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Abstract

Genomes are organized into high-level 3-dimensional structures, and DNA elements separated by 

long genomic distances could functionally interact. Many transcription factors bind to regulatory 

DNA elements distant from gene promoters. While distal binding sites have been shown to 

regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions 

and their impact on transcription regulation have not been investigated in a genome-wide manner. 

Therefore, we developed Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-

PET) for de novo detection of global chromatin interactions, and comprehensively mapped the 
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chromatin interaction network bound by oestrogen receptor α (ERα) in the human genome. We 

found that most high-confidence remote ERα binding sites are anchored at gene promoters 

through long-range chromatin interactions, suggesting that ERα functions by extensive chromatin 

looping to bring genes together for coordinated transcriptional regulation. We propose that 

chromatin interactions constitute a primary mechanism for regulating transcription in mammalian 

genomes.

While genomic information is usually presented as a linear series of bases, genomes are 

known to be organized into three-dimensional structures in vivo through interactions with 

protein factors for nuclear process such as transcription1. The precise and coordinate 

regulation of transcription requires the binding of transcription factors to specific regulatory 

DNA sequences in the genome. ChIP-microarray2 (ChIP-Chip) and ChIP-sequencing3,4 

(ChIP-PET and ChIP-Seq) have identified global transcription factor binding sites (TFBS) 

and revealed that many TFBS are far from gene promoters5. For example, the majority of 

TFBS bound by ERα in the human genome are distal to transcription start sites (TSS) of 

target genes6-10 . A major question arising from this observation is which distal TFBS are 

non-functional fortuitous binding sites, and which are involved in transcriptional activity 

through a remote control mechanism. Long-range chromatin interactions between DNA 

elements engaged in transcriptional regulation11,12 have been observed using Chromosome 

Conformation Capture (3C)13,14, and variants including ChIP-3C15,16, 4C17,18,19,20, 

5C21, and 6C22, as well as RNA-TRAP23 and FISH24. However, these methods are limited 

to one-point or partial genome oriented detection, and are incapable of de novo detection of 

genome-wide chromatin interactions25.

To address whether and how DNA elements bound by protein factors interact through long-

range chromatin looping in a genome-wide and unbiased manner, we conceived a novel 

strategy for Chromatin Interaction Analysis using Paired End Tag sequencing, called ChIA-

PET. We applied ChIA-PET to characterize ERα-bound chromatin interactions in 

oestrogen-treated human breast adenocarcinoma cells (MCF-7), and generated the first 

human chromatin interactome map. Furthermore, using active promoter and transcriptional 

marks such as histone H3 lysine 4 trimethylation (H3K4me3) and RNA polymerase II 

(RNAPII) from ChIP-sequencing as well as gene expression microarray data, we show that 

ERα-bound chromatin interactions are functionally involved in regulating specific genes.

The ChIA-PET method

In ChIA-PET, long-range chromatin interactions are captured by formaldehyde cross-

linking. Sonicated DNA-protein complexes are enriched by chromatin immunoprecipitation 

(ChIP). Tethered DNA fragments in each of the chromatin complexes are connected with 

DNA linkers via proximity ligation, and Paired-End Tags (PETs) are extracted for 

sequencing. The resulting ChIA-PET sequences are mapped to reference genomes to reveal 

relationships between remote chromosomal regions brought together in close spatial 

proximity by protein factors (Fig. 1a; Supplementary Fig. 1).

ChIA-PET proximity ligation generates two types of ligation products: self-ligation of the 

same DNA fragments and inter-ligation between different DNA fragments. PET sequences 
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derived from self-ligation products are mapped in the reference genome within a 3 Kb span, 

demarcating ChIP DNA fragments, similar to the standard ChIP-sequencing method3,8. 

Tethered DNA fragments in individual chromatin complexes can also ligate with each other, 

and the mapping results of such inter-ligation PET sequences would reveal if they are 

intrachromosomal (both tags of each PET are from the same chromosome) or 

interchromosomal (the tags are from different chromosomes). Singleton PETs are presumed 

experimental noise, and overlapping PET clusters are considered enriched putative binding 

sites or interaction events (Supplementary Fig. 2).

To test the ChIA-PET strategy, we constructed two ChIA-PET libraries from independent 

ERα ChIP-enriched oestrogen-treated MCF-7 chromatin preparations, and generated two 

replicate pilot datasets (IHM001H and IHM001N) using Roche/454 pyrosequencing. Our 

analysis showed that both ChIA-PET libraries produced comparable putative binding sites 

and interactions. To assess levels of false positive chromatin interactions, we created a 

negative control ChIP-PET library (IHM043) from the same ChIP sample, wherein the DNA 

was reverse cross-linked before proximity ligation. We also analyzed a previously reported 

cloning-based ChIP-PET library (SHC007)8. Both libraries generated abundant binding sites 

but no interactions. As an additional control, we used IgG, which binds to chromatin 

nonspecifically, to perform a mock ChIA-PET analysis (IHM062), and only a few binding 

sites and interactions were identified (Table 1; Supplementary Figs. 2-3; Supplementary 

Text I).

