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ABSTRACT

Resistance to anti-estrogen therapy is an unsolved
clinical challenge in successfully treating ER+ breast
cancer patients. Recent studies have demonstrated
the role of non-genetic (i.e. phenotypic) adaptations
in tolerating drug treatments; however, the mech-
anisms and dynamics of such non-genetic adap-
tation remain elusive. Here, we investigate cou-
pled dynamics of epithelial–mesenchymal transi-
tion (EMT) in breast cancer cells and emergence
of reversible drug resistance. Our mechanism-based
model for underlying regulatory network reveals that
these two axes can drive one another, thus en-
abling non-genetic heterogeneity in a cell popu-
lation by allowing for six co-existing phenotypes:
epithelial-sensitive, mesenchymal-resistant, hybrid
E/M-sensitive, hybrid E/M-resistant, mesenchymal-
sensitive and epithelial-resistant, with the first two
ones being most dominant. Next, in a population dy-
namics framework, we exemplify the implications of
phenotypic plasticity (both drug-induced and intrin-
sic stochastic switching) and/or non-genetic hetero-
geneity in promoting population survival in a mixture
of sensitive and resistant cells, even in the absence
of any cell–cell cooperation. Finally, we propose the
potential therapeutic use of mesenchymal–epithelial
transition inducers besides canonical anti-estrogen
therapy to limit the emergence of reversible drug re-
sistance. Our results offer mechanistic insights into
empirical observations on EMT and drug resistance
and illustrate how such dynamical insights can be
exploited for better therapeutic designs.

INTRODUCTION

Emergence of drug resistance remains the biggest hurdle
in clinical management of cancer. It has been largely tac-
itly assumed that the acquisition of genomic mutations is a
necessary and sufficient condition for drug resistance. How-
ever, recent studies across multiple cancers have suggested
a set of alternative non-genetic mechanisms that can facili-
tate the survival of cancer cells in the presence of cytotoxic
therapies (1). These non-genetic mechanisms do not en-
tail changes in genotype (underlying DNA sequence) but in
the manifestation of phenotype (2,3) through epigenetic or
transcriptional reprogramming and/or cell-state transitions
(4–8). Unlike genetic changes which are ‘hard-wired’ and
irreversibly passed to further generations, the non-genetic
changes are reversible and stochastic in nature and thus
not necessarily heritable. None of the existing therapies has
been yet shown to be capable of outsmarting this adaptive
ability of cancer cells to alter their phenotype without mod-
ifying their genotype. Instead, drug treatment can promote
such cell-state transitions, thus potentially worsening the
disease progression (9). Thus, despite major advancements
in targeted therapy, mechanisms of non-genetic heterogene-
ity and reversible drug resistance remain largely elusive.

Tamoxifen was the first targeted therapy for breast cancer
which was given to ER+ (estrogen receptor-positive) breast
cancer patients to bind to estrogen receptor (ER) and antag-
onize the proliferative ability potentiated by binding of ER
to growth hormone estrogen (10). Estrogen receptor alpha
(ER�) is one of the two forms of ER that lies upstream to
various genomic and nongenomic signaling pathways that
control cellular proliferation and survival, essentially reg-
ulating the growth of normal breast tissue and tumor (10).
ER� is considered as a key prognostic marker; increased re-
sponse to anti-estrogen therapies (such as tamoxifen) and
better patient survival are associated with higher levels of
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ER� (11). However, one-third of women treated with ta-
moxifen for 5 years have recurrent disease within 15 years,
with a majority of them being metastatic (10,12). Thus, de-
velopment of acquired resistance to tamoxifen limits its ef-
ficacy.

One of the molecules associated with tamoxifen insensi-
tivity is ER-�36, a variant form of ER� (also known as ER-
�66) (13,14). As compared to ER-�66, ER-�36 lacks both
transcriptional activation domains (AF-1 and AF-2) but re-
tains the DNA-binding and ligand-binding domains. ER-
�36 has been associated with activating downstream signal-
ing pathways that promote cell proliferation, highlighting
its potential role in development of drug resistance against
anti-estrogen treatment (15–17). Mechanistically, ER-�36
has been shown to be transcriptionally activated by tamox-
ifen (18) but inhibited by ER-�66 (19).

