate the interaction of the
disc-condyle, disc-temporal bone, and upper-lower dentition. The differences of the
simulated and experimental results for each sample were less than 5% (maximum
4.92%) under all five loadings. In conclusion, it was accurate to use contact to simulate
the interactions in TMJs and upper-lower dentition.

Keywords: finite element analysis, three-dimensional printing, experimental validation, temporomandibular joint,
maxillofacial system

INTRODUCTION

Temporomandibular joints (TMJs), which connect the mandible to the skull (glenoid fossa),
are a pair of highly complex and mobile joints, with more than 2,000 movements each day
during chewing, biting, swallowing, talking, and snoring (Mahdian et al., 2013). During daily
activities, TMJs always facilitate mandibular movement by distributing loads to reduce peak
stresses. Meanwhile, TMJ is a load-bearing joint where forces are transmitted during mastication
(Tanaka and van Eijden, 2003; Poluha et al., 2019). Therefore, the biomechanics of TMJ have to be
involved in the study of oral functions.

The finite element (FE) method is a powerful tool to analyze complex systems (i.e., TMJ). The FE
models improve the understanding of the behavior of TMJ at different stages of life and with various
functional loads (DeVocht et al., 2001; Gregolin et al., 2017; Shu et al., 2020a,b). The simulation
also provided the biomechanical properties of TMJ with loading (Beek et al., 2000, 2001b;
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Sun et al., 2015). In addition, different interaction properties
between the disc and the condyle and between the disc and
the fossa-eminence complex, including elements that are bonded
together and gap elements, were compared and it manifested
the contact of a normal TMJ status (Liu et al., 2008, 2016).
Finite sliding was allowed between the disc and the condyle, and
between the disc and the fossa-eminence complex (Chen et al.,
1998). However, bold applications of these simulations in TMJ
should be carefully used without precious validation for complex
structures. A slight error may lose the reality for the interaction
of TMJ. Therefore, the simulated results have to be validated with
experiments before drawing any conclusions.

At present, the experimental studies on the biomechanics of
TMJ were mainly based on human cadavers and animals. Most of
the related experimental studies have been limited to analyze the
mechanical properties of TMJs (Kang et al., 1998; Clason et al.,
2004; Chen et al., 2016; Cota et al., 2019). The elastic modulus,
failure strength, and energy absorption of the disc (Beek et al.,
2001a; Kang et al., 2006) and the tensile, compressive, and failure
strengths of the mandible (de Zee et al., 2007) were measured by
the mechanical experiments of specimens of a human cadaver.
In addition, animal experiments were used in the comparison
of intraoral vertical ramus osteotomy and sagittal split ramus
osteotomy (Zhao et al., 2007). These studies contributed to the
mechanical understanding of the TMJ and provided theoretical
supports to the simulation and clinics.

Temporomandibular joint-related experimental validations
were reported in the previous studies (Gröning et al., 2009;
Ramos et al., 2010; Merema et al., 2021). The mandibular
geometry used in the FE models was validated by the cadaveric
mandible (Ramos et al., 2017). The digital speckle pattern
interferometry was conducted to measure the strains on the
mandible, and it confirmed the accuracy of the simulation
(Gröning et al., 2009). In addition, a polymeric replica of a
human mandible was used to validate the FE models to design
subsequent artificial TMJ (Ramos et al., 2010). However, these
studies only focused on the mandible without the interaction
in the TMJ, which was indispensable in investigating the
biomechanics of TMJ. Because it was hard to characterize the
internal structures and mechanical properties in mandible and
maxilla, three-dimensional (3D) printing models with the high
geometric and loading similarities of the individuals were used
to validate the FE models. The material properties of the 3D
printed model were close to those of the bony structures and
assigned to the FE models. Thus, this study aimed to validate the
maxillofacial FE models under the simulated central occlusion
using the 3D printed experimental models.

MATERIALS AND METHODS

Subjects and Data Acquisition
Five asymptomatic subjects (two female and three male,
29.40 ± 8.32 years old) were identified and recruited by a
single oral surgeon from the Affiliated Hospital of Stomatology,
Chongqing Medical University, China. This study was approved
by the institutional review board (IRB), all subjects have signed

informed consents before the experiments, and the asymptomatic
subjects chosen have no facial deformity and symptoms of
temporomandibular disorder (TMD).

The complete head images were scanned by a cone-beam CT
(CBCT) machine with slice thicknesses of 0.4 mm. All cross-
sectional images were taken following a standardized protocol
with 400 pixels× 400 pixels (0.4 mm pixel size).

Three-Dimensional Modeling
The CBCT data were transferred to the Digital Imaging and
Communications in Medicine (DICOM) format and imported
into the Materialise Interactive Medical Image Control System
(MIMICS) 15.0 (Materialise, Leuven, Belgium) for model
building. The 3D models including the mandible, maxilla, and
teeth of all the subjects were constructed based on each slice
of CBCT. The articular discs were established according to the
anatomical structure and the shape of constructed mandible
and maxilla. The above structures of TMJs were saved as
surface triangulation technique (STL) format and imported into
ABAQUS 6.13 (Dassault SIMULIA, RI) for the generation of the
3D FE models of all the subjects (Figure 1).