In proximity ligation-based analyses including 3C, the level of non-specific chimeric DNA 

ligations between different chromatin complexes can be high and thus may confound data 

analysis. To address this, we designed linker nucleotide barcodes in the ChIA-PET method 

to specifically identify such chimeric ligation PETs in another ERα ChIA-PET replicate. 

Linker barcoding analysis suggests that chimeric ligations are random and do not overlap 

with each other to form false positive interactions (Table 1, Supplementary Fig. 4, and 

Supplementary Text II). A possible complication is that ChIP-enriched loci with more DNA 

fragments would result in proportionally higher chances of inter-ligations, leading to false 

positive interactions comprising randomly overlapping inter-ligation PETs among highly-

enriched ChIP DNA fragments. Hence, we devised a statistical scheme to calculate such 

probabilities and neutralize the potential ChIP-enrichment bias (Supplementary Materials 

and Methods; validations in Supplementary Fig. 5).

Together, these libraries indicate that the prevalent chromatin interactions (Supplementary 

Figs. 2d-g) identified by ERα ChIA-PET data depend on proximity ligations of chromatin 

complexes, and not technical artifacts of ligations between random DNA fragments, nor 

mapping errors.

ERα-bound chromatin interactome map

Next, we generated a large ERα ChIA-PET dataset (IHM001F) with 32 million PET 

sequences using Illumina GAII paired-end sequencing (Table 1; Supplementary Materials 

and Methods) for comprehensive analyses of ERα binding and chromatin interactions in 

oestrogen treated MCF-7 cells. Of 4.6 million uniquely mapped PET sequences, 1.2 million 
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(27%) were self-ligation PETs. Among the self-ligation PETs, 16.7% clustered to form 

overlapping PET groups, representing 14,468 putative ERαBS (FDR< 0.01, PET count per 

ERαBS ≥5, Supplementary Table 1). Of the inter-ligation PETs, 0.23 million (5.1% of 

uniquely aligned PETs) were intrachromosomal and 3.2 million (68%) were 

interchromosomal (Table 1). After statistical analyses wherein we discarded singleton inter-

ligation PETs as either very weak interactions or background noise, clustered overlapping 

inter-ligation PETs, corrected for ChIP enrichment biases, and filtered out obviously false 

interactions due to structural variations in the MCF-7 genome (Supplementary Materials and 

Methods), we identified a large set of 1,451 intrachromosomal and a small set of 15 

interchromosomal overlapping clusters consisting of 3 or more inter-ligation PETs per 

cluster (FDR < 0.05). These represent paired inter-ligating ChIP DNA fragments which 

indicate potential distant chromatin interactions bound by ERα (Supplementary Table 2).

Each chromatin interaction detected by an inter-ligation PET cluster features two anchor 

regions (interacting loci) and a loop (the intermediate genomic span between the two 

anchors), and is therefore called a “duplex interaction” (Supplementary Table 2). Most 

anchors (1,893/2,008= 94%) involve self-ligation PET-defined ERαBS (FDR< 0.01). 

Interestingly, many nearby duplex interactions are inter-connected, linking three or more 

anchors into “daisy-chain” aggregated complex interactions (Figs. 1b-d; Supplementary Fig. 

6). For example, multiple duplex interactions with 3 ERαBSs in the SIAH2 region 

interconnect to form a complex interaction. Hence, we further assembled 1,036 duplex 

interactions into 274 complex interactions based on overlapping of interaction anchors 

(Supplementary Materials and Methods). The remaining interactions (415) are stand-alone 

duplex interactions. Collectively, we identified 689 ERα-bound chromatin interaction 

regions (Supplementary Table 3).

To verify the ChIA-PET results, we validated a number of new ERαBS identified in this 

study by ChIP-qPCR (Supplementary Fig. 7), as well as putative intrachromosomal 

interaction sites (20 genomic loci) by 3C, ChIP-3C, 4C, and FISH experiments (three 

examples are shown in Fig. 1, others are in Supplementary Figs. 8-11; Supplementary 

Tables 4 and 5). Moreover, the 3C and FISH experiments showed higher levels of chromatin 

interactions in oestrogen-treated compared with untreated conditions, indicating that the 

interactions are oestrogen-dependent. We also examined 3 putative interchromosomal 

interactions by FISH; however, none of them were positive (Supplementary Table 4, 

Supplementary Text III), suggesting most ERα-bound intrachromosomal interactions are 

bona fide, while the putative interchromosomal interactions are false positives, or too weak 

to be validated.