Another process associated with tamoxifen resistance is
epithelial–mesenchymal transition (EMT) (20,21), a cell
plasticity program involved with drug resistance across can-
cers (22,23). Loss of ER� induced changes concomitant
with EMT (24). Consistently, tamoxifen-resistant cells were
seen to grow loose colonies with weak cell–cell adhesion,
typical of EMT (25). On the other hand, EMT-inducing
transcription factors such as SLUG, ZEB1 and SNAIL are
known to drive tamoxifen resistance (26–28). This bidirec-
tional coupling between ER� and EMT pathways is rein-
forced by analysis of 118 breast tumor specimens showing
specific association of ER-�36 with various EMT markers
such as MMP9, SNAIL1 and VIM (29). However, given
that EMT is a reversible phenomenon where cancer cells can
stably acquire one or more hybrid epithelial/mesenchymal
phenotypes too (30), many questions remain: (i) can EMT
drive acquisition of reversible resistance to tamoxifen, i.e.
can the reverse of EMT––mesenchymal–epithelial transi-
tion (MET)––restore tamoxifen sensitivity? (ii) can tamox-
ifen resistance drive a partial or full EMT? and (iii) do cells
need to undergo a full EMT to gain tamoxifen resistance,
or can epithelial and hybrid E/M cells also possibly show
those traits?

Here, we develop a mechanism-based model based on
a gene regulatory network composed of key known reg-
ulators of EMT and tamoxifen resistance (TamR). Dy-
namical simulations of this network reveals different ‘at-
tractors’ (expression patterns) that can emerge, thus en-
abling the (co)-existence of various states along EMT and
TamR axes: ES (epithelial–Tam sensitive), ER (epithelial–
Tam resistant), HS (hybrid–Tam sensitive), HR (hybrid–
Tam resistant), MS (mesenchymal–Tam sensitive) and MR
(mesenchymal–Tam resistant). Further, the emergent dy-
namics of the coupled processes of EMT and TamR facil-
itates either process to be able to drive another one, thus
enabling cells to switch among multiple phenotypes along
these interconnected axes and driving non-genetic hetero-
geneity. Finally, we develop a population dynamics model
to decipher the contribution of intrinsic and tamoxifen-
induced phenotypic plasticity and non-genetic heterogene-
ity in a cell population. Our simulations suggest that the
long-term maintenance of TamR cells in a population can
arise from many possible scenarios: (i) non-genetic hetero-
geneity in sensitivity to tamoxifen in the initial cell popula-
tion and (b) phenotypic plasticity enabled by EMT and/or

drug treatment. Thus, the emergence of TamR can be poten-
tially curtailed through combinatorial targeting both EMT
and ER� pathways.

MATERIALS AND METHODS

RACIPE simulations

Random Circuit Perturbation (RACIPE) (31) generates an
ensemble of kinetic models for a given gene regulatory net-
work and simulates its dynamics for a range of biologically
relevant parameters and initial conditions. The input net-
work is composed of inhibitory and activating links between
each node. The expression of each node in the network is
calculated through a set of Ordinary Differential Equations
(ODEs) defined as follows:

d Xi

dt
= gXi

∏
j

Hs (
Xj , Xji 0, n ji , λ j i

) − kXi Xi

Here, Xi , i ∈ {1, 2, 3, 4, 5} is the concentration of nodes in
the network, g is basal production rate, k is basal degra-
dation rate and Hs is shifted hill function that takes in the
activatory/inhibitory links into account to determine the
production rate for the node (32). The parameters corre-
sponding to each regulatory link are � (fold-change param-
eter), n (Hill’s coefficient) and X0 (threshold value for the
Hill’s function). Network in Figure 1A was simulated for
100 000 parameter sets with default settings for parameter
sampling (31). Initial condition for each node is randomly
sampled from a log-uniform distribution of minimum to
maximum levels of that node. RACIPE steady states ob-
tained are z-normalized for all further analysis.

Stochastic simulations

We simulated network in Figure 1A using Euler–Maruyama
method for representative parameter sets (taken from
RACIPE) corresponding to co-existence of two or three
phenotypes. Equation used for simulations here are discrete
forms of ODEs used by RACIPE, but with an addition of
noise term

√
�t ∗ N(0, 1), where �t is the time step and

N(0, 1) is a normal random variable with mean 0 and stan-
dard deviation 1. Using trajectories obtained via stochastic
simulations of these parameter sets, we constructed and ob-
tained a probability density (P) of EM-resistance score pairs
and constructed a landscape by calculating the pseudo po-
tential as −log(P) (33).