The STL files of the models were imported into the 3D printer,
and then, the 3D experimental models were obtained (Figure 2).
Polylactic acid (PLA) was selected for 3D printing from the
bottom to the top due to its good mechanical strength, elastic
modulus, thermoforming properties, and mechanical similarity
with jawbones (Weng et al., 2000; Kong et al., 2005), because
it is difficult to simulate the heterogeneous and orthotropic
properties of bony structure without a cadaver. 3D printing
models with PLA were useful and were available for the validation
of contact simulation in TMJ. The thickness of the printing layer
was 0.2 mm with 100% filling, and the printing temperature
was 210◦C.

Mechanical Properties Test
Ten PLA 3D printed specimens based on the national standard
were used to determine Young’s modulus and Poisson’s ratio.
Since the mechanical properties of PLA after 3D printing would
change, tensile tests of PLA 3D printed specimens should be
carried out. According to the size of the specimens of national
standard, the specimens for the tests were constructed. The STL
files of the specimens were imported into the same 3D printer
with the same conditions of TMJ models. Then, the tensile tests
were performed on universal testing machine AG-IS (Shimadzu,
Japan) and static strain gauge DH3818 (Donghua, China), and
Young’s modulus and Poisson’s ratio were 1.69 ± 0.14 GPa and
0.3± 0.05, respectively.

Simulated Central Occlusion
Experiments
The 10 strain rosettes were distributed on the mandibular condyle
necks, the mandibular angles, and the mandibular bodies of the
experimental models (Figure 2). The monitoring regions were
bilaterally arranged. The vertical pressure forces of 100 N, 150 N,
200 N, 250 N, and 300 N were applied to the experimental models
for simulating central occlusion on the universal testing machine
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FIGURE 1 | The three-dimensional (3D) finite element (FE) model of temporomandibular joints (TMJs). (A) Front view, (B) lateral view, and (C) details in TMJ.

FIGURE 2 | The distributions of 10 strain rosettes on the mandible: A located at the bilateral mandibular condyle necks, B located at the bilateral mandibular angles,
and C, D, and E located at the bilateral mandibular bodies. R and L represented the right and left sides, respectively.

AG-IS (Figure 3). The magnitudes of these forces were derived
from previous studies, and they were shifted to the top surface as
a pressure force to conform to this occlusion (Lin et al., 2006; Shu
and Liu, 2020). The constraint regions were marked to provide
the simulated constraints.

Finite Element Analysis
The bone and the discs were all modeled as linear elastic
according to the experiments (Shu et al., 2019). The interactions
of the disc-condyle, disc-temporal bone, and upper-lower
dentition were considered as contact with a frictional coefficient
of 0.001. The modified 10-node quadratic tetrahedron element
(C3D10M) was used in the contact regions. The four-node linear
tetrahedron element (C3D4) was used for the other regions of
the models. The total number of elements for all the models

FIGURE 3 | The 3D experimental models of TMJs.

was about 170,000. The loading and boundary conditions were
identical with the 3D printed models in the experiments. The
static solver was used to simulate the quasi-static status of
the experiments.

Comparison and Statistical Analysis
For each model with the same load, the strains between the
experimental and FE models were compared at each monitoring
point. The difference was expressed as follows:

Difference =

∣∣Simulation− Experiment
∣∣

Expriment
× 100%

RESULTS

The differences between the simulated and experimental results
were compared. With the increase in loadings, the differences
between simulated and experimental strains correspondingly
increased. The maximum difference was 4.92% under the force
of 300 N for one sample (Figure 4). The average strain difference
between the simulation and the experiment of this sample under
the force of 300 N was 2.43%, which was the maximum among
the samples. The average differences of all the other samples
were 1.46 and 2.30%. Under the other forces, the differences
decreased to 1%.
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FIGURE 4 | The experimental and simulated strains of the 10 monitoring points for a sample under the force of 300 N. I represented the maximum difference
between experimental and simulated strains. A located at the bilateral mandibular condyle necks, B located at the bilateral mandibular angles, and C, D, and E
located at the bilateral mandibular bodies. 0 and 90 represented the horizontal and vertical directions, respectively. R and L represented the right and left sides,
respectively.

The magnitudes of all the strains increased with the increase
in force (Figure 5). The vertical strains of each monitoring
point were all expressed as compressive strains under all forces
(Figure 5). However, the horizontal strains located at the bilateral
condyle necks were always presented as tensile strains. It was
complex at other positions in the horizontal directions due to the
individual geometric differences.

The distributions of the strains on the mandible were different
from each other (Figure 6). The strains, especially vertical
strains, at the mandibular body close to the facial midline (i.e.,
monitoring point E) were generally greater than those at other
locations. In addition, the strains on the mandibular ramus
(monitoring point A) were slightly greater than those on the
edges of the mandibular body (monitoring point C).