Collectively, the ERαBS and chromatin interactions identified by ChIA-PET data constitute 

a whole genome chromatin interaction map bound by ERα. The genomic spans of most 

duplex interactions (86%) are in the range of <100 Kb, about 13% are from 100 Kb to 1 Mb, 

and < 1% are over 1 Mb. Complex interactions extend genomic span by connecting multiple 

duplex interactions. Many complex interactions (47%) have genomic spans in the range of 

100 Kb to 1 Mb, with a few that are over 1 Mb (Supplementary Fig. 12; Supplementary 

Table 3).
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To determine the reproducibility of this chromatin interactome map, we generated an 

additional ERα ChIA-PET library using a different antibody against ERα10. For this 

biological replicate (IHH015F), we obtained 20 million PET sequences (Table 1; 

Supplementary Materials and Methods). Overall, the two ERα ChIA-PET libraries are very 

similar with many overlapping ERαBS and intrachromosomal interactions but few 

interchromosomal interactions (Table 1; Supplementary Tables 1 and 2). The ERαBS 

identified in these two libraries showed high reproducibility, especially for highly enriched 

binding peaks. The 2,513 ERαBS with ≥50 PET counts per cluster (high-enrichment) 

overlapped with over 70% of the ERαBS in the replicate ChIA-PET library (Supplementary 

Table 6). Furthermore, these high-enrichment ERαBS intersect well with previously 

reported ERα binding maps9,10 (Fig.2a; Supplementary Fig. 13). Therefore, high-

enrichment ERαBS are more reliable than low-enrichment sites. Many intrachromosomal 

interaction regions are detected in both replicate libraries. Highly abundant chromatin 

interactions are mostly reproducible. 86 of the top 100 most abundant chromatin interactions 

in IHM001F could be found in IHH015F (more analyses in Supplementary Table 7). 

Furthermore, all interactions previously identified and validated in this study are found in 

both replicate libraries (Supplementary Table 5). Conversely, none of the putative 

interchromosomal interactions were reproducible.

Together, our results demonstrate that the ChIA-PET method is highly reliable. 

Furthermore, our data suggests that ERα functions primarily via intrachromosomal 

mechanism. Thus, our subsequent analyses focused on intrachromosomal interactions. 

Downstream analyses for both ChIA-PET replicate libraries showed similar results; for 

simplicity, we discuss our results here using IHM001F, but results for IHH015F can be 

found in Supplementary Text IV.

We asked how many ERαBS are involved in complex- and duplex-interactions, or no-

interactions (Fig. 2b-d). Our analysis showed that high-enrichment ERαBS are much more 

frequently involved in interactions (53%) compared to low-enrichment ERαBS (only 9%) 

(Fig. 2e; Supplementary Fig. 13), suggesting high-confidence and strong ERαBS are more 

likely to be involved in chromatin interactions than weaker ERαBS. To further understand 

ERαBS with respect to ERα target genes, we analyzed how many ERαBS are proximal or 

distal to gene promoters, based on a cut-off of 5 Kb from Transcription Start Sites (TSS) 

from the UCSC Gene database. Of 2,342 ERαBS involved in chromatin interactions, 387 

(17%) are proximal and 1,955 (83%) are distal to TSS (Supplementary Fig. 14). We also 

observed the same ratio for no-interaction ERαBS: 2,043 (17%) are proximal and 10,175 

(83%) are distal. Therefore, most ERαBS are distal to gene TSS, which is in agreement with 

previous studies7,8,10.

Chromatin interaction and transcriptional regulation

To investigate the functions of ERαBS and ERα-bound chromatin interactions in 

transcription activation, we generated genome-wide maps of H3K4me3 and RNAPII ChIP-

Seq data from MCF-7 cells under oestrogen induction (Supplementary Materials and 

Methods). H3K4me3 is a histone modification which specifically marks active promoters26, 

and the presence of RNAPII is strong evidence for genes that are actively transcribing27. 
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We also analyzed previously reported FoxA1 ChIP-Chip data9, because FoxA1 is an 

important cofactor of ERα6,9. Generally, H3K4me3, RNAPII, and FoxA1 marks showed 

enrichment around ERαBS in our analyses (Fig. 3a). When we compared interaction ERαBS 

with no-interaction ERαBS, we found a significant enrichment gradient of RNAPII and 

FoxA1 binding around ERαBS: most association was with complex-interaction ERαBS, 

followed by duplex-interactions, and lastly no-interactions (Fig. 3a; Supplementary Fig. 15a; 

significance tests in Supplementary Text V).