Gene expression data analysis (clinical and single cell data)

Publicly available microarray datasets (GSE IDs mentioned
appropriately) were obtained from GEO, and Spearman
correlation coefficients were calculated for given genes.
Single-sample gene set enrichment analysis (ssGSEA) (34)
was performed on hallmark EMT, early estrogen response
and late estrogen response gene signatures obtained from
MSigDB (Molecular Signatures Database) (35). TamRes
signature was considered to be the set of upregulated
genes obtained via proteomic analysis on resistant MCF7
cells (36). EMT scoring methods––76GS, KS and MLR
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Figure 1. Emergent dynamics of coupled EMT-ER� signaling network. (A) Gene regulatory network (GRN) showing crosstalk between EMT and Estrogen
receptor (ER�) signaling. Green arrows represent activation links; red hammers represent inhibition. (B) Heatmap of stable steady-state solutions for
network shown in (A), obtained via RACIPE. (C) Density histogram of EM Score ( = Zeb1 – miR-200) and Resistance Score ( = ER�36 – ER�66)
fitted to 3 and 2 Gaussian distributions, respectively. Red dotted lines show segregation between phenotypes: Epithelial (E), Hybrid (H) and Mesenchymal
(M) for EM score, and Resistant (R) and Sensitive (S) phenotype for the latter. (D) UMAP dimensionality reduction plots for steady-state solutions
states obtained by RACIPE colored by either EM Score or Resistance score. (E) Scatter plot showing corresponding EM Score and resistance score for
all RACIPE solutions, and six biological phenotypes. Spearman correlation coefficient (� ) and corresponding P-value are reported. (F) Gene expression
levels in six biologically defined phenotypes. Dotted line represents the monotonic increase in levels of ZEB1 across the phenotypes. Standard deviation is
plotted as error bars. (G) Density distribution of Spearman correlation coefficients (� ) across an ensemble of 100 randomized versions of the GRN shown
in (A). Red line shows the correlation coefficient of the wild-type network shown in (A).

(37)––were used to compute EMT scores for bulk microar-
ray datasets. Activity values computation for 10-cell and
single cell datasets were done using AUCell (38). BRCA
ESR1 specific regulon was obtained from GRNDb (39).
Signatures for epithelial and mesenchymal phenotypes (cell
lines) were taken from Tan et al. (40).

Population dynamics––model formulation

In population dynamics framework, each cell has its at-
tributes during the simulation. The three main processes
during the growth/decline of a population of cells that we
modelled are: proliferation, death and switching between
states. We consider that the cells would be present in one of
two states: sensitive (S) or resistant (R). We defined a ‘resis-
tance score’ in the range [-6,6] that represents a cell’s fitness

in the presence of an anti-estrogen drug. Cells with smaller
values of ‘resistance score’ are likely to be more sensitive to
the drug than cells with higher scores. We incorporated vari-
ability into the system (representative of heterogeneity) by
sampling the resistance scores that are assigned to each cell
from a Gaussian distribution centered a fixed value of mean
but with different standard deviations. Each cell is assigned
with two scores, one each for its possible sensitive (S) or re-
sistant (R) state, former sampled from a gaussian centered
at -2 and with a fixed variance and the latter sampled from
a Gaussian centered at +2 and with a fixed variance. These
scores are assigned during the birth of the cell and remain
fixed over the course of the simulation. Each cell has an in-
dex variable that keeps track of the current status of the cell
S or R. Depending on the current status of the cell, the prob-
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ability of the death of cell due to the drug varies depending
on the corresponding ‘sensitive’ or ‘resistant’ score.

Cell death can occur through 2 independent ways: a con-
stant basal probability of cell death and a death due to the
presence of the drug. The constant basal probability of cell
death is a fixed number kept constant (at 0.1) over all sim-
ulations unless specified. The probability for drug induced
cell death is dependent on the current status of the cell and
the corresponding score assigned to it during its birth. To
map the resistance score of each cell to a probability of
death, we used a sigmoidal function. So, if a cell has a resis-
tance score of x, then the probability of its death is given by

ex

ex + c , where c is a constant. For our simulations, we used c =
0.6. Varying c does not change the qualitative observations
of our model.