DISCUSSION

Finite element analysis (FEA) was usually used in the study of oral
biomechanics (Dicker et al., 2012; Qi et al., 2012; Liu et al., 2016;
Demircan et al., 2020; Lai et al., 2020). Several interactions were
considered in the simulation of TMJ (Liu et al., 2008). Contact
was proven to be good in the simulation of complex interactions
of maxillofacial models (Liu et al., 2008, 2016). However, there
was no validation of the precision of contact to simulate the
interactions in the TMJs. The cadaver models were not adopted
due to the difficulty in determination of the heterogeneity of
the geometry and internal bone characteristics. Thus, this study
aimed to verify the precision of simulation using the experiments
of 3D printing models.

The condition of the simulated models was the same as the
experimental samples. 3D printed and FE models shared the
same geometry based on the constructed models from medical
images. The material properties of the FE models were from
the mechanical properties test. Moreover, the loadings and the

boundary conditions from the experiments were applied to
the corresponding FE models. In addition, the simulated stress
distribution of the disc was similar to the centric occlusions (Beek
et al., 2000; Shu et al., 2019), with its high stress located at the
lateral intermediate zone. The monitoring points for both groups
were also the same. Thus, the experimental validation of the
maxillofacial system was reliable.

Under the five different pressure forces, the maximum
difference of all the samples between simulated and experimental
results was 4.92% among all monitoring points (Figure 4). The
maximum difference was located at the middle of the mandibular
body of Sample 2 (Figure 6). It was clear that the changes in
the forces did not affect the differences between experiments and
simulations. Furthermore, the vertical strains always presented
compressive strains with the increase in forces from 100 to 300
N. The magnitudes of all the strains tended to increase with the
increase in forces (Figure 5). Therefore, contact was reasonable
to simulate the contact of TMJ.

The rhythmicity of the strains with the positions was
different from each other due to the differences in individual
geometry of the maxilla and mandible (Figure 6). In general,
monitoring point E showed the greatest horizontal and vertical
strains. The results showed in mandibular bodies are the closer
to the facial midline, the greater the strain. In the vertical
direction, monitoring points A (mandibular condyle necks) and
B (mandibular angles) presented greater strains compared to
points C and D (mandibular bodies).

Three replicate experiments were performed on each
sample with the same force. Low deviations were found in
the measurements of three replicate experiments. The high
repeatability of the experiments was reflected. However, on
one hand, the experimental results were influenced by the
experimental conditions (humidity and temperature) and
instruments. On the other hand, the FE outcomes should be
the only results under the same loading condition. Thus, the
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FIGURE 5 | The experimental horizontal (A) and vertical (B) strains of the 10 monitoring points with increased loads for a single sample. A located at the bilateral
mandibular condyle necks, B located at the bilateral mandibular angles, and C, D, and E located at the bilateral mandibular bodies. 0 and 90 represented the
horizontal and vertical directions, respectively. R and L represented the right and left sides, respectively.

FIGURE 6 | The simulated strains from FE models of all the five samples under the force of 300 N. A located at the bilateral mandibular condyle necks, B located at
the bilateral mandibular angles, and C, D, and E located at the bilateral mandibular bodies. 0 and 90 represented the horizontal and vertical directions, respectively. R
and L represented the right and left sides, respectively.
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accurate FE models were more controllable and freer from
environmental disturbances.

The combined 3D printing experiments and FEA could
be further used in clinics. The biomechanical environment
could be evaluated, and then, the individual treatment plan
could be designed. It could be also applied in maxillofacial
surgery, and the simulation of bilateral sagittal split ramus
osteotomy (BSSRO) could be applied to the FE models to
evaluate the postoperative biomechanical status of the patients.
These postoperative outcomes could also help clinicians optimize
surgical strategies and prevent postoperative complications. In
addition, the validations of FE models of the TMJ ensured the
biomechanical design of the prosthesis of TMJ. In the previous
study, a human cadaver was used to validate the correction of
condyle implants of humans (Mesnard and Ramos, 2016). In this
study, 3D printing experiments could also provide more precious
validation of FE models to improve the condylar implants in TMJ.

One major limitation of this study was that all the samples of
this study were asymptomatic subjects. The models of patients
should be reconstructed to provide further verification. Another
limitation was that 3D printing models could not characterize
the heterogeneity and orthotropy of human mandible, maxilla,
and disc, like previous studies using FE models and cadaver
experiments (Ichim et al., 2006; Ramos et al., 2010). However,
FE models could be considered as heterogeneous and orthotropic
and be proven as accurate within the allowable range of error.
Furthermore, although the constraints were marked to ensure the
consistency of experiments and simulations, there would be some
errors in the constraint.

CONCLUSION

The vertical and horizontal strains between the experiments on
3D printed models and the FEA had less than 5% differences for
all the samples. It proved that the FE models could provide strains
within a minimum 95% agreement. Therefore, it was accurate
to use contacts to simulate the interactions in TMJs in future
research studies and applications.
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