Next, we examined the H3K4me3, RNAPII, and FoxA1 marks with respect to ERαBS 

proximal or distal to gene promoters and their involvement in chromatin interactions. 

Proximal ERαBS whether involved in interactions or not were highly enriched in H3K4me3, 

but this was not the case with distal ERαBS, which was expected since H3K4me3 is a 

known mark for promoter regions (Fig. 3b; Supplementary Fig. 15b; significance tests in 

Supplementary Text V). Proximal ERαBS were also highly enriched with RNAPII marks, 

but the enrichment for both proximal and distal ERαBS involved in interactions was 

significantly higher than that of the proximal and distal ERαBS that are not involved in 

interactions. Intriguingly, although RNAPII showed less enrichment around interaction 

distal ERαBS compared to interaction proximal ERαBS, the enrichment was significantly 

higher than that with stand-alone no-interaction distal ERαBS. Conversely, FoxA1 binding 

was more enriched around distal ERαBS than proximal ERαBS, and most enriched around 

distal interaction ERαBS (Supplementary Fig. 15c), and differences were statistically 

significant (significance tests in Supplementary Text V). This indicates that RNAPII and 

FoxA1, but not H3K4me3, predict interactions at distal ERαBS, and suggests that RNAPII 

and FoxA1 participate in tethering chromatin interactions. While RNAPII is strongly 

associated with ERαBS for transcription activation, FoxA1 is more directly correlated with 

ERα’s regulatory function at distal ERαBS. At least 6 interacting ERαBS bracket the FoxA1 

gene, signifying ERα-mediated chromatin interactions may regulate FoxA1 (Fig. 2b), further 

supporting the hypothesis that FoxA1 and ERα may regulate each other28.

Subsequently, we examined the 689 ERα-bound chromatin interaction regions with respect 

to looping structure and gene transcription. We envisage that multiple ERαBS may function 

as “anchor” regions forming chromatin looping structures in 3-dimensional space (Fig. 4a). 

Genes close to interaction anchors are considered as “anchor genes”, and genes in the 

interaction loop regions and faraway from anchors are “loop genes”. We annotated the 

interaction regions in relation to UCSC Gene database transcripts29 (a gene may have 

multiple transcripts; here we report transcript numbers, but gene numbers can be found in 

Supplementary Text VI). A gene was considered associated with a chromatin interaction 

region if the TSS of a gene is within 20 Kb of the interaction boundaries (Supplementary 

Fig. 14), a parameter that includes many known and validated ERα target genes. Most 

interaction regions (393/689=57%) were associated with “anchor genes” (TSS to interaction 

anchor within 20 Kb). Altogether, 1,575 “anchor genes” and 3,767 “loop genes” (TSS >20 

Kb away from interaction anchors) were assigned to interaction regions (Supplementary 

Tables 3 and 8). Using the same distance parameter (20 Kb), we assigned 11,790 genes to 

12,126 stand-alone ERαBS not involved in interactions (Supplementary Text VI).
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Within interaction regions with at least one anchor gene, there are 1,073 distal ERαBS and 

387 proximal ERαBS (< 5 Kb to TSS); and all distal ERαBS (5′ or 3′ to the gene promoter) 

are looped to anchor genes through connections with proximal ERαBS. Many interaction 

regions include multiple genes, such as the keratin gene cluster (Fig. 1c) and NR2F2 locus 

(Fig. 1d), whereas others include only single genes, such as SIAH2 (Fig. 1b). Distal ERαBS 

are stronger than proximal ERαBS, which is the inverse of RNAPII marks that are stronger 

at gene promoters than distal regions (Supplementary Fig. 16; examples in Fig. 1 and 

Supplementary Fig. 17). These observations suggest that direct ERα binding might be 

primarily initiated at one or multiple distal sites which then subsequently recruit other 

binding sites as anchors to form an interaction complex to ultimately engage the 

transcriptional machinery at gene promoters.

In addition, we also found 296 interaction regions with no associated anchor genes. While 

41 regions contain loop genes, the remaining 255 have no associated UCSC genes assigned 

to them. Although some interaction regions could be noise or non-functional, some 

interactions are near gene promoters just outside the 20 Kb cutoff, and further sequencing 

might extend the interaction data to the promoters. The presence of H3K4me3, RNAPII 

marks, and RT-qPCR data at the interaction anchor sites suggests that some interactions 

could be involved in regulating yet-to-be identified transcripts, such as computationally 

predicted genes and non-coding RNA species (Supplementary Fig. 18). Alternatively, such 

interactions could be associated with maintaining chromatin structures or other unknown 

functions.