At a population level, we assume a logistic growth model
for the cell population. Cells are allowed to proliferate with
a probability given by:

Proliferation rate ∗
(

1 − current population size
carrying capacity

)

Proliferation rate was set at 0.91 unless specified, and car-
rying capacity was set at 105 cells. Proliferation and basal
death rates of cells do not depend on the current state of the
cell. Upon cell division, daughter cells retain the status (sen-
sitive and resistant) of the mother cell. However, to account
for variability during cell division, the two scores assigned
to each cell are resampled from the Gaussian distributions
with specified variance (heterogeneity level).

Cells can also switch between sensitive and resistant
states. Transition probability from sensitive to resistant state
is given by PSR and that from resistant to sensitive state is
given by PRS. These probabilities characterize the plasticity
of the system. The basal death probability, probability of
proliferation, heterogeneity and transition probability con-
stants are kept the same for a single simulation. Later, we
perform a set of simulations by changing each of these pa-
rameters individually to show their effect at the population
level.

Statistical testing

We computed the Spearman correlation coefficients and
used corresponding P-values to gauge the strength of corre-
lations. For statistical comparison between groups, we used
a two-tailed Student’s t-test under the assumption of un-
equal variances and computed significance.

Further details are given in Supplementary Data.

RESULTS

Crosstalk between EMT and estrogen receptor signaling re-
sult in multiple phenotypes showing broad association be-
tween EMP and drug resistance in ER+ breast cancer

First, we identified a gene regulatory network (GRN) that
captures known interactions among various players in-
volved in EMT and in tamoxifen resistance. This network
incorporates the reported interactions among estrogen re-
ceptor molecules ER�66 and ER�36, and EMT players
SLUG, ZEB1 and miR-200 at multiple regulatory levels

(Figure 1A). ER�66 can repress ER�36 expression in an
estrogen-independent manner (19) and activate its own ex-
pression (41). ER�66 can also exert controls over the EMT
axis by repressing SLUG (42–44). SLUG and ZEB1 are key
EMT-inducing transcription factors that can regulate the
expression of ER�66 and ER�36, thereby controlling ta-
moxifen resistance. SLUG and ZEB1 can repress ER�66;
ZEB1 can induce promoter hypermethylation, while SLUG
can bind directly to the promoter as a repressor (28,45)
as well as recruit LSD1 to demethylate H3K4me2 (46).
On the other hand, ER�36 can enhance the expression of
ZEB1 through SNAIL and/or by suppression of CDH1
(18,47,48). ZEB1 and miR-200 form a mutually inhibitory
self-activatory feedback loop featuring transcriptional and
translational regulatory control, and in conjunction with
their interaction with SLUG, they determine the EMT phe-
notype of a cell (48).

To elucidate the emergent dynamics of this GRN, we sim-
ulated it using RACIPE (Random Circuit Perturbation)––a
computational framework that solves a set of coupled or-
dinary differential equations (ODEs) to examine the vari-
ous phenotypic states enabled by a GRN, by sampling an
ensemble of kinetic parameter sets from a biologically rel-
evant parameter range (31). For each distinct parameter
set, it chooses initial conditions based on random sampling
from within a log-uniform distribution for each node and
then solves ODEs to obtain possible steady states. For some
parameter sets, more than one steady state (phenotype) is
achieved, suggesting possible stochastic switching among
those states under the influence of noise.

Upon simulating our GRN using RACIPE, we observed
multiple cell states that are visualized qualitatively as a hi-
erarchically clustered heatmap (Figure 1B). Qualitatively,
ZEB1, SLUG and ER�36 are often co-expressed and simi-
larly, ER�66 and miR200 are co-expressed. The existence
of these two major expression patterns is corroborated
by K-means clustering (Supplementary Figure S1A). Co-
expression of ER�66 and miR200 can be construed as an
epithelial sensitive (ES) phenotype, given that the presence
of ER�66 associates with response to an anti-estrogen drug
(e.g. tamoxifen). However, in cases when ER�36 is higher,
such cells are less likely to respond to an anti-estrogen com-
pound and will exhibit drug tolerance or resistance. Thus,
co-expression of ZEB1 and SLUG with ER�36 is inter-
preted as a mesenchymal-resistant (MR) phenotype. Fur-
ther, we defined different cell states along the EMT and the
drug resistance (TamR) axes. EM score is defined as the dif-
ference in normalized values of ZEB1 and miR-200; simi-
larly, resistance score is defined as difference in normalized
values of ER�36 and ER�66. Higher EM scores correspond
to a mesenchymal phenotype, and higher resistance scores
correspond to a resistant phenotype. A hierarchically clus-
tered heatmap on the EM and resistance scores confirmed
the existence of the ES and the MR phenotypes, along with
the indication of other relatively less prevalent cell states
such as epithelial-resistant (ER), hybrid-sensitive (HS) and
hybrid-resistant (HR) phenotypes (Supplementary Figure
S1B).