To understand if genes associated with ERα-bound interactions are oestrogen-regulated, we 

analyzed expression profiles of several interaction-associated genes by RT-qPCR over a 

time course of oestrogen induction (Supplementary Materials and Methods). All anchor 

genes examined are up-regulated by oestrogen induction (Supplementary Fig. 8). We 

extended our analysis to all interaction-associated genes using whole genome gene 

expression microarrays (Fig. 4b). Most “anchor genes” are up-regulated (60%), particularly 

at early time points, as compared with “loop genes” (48%), indicating that “anchor genes” 

are significantly associated with gene up-regulation (2-tailed p-value = 1.25e-16; Fig. 4C; 

Supplementary Text VII; Supplementary Table 9; Supplementary Fig. 19). Also, RNAPII 

marks are more associated with “anchor genes” (39%) than “loop genes” (26%) (2-tailed p-

value = 1.00e-19). Conversely, genes assigned to ERαBS not involved in interactions (on 

the basis that the gene promoters are within 20 Kb to no-interaction ERαBS) have very 

similar expression profiles to the background control (all UCSC genes not associated with 

interactions), indicating genes associated with no-interaction ERαBS are less activated 

compared with genes associated with interaction ERαBS (significance tests in 

Supplementary Text VII). Hence, some stand-alone ERαBS could be noise, while others 

could involve non-looping mechanisms such as the recruitment of secondary coactivators for 

downstream functions6.

Intriguingly, within the anchor gene category, many (495 of 1,575 =31%) gene entries have 

5′ and 3′ ends within interaction boundaries. Such entries, called “enclosed anchor genes”, 

frequently occupy the entirety of short interaction loops, engage multiple anchor sites 

around or within the gene, tend to have intense RNAPII marks covering the entire gene 

Fullwood et al. Page 7

Nature. Author manuscript; available in PMC 2010 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(examples in Fig. 2b and c and Supplementary Fig. 20), and are preferentially associated 

with RNAPII marks and gene up-regulation as indicated by expression microarrays 

(Supplementary Text VII; Supplementary Table 9).

Collectively, our data shows an association between chromatin interactions and gene 

transcriptional activation: enclosed anchor genes are closely correlated with up-regulation as 

measured by gene expression microarray data and RNAPII ChIP-Seq peaks, followed by 

non-enclosed anchor genes, less for loop genes, and much less for genes not associated with 

interactions. These results suggest that gene-centric interaction structures may enclose a 

compartment for concentrating ERα and transcription-related proteins at target genes.

ERα-bound interactions may coordinate transcriptional regulation for multiple genes 

involved in the same functional pathways. At the keratin gene cluster interaction loci (Fig. 

1c), enclosed anchor genes such as KRT8 and KRT18 are actively transcribing as evidenced 

by RNAPII and H3K4me3 marks, while the loop genes such as KRT72 and KRT75, which 

are mainly keratins expressed in hair cells that do not play a role in mammary epithelial cells 

such as MCF-7, are mostly inactive (Supplementary Text VIII). Another example is the 

complex interaction that encompasses these 3 genes, FOS, JDP2, and BATF (Fig. 4c), which 

encode the dimerization partners of JUN to form the AP-1 transcription factors. AP-1 is 

important in regulating oestrogen receptor dependent transcription by functioning either as a 

DNA tethering partner or as an ERα co-factor30. In this complex interaction, FOS and 

BATF are enclosed anchor genes, and up-regulated as shown by RNAPII marks and RT-

qPCR; whereas JDP2 is a loop gene and down-regulated as shown by RT-qPCR and 

reduced RNAPII occupancy. Interestingly, the promoter of JDP2 is marked by H3K4me3, a 

common feature found in many loop genes (Supplementary Table 9). JDP2 and other loop 

genes could be “poised” for activation if they escape from the interaction loop. Hence, long-

range transcriptional regulation by ERα may be a fine-tuning mechanism that evolved to 

differentially regulate specific sets of related genes.

To functionally determine whether some ERα-associated interaction regions are dependent 

on ERα, we used siRNA to knock down the level of ERα protein in MCF-7 cells 

(Supplementary Materials and Methods) and then measured if the interactions and gene 

transcription were affected. ERα-specific siRNA (siERα) efficiently reduced the amount of 

ERα protein, and effectively abolished the interactions as demonstrated by a set of 3C 

assays at the GREB1 locus (Fig. 5). Furthermore, siERα blocked GREB1 transcription as 

determined by RT-qPCR. Similar results were also shown at the TFF1 site previously31. 