Next, we plotted a normalized frequency histogram
for the EM score of steady-state solutions obtained via
RACIPE. The resultant distribution was visibly trimodal in
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nature (Figure 1C) with two dominant peaks correspond-
ing to epithelial and mesenchymal phenotypes. The mid-
dle peak was smaller, suggesting less abundant hybrid E/M
phenotypes expressing intermediate values of ZEB1 and
miR-200, as earlier postulated (48) (Supplementary Figure
S1C). Similarly, the normalized frequency histogram of re-
sistance score was bimodal, corroborated by existence of
two distinct clusters along the ER�66-ER�36 axes (Supple-
mentary Figure S1C). To better visualize the various pheno-
types enabled by the GRN, we performed UMAP analysis
on the steady states and colored the individual steady states
by either EM score or resistance score. A qualitative com-
parison of the two UMAP plots revealed that the epithelial
cluster was more likely to be sensitive while the mesenchy-
mal cluster was more likely to be resistant (Figure 1D). The
hybrid E/M (H) phenotype can be either resistant (R) or
sensitive (S) (Figure 1D and Supplementary Figure S1D).

To further quantify the association between phenotypes
on EM and resistance axes, we plotted the individual
steady state solutions on these axes as a scatter plot. Dis-
cretization of the scores along these axes (see Materials
and Methods section) revealed six possible distinct pheno-
types (Figure 1E): ES (epithelial-sensitive), ER (epithelial-
resistant), HS (hybrid-sensitive), HR (hybrid-resistant), MS
(mesenchymal-sensitive) and MR (mesenchymal-resistant).
The ES and MR phenotypes were the most dominant while
MS was the least prevalent (Supplementary Table S1). This
analysis indicates that while there exists a strong associa-
tion with the EM status and drug (tamoxifen) resistance at a
cellular level (� = 0.806, P < 0.01), other phenotypes––ES,
HR, HS and MS––may exist too, therefore highlighting the
nonbinary and semi-independent nature of EM phenotypes
and its association with tamoxifen resistance.

Next, we assessed the molecular profiling of the six identi-
fied phenotypes. ZEB1 levels showed a monotonic increase
in expression levels across the phenotypes ES, ER, HS, HR,
MS and MR (Figure 1F). Intriguingly, SLUG levels, which
was not used for classification of either EM or Resistance
scores, appeared to be significantly higher in all the resistant
states for a given EM phenotype, especially the hybrid E/M
phenotype (Figure 1F). SLUG has previously been shown
to be associated with hybrid E/M states (48). Based on these
observations, SLUG can be considered as a key player in
driving resistance, especially in hybrid E/M phenotypes.

Finally, we examined whether this strong association be-
tween EM and resistance scores/ phenotypes is specific to
the network topology of this GRN only. To test this hypoth-
esis, we created an ensemble of 100 randomized GRNs con-
trolling for the total number of nodes in the network, net
number of activation and inhibitory edges, and in and out
degree of each node. We ran RACIPE simulations on this
ensemble of networks and calculated the correlation coeffi-
cient between the EM and resistance scores. The resulting
distribution is centered around 0, and the ‘wild type’ GRN
(Figure 1A) had the strongest correlation among the ensem-
ble (Figure 1G), depicting the uniqueness of this network
topology to this strong association.