Together, these data suggest that at least some of the regulatory long-range chromatin 

interactions identified by ERα ChIA-PET data are mediated by ERα.

Discussion

We demonstrated the ChIA-PET mapping strategy is an unbiased, whole genome approach 

for de novo analysis of chromatin interactions, and hence constitutes a major technological 

advance in our ability to study higher-order organization of chromosomal structures and 

functions. The ChIA-PET interaction data greatly increase the accuracy of assigning distal 

TFBS to target genes, and globally addresses the 3-dimensional chromatin interaction 
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mechanism by which distal TFBS regulate transcription. We postulate the following primary 

mechanism for ERα function: ERα protein dimers are recruited to multiple and primarily 

distal ERαBS, which interact with one another and possibly with other factors such as 

FoxA1 and RNAPII to form chromatin looping structures around target genes; such 

topological architectures may partition individual genes into sub-compartments of nuclear 

space such as interaction anchor-associated genes and interaction loop-associated genes for 

differential transcriptional activation or repression. We further speculate that tightly 

enclosed chromatin interaction centers could help achieve and maintain high local 

concentration of transcription components for efficient cycling of transcriptional machinery 

on target gene templates (Summary of results in Supplementary Information; more 

discussion in Supplementary Text IX).

We anticipate that this first-ever global chromatin interactome map and the ChIA-PET assay 

will constitute a valuable starting point for future studies into the 3-dimensional architecture 

of transcription biology in whole genome contexts.

Methods Summary

MCF-7 cells grown in hormone-depleted medium were treated with 17 beta-estradiol 

(“oestrogen”, E2) for 45 minutes before cross-linking with 1% formaldehyde for 10 min. 

ChIA-PET libraries were constructed by first performing ChIP using HC-20 antibody (Santa 

Cruz) or Mab-NRF3A6-050 antibody (Diagenode)10 against ERα. DNA fragments in ChIP 

complexes were then ligated to biotinylated half-linkers (linker ligation) containing flanking 

MmeI restriction sites. The complexes were further ligated under dilute conditions 

(proximity ligation). Paired-End Tags (PETs) were extracted from the ligation products by 

MmeI digestion. Released biotinylated PETs were purified by streptavidin-coated magnetic 

beads, ligated to adaptors, and PCR-amplified. Gel-purified amplicons of PET templates 

were sequenced by Roche/454 and/or Illumina paired-end sequencing. PET sequences were 

mapped to the human reference genome (hg18). Binding sites and interactions were 

identified using overlap PETs readout. To correct for ChIP enrichment bias, we formulated a 

statistical analysis framework to calculate the probability for the formation of inter-ligation 

PETs between two regions if ligations between DNA fragments occur by chance. 

Interactions were further collapsed into complex interactions if they shared interaction 

anchors. UCSC Genes were assigned to interaction regions if they were within 20 Kb of 

interaction regions. To functionally characterize ERα-bound interactions and associated 

genes, we conducted gene expression microarray experiments in time-course with and 

without E2 treatment, and generated genome-wide maps of H3K4me3 (ab8580, Abcam) and 

RNAPII (serine-5 phosphorylation antibody, ab5131, Abcam) ChIP-Seq data using Illumina 

single-read sequencing. Interaction-associated genes were annotated with expression 

microarray data and RNAPII and H3K4me3 ChIP-Seq peaks. Validation experiments 

included ChIP-qPCR, 3C, ChIP-3C, 4C, FISH, and RT-qPCR. For siRNA studies, ERα ON-

TARGETplus SMARTpool siRNA (Dharmacon) was transfected into MCF-7 cells using 

Lipofectamine 2000 (Invitrogen). Sequences used in experiments are listed in 

Supplementary Table 10.
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Methods

Further details of the methods are presented in the online Supplementary Information.

ChIA-PET library construction and sequencing

Cells were grown in hormone-free media for a minimum of 72 hours. Hormone-depleted 

cells were treated with 17 beta-estradiol (“oestrogen”, E2, Sigma) at a final concentration of 

100 nM for 45 min before the ChIP procedure. ChIP protocol was performed with ERα 

specific antibody (HC-20, Santa Cruz) as described previously8 or Mab-NRF3A6-050 

antibody (Diagenode)10. The DNA fragments were end-repaired, followed by overnight 

ligation of biotinylated half-linkers that contain a flanking MmeI site. The linker added 

DNA fragments were then phosphorylated and followed by a second ligation reaction 

overnight under dilute conditions (< 0.2 ng DNA per ml reaction). Cross-links were reversed 

and the DNA fragments were purified. Nicks were repaired and the DNA was digested by 

MmeI for at least 2h at 37°C to release the tag-linker-tag PET structure. The biotinylated 

PETs were then immobilized on streptavidin-conjugated magnetic Dynabeads and the ends 

of each PET structure were then ligated to an adapters followed by PCR to amplify the PETs 

which were then sequenced by Roche 454 sequencing and Illumina Paired End Sequencing.