Further, we assessed the impact of other indirect gene
regulatory links for ER�36, such as its self-activation and
its ability to suppress the activity of ER�66 (16,49). Addi-
tion of these links individually or in combination resulted in

qualitatively similar results in terms of clustered heatmaps,
UMAP plots and EM score-resistance score scatter plots
(Supplementary Figures S2 and S3A–C). Additionally, it
is possible that ZEB1 can directly transcriptionally repress
ER�36 along with inhibiting ER�66 (28). To examine the
impact of this additional link on network dynamics, we
simulated a variant network including this inhibitory link
and observed that the broad association between EMT and
tamoxifen resistance remains largely unchanged (Supple-
mentary Figure S3D). Similarly, the incorporation of in-
teractions of GATA3, a key regulator of ER� levels, with
ER�66 and ZEB1 (50) also preserves the main features of
our model (Supplementary Figure S3E and F; Supplemen-
tary Table S1). Together, these observations suggest that
GRN in Figure 1A is sufficient to capture fundamental fea-
tures of EMP and reversible drug resistance observed in
ER+ breast cancer.

Clinical data support the predicted association between EMT
and loss in ER� activity

As a preliminary validation of our model predictions, we
probed the association between EMT program and the loss
in ER� activity with a concurrent gain in tamoxifen resis-
tance markers. Specifically, we investigated clinical datasets
of ER+ breast cancer patients treated with tamoxifen and
observed that ESR1 (gene for ER�) levels were significantly
negatively correlated with ZEB1 and SNAI2 (SLUG) lev-
els, as well as with single-sample GSEA (ssGSEA) scores
for MSigDB hallmark EMT signature (GSE6532; Figure
2A). Similarly, ssGSEA scores for signatures of resistance
to tamoxifen at a proteomic level (TamRes) (36) were found
to positively correlate with the levels of ZEB1, SNAI2
and MSigDB hallmark EMT program (GSE9195; Figure
2B). Further, CDH1, a well-known epithelial marker (E-
cadherin), was found to positively correlate with ESR1 lev-
els, as well as with ssGSEA scores for MSigDB late es-
trogen response. Consistently, VIM, a canonical mesenchy-
mal marker, showed negative correlation with the ssGSEA
scores for MSigDB late estrogen response (GSE17705; Fig-
ure 2C).

Next, for a more comprehensive analysis of such correla-
tions, we investigated pairwise correlations among expres-
sion levels of ESR1, canonical mesenchymal (SLUG, VIM,
ZEB1) and epithelial (CDH1) genes, three EMT scoring
metrics (76GS, KS, MLR) (37) and four gene set activity
estimation via ssGSEA scores (ER� early response, ER�
late response, tamoxifen resistance and hallmark EMT).
Across patient samples irrespective of whether the samples
were micro-dissected tumour biopsies or whole tissue tu-
mour biopsies, we observed an expected positive correla-
tion among EMT metrics, mesenchymal markers and ss-
GSEA scores for hallmark EMT (GSE1378; Figure 2D).
ESR1 gene expression levels usually correlated negatively
with mesenchymal markers and/or EMT scoring metrics.
Conversely, tamoxifen resistance signature correlated pos-
itively with the mesenchymal markers and EMT ssGSEA
scores but negatively with ESR1 (Figure 2D).

Furthermore, we examined the subtype-specific trends in
TCGA breast cancer data and observed that estrogen re-
sponse and EMT exhibited robust negative correlation pri-
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Figure 2. Gene expression analysis of publicly available datasets. (A) Correlation of ESR1 with ZEB1, SNAI2 (SLUG) and activity of MSigDB Hallmark
EMT signature (ssGSEA scores) in a cohort of 87 ER+ breast cancer patients (GSE6532). (B) Correlation of tamoxifen resistance (ssGSEA scores)
signature with expression of ZEB1 and SNAI2 and activity of hallmark EMT signature in primary breast tumors treated with tamoxifen in adjuvant
setting (GSE9195). (C) Correlation of ESR1 expression levels and estrogen response activity with CDH1 and VIM in tumor samples from 298 ER+
patients treated with tamoxifen for 5 years. (D) Diagonal correlation matrix between expression levels (ZEB1, SLUG, VIM, CDH1, ESR1), EMT scoring
metrics (76GS, MLR and KS) and gene set activity estimation (ER early response, ER late response, tamoxifen resistance, hallmark EMT signatures) for
60 samples of micro-dissected tumour biopsies (GSE1378) and whole tissue tumour biopsies (GSE1379) from a cohort of patients treated with tamoxifen
for 5 years. (E) Correlation plots of estimated activities of estrogen response with hallmark EMT signatures in different subtypes of breast cancer in TCGA.
Spearman correlation coefficient (� ) and corresponding P-value are reported.