H3K4me3 ChIP-Seq data

H3K4me3 antibody (ab8580, Abcam) was used to generate ChIP-enriched DNA fragments 

for Illumina single read sequencing analysis. The H3K4me3 ChIP-Seq data was mapped to 

hg18 genome, and enrichment peaks for H3K4me3 binding were identified using ChIP-Seq 

peak calling algorithm as previously described32.

RNAPII ChIP-Seq data

RNA Polymerase II (RNAPII) serine 5 phosphorylation antibody (ab5131, Abcam) was 

used to generate RNAPII ChIP-enriched DNA fragments for Illumina single read 

sequencing analysis. The RNAPII ChIP-Seq data was mapped to the human genome (hg18) 

using Illumina’s ELAND program, and the enrichment peaks RNAPII binding were 

identified using ChIP-Seq peak calling algorithm as previously described32.

Microarray gene expression data to identify oestrogen-regulated genes

A comprehensive dataset of time-course microarray experiments was performed to 

investigate the effects of oestrogen treatment on gene expression profiles and identify 

oestrogen responsive genes. Oestrogen treated (10 nM) and DMSO-mock MCF-7 cells 

(negative control) for 0, 3, 6, 9, 12, 24, and 48 hours were collected for RNA extraction and 

the labeled probes were hybridized to microarrays (HG-U133 Plus).

Circular Chromosome Conformation Capture (4C)

MCF-7 cells were harvested and cross-linked. Aliquots in SDS-containing buffer were 

diluted 10 times and Triton X-100 was added. End-blunting was performed. The chromatin 

samples were ligated in 10 ml at 16 °C overnight followed by reverse cross-linking and 

purification. The DNA samples were amplified using nested inverse PCR. Primers had to be 
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within 100 bp of the targeted ERα binding site peak and the resulting amplification product 

was run in a 6 % PAGE gel, and the fraction of the smear band above about 500 bp in size 

was excised. The DNA samples were sequenced using a 454 GSFLX long reads kit.

Fluorescence in-situ hybridization (FISH)

MCF-7 nuclei were harvested by treating cells with 0.75 M KCl for 20min at 37°C. The 

cells were fixed, and nuclei were dropped on slides for FISH. To prepare BAC probes, the 

BACs were grown; the DNA was harvested, and then labeled by nick translation. In the 

presence of 1 μg/μl of Cot1DNA, DNAs BAC clones were resuspended at a concentration of 

5 ng/μl in hybridization buffer. Prior to hybridization, MCF-7 nuclei slides were treated and 

dehydratated through ethanol series (70%, 80% and 100%). Denaturated probes were 

applied to these pretreated slides and codenaturated at 75°C for 5 min and hybridized at 

37°C overnight. Two posthybridization washes were performed. After blocking, the slides 

were revealed with avidin-conjugated fluorescein isothiocyanate (FITC) for biotinylated 

probes and anti-digoxigenin-Rhodamine for digoxigenin-labeled probes. After washing, 

slides were mounted and observed under an epifluorescence microscope. Between 100-200 

interphase nuclei were analyzed for each mix of probes. Fusion and colocalization spots 

were counted in each nucleus.

Chromatin Immunoprecipitation Chromosome Conformation Capture (ChIP-3C)

ChIP-3C was performed as described previously14 with modifications. Chromatin 

immunoprecipitation was performed as described in the ChIP protocol. ChIP beads were 

washed and digested with restriction enzyme. Beads were washed, and ligation was 

performed in 100 μl at 16°C. Reverse cross-linking was performed. Primers and restriction 

enzymes for the ChIP-3C procedure were chosen based on ChIA-PET sequences. All 

primers and restriction enzymes had to be within a region of ±100-500 bp from the targeted 

ERα binding site peak.

Chromosome Conformation Capture (3C)

3C was performed as described previously14 with modifications. MCF-7 cells were 

harvested and cross-linked. Nuclei were resuspended in restriction enzyme buffer and 

treated with SDS then Triton-X. Samples were then digested with the selected restriction 

enzyme at 37°C overnight. SDS was used to stop the reactions, which was then sequestered 

with Triton-X. Ligation was performed at 16°C for 4h in 6.5 ml volume. Samples were 

reverse-crosslinked and purified. All primers had to be within a region of ±150 bp from the 

restriction enzyme digestion site.

RT-qPCR

Total RNA was prepared from MCF-7 cells induced with oestrogen for 0, 3, 6, 12 and 24 

hours. Reverse transcription was performed with random primers. Real-time quantitative 

PCR was performed. The control primers used were against 36B4 (ribosomal protein 

mRNA).
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siRNA knockdown

MCF-7 cells were seeded in hormone-depleted medium for 1 day prior to transfection. 100 

nM siGENOME Non-Targeting siRNA Pool #1 or ERα ON-TARGETplus SMARTpool 

siRNA (Dharmacon) was then transfected into MCF-7 cells using Lipofectamine 2000 

(Invitrogen) according to manufacturer’s protocol. 48 hrs following transfection, the cells 

were treated with either E2 or ethanol for 45 min (for western blot analysis, 3C and ChIP 

assays) or 8 hrs (for mRNA analysis). Total RNA was isolated and reverse transcribed with 

oligo (dT)15 primer (Promega) and real-time PCR was used for quantification.

Note: Microarrays, 3C, ChIP-3C, RT-qPCR, and siRNA knockdowns were repeated at least 

twice. All oligonucleotide sequences are listed in Supplementary Table 10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ChIA-PET method with validations
(a) ChIA-PET schematic. DNA fragments in sonicated, ChIP-enriched chromatin complexes 

were processed by linker ligation, proximity ligation, PET extraction, sequencing, and 

mapping to reveal interacting loci. (b) ChIA-PET browser tracks: 1, H3K4me3 ChIP-Seq; 2, 

RNAPII ChIP-Seq; 3, ERα (orange) and FoxA1 ChIP-chip (green)9; 4, ERα ChIA-PET 

density ; 5, Inter-ligation PETs. Inset: 3C validation of interacting ERαBS (purple) and 

controls (blue) under ethanol (ET) and oestrogen-induction (E2). (c) 4C validation, showing 

4C bait region (blue) and interaction targets (purple bars). (d) FISH validation, showing 

increased P2/P1 interactions under E2-induction with background normalization (P3/P2). 

FISH probe genomic locations (P1/P2/P3) are indicated.
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Figure 2. ERαBS reproducibility and association with chromatin interactions
(a) Numbers of ERαBS identified with different ChIP enrichment cutoffs and 

reproducibility analyses as measured by overlapping with another ChIA-PET dataset 

(IHH015F), ChIP-Seq10, and ChIP-chip7 data. Examples of ERαBS involved in (b) 
complex-interactions, (c) duplex-interactions, and (d) no-interactions (singleton inter-

ligation PETs only or no inter-ligation PETs). (e) ERαBS distribution in different categories 

of interactions as exemplified in b-d.
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Figure 3. Association of ERα-bound chromatin interactions with functional marks
(a) Association of ERαBS in complex-, duplex-, and no-interaction categories with RNAPII 

(red), H3K4me3 (blue), and FoxA1 (green) functional marks. (b) Association of proximal 

and distal interacting and non-interacting ERαBS with H3K4me3 and RNAPII functional 

marks.
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Figure 4. Proposed ERα-bound chromatin interaction and transcription regulation mechanism
(a) Distal ERαBS interact with proximal sites, forming chromatin loops. Anchor genes 

(green and blue) are close to interaction anchors with concentrated active transcriptional 

machinery (red shading). Other genes far from interaction centers (grey) are less active. (b) 
Expression microarray data (oestrogen induction from 0 to 48h; red denotes activation; 

green denotes repression) for interaction anchor genes, loop genes, and genes near no-

interaction ERαBS, with all other UCSC Genes29 (“All genes”) denoting background. (c) 
ChIA-PET interactions data at the FOS/JDP2/BATF loci. Transcription activities are shown 
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by H3K4me3/RNAPII ChIP-Seq and RT-qPCR analysis (oestrogen induction from 0 to 

24h).
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Figure 5. ERα-bound chromatin interactions are required for transcription activation
Genome browser at the GREB1 locus showing data tracks: H3K4me3 and RNAPII ChIP-

Seq (1 and 2); RNAPII ChIP-qPCR scans (3 and 4) using different RNAPII antibodies under 

oestrogen-induction (E2, in red) and ethanol control (ET, in grey); ERα (orange) and FoxA1 

(green) ChIP-chip7 (5); ChIA-PET density (6) and interaction data (7). Inset: siRNA 

knockdown experiments. MCF-7 cells were transfected with siRNA against ERα (siERα) or 

control (siCtrl), and then analyzed by (a) western blot with ERα and calnexin (control) 

antibodies; (b) RT-qPCR on GREB1 expression; and (c) 3C assays at GREB1: siERα 

knockdown abolishes chromatin interactions and turns off transcription.
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