marily in the two ER-positive subtypes (luminal A and lu-
minal B) (51) but not in ER-negative subtypes (HER2+ and
basal-like) (Figure 2E). Classification of luminal subtypes
as ER-positive and that of HER2+ and basal-like as ER-
negative is endorsed by recent transcriptomic profiling of 35
276 cells from 32 breast cancer cell lines capturing the per-
centage of cells positive for expression of ESR1 and various
EMT players in cell lines representing different breast can-
cer subtypes. While luminal cell lines such as MCF7, BT474
and T47D have higher percentage of cells that are posi-
tive for ESR1 and the ones negative for SLUG and ZEB1,
HER2+ and triple negative cell lines such as MDA-MB-
453, BT549 and MDA-MB-468 showed a reverse trend (52).
Put together, this analysis supports our prediction about an
association between activation of EMT program and com-

promised ER� signaling activity in ER-positive breast can-
cer cases, supported both by bulk and single-cell data anal-
ysis.

Reciprocal driving of the EMT program by suppressing estro-
gen receptor activity and vice versa

After investigating the correlations among EMT and ta-
moxifen resistance axes, we inspected whether these pro-
cesses could drive one another. To understand the effects
of perturbations of the EM axis on estrogen signaling axis
and drug resistance, we first simulated over-expression (OE)
and downexpression (DE) of ZEB1. ZEB1 OE led to a sig-
nificant increase in the frequency of MR phenotype with
concurrent decrease in ES, HR and ER phenotypes (Fig-
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ure 3A). Opposite trends were seen in ZEB1 DE case, as
expected. An increase in MR phenotype upon ZEB1 over-
expression indicates that as cells are driven to undergo
EMT via ZEB1, they lose their sensitivity to anti-estrogen
drugs. This change should reflect as a decrease in estro-
gen signaling activity in cells. To test this hypothesis, we
analyzed publicly available gene expression data for ER+
breast cells/cell lines induced to undergo EMT. In HMLE
cells where EMT was induced by over-expression of Twist,
Snail or Slug (53) (GSE43495); the ssGSEA scores for Hall-
mark EMT gene list showed significant increase in enrich-
ment levels in the EMT program with a concurrent decrease
in the activity of gene lists representing early estrogen re-
ceptor response and late estrogen receptor response (Fig-
ure 3B). Similarly, in other datasets, EMT induction via
overexpression of TGF�, Twist, Gsc or Snail or via down-
regulation of E-cadherin in HMLE cells (GSE24202) (54)
showed reinforcing trends including enrichment of the ta-
moxifen resistance program (Figure 3C and Supplementary
Figure S4A). Six1 over-expressing MCF7 (ER+ breast can-
cer cell line) cells (GSE23655) (55) showed similar trends
(Supplementary Figure S4B). Consistently, over-expression
of SNAIL in MCF10A (56) (GSE81929) upregulated ZEB1
and the EMT program and had downregulation of CDH1
levels as well as a concurrent drop in estrogen receptor ac-
tivity (both early response and late response) (Supplemen-
tary Figure S4C). Interestingly, SLUG levels were reduced
upon SNAIL over-expression, reminiscent of reports about
mutual repression between SNAIL and SLUG (57). Given
that SLUG can induce a partial EMT while SNAIL is likely
to induce more of a complete EMT (48,58), these results
together suggest that drug resistance can be achieved even
through a partial EMT state, and that SNAIL and SLUG
may follow different paths in the multi-dimensional EMT
landscape, both of which can confer tamoxifen resistance
to ER+ breast cancer cells.

Next, we inquired whether perturbing the levels of
ER�66 could lead to a more mesenchymal phenotype by
inducing either a partial or complete EMT. We simulated
through RACIPE both the over-expression (OE) and down-
expression (DE) of ER�66 and observed that ER�66 OE
caused a marked reduction in levels of all resistant phe-
notypes with a concomitant increase in epithelial sensi-
tive (ES) phenotypes (Figure 3D). Conversely, ER�66 DE
caused a significant drop in the prevalence of ES pheno-
type with cells being pushed toward an ER, HR or MR
phenotype (Figure 3D). Thus, the impact of ER�66 down-
regulation can be multi-faceted where it could drive the sys-
tem towards a more resistant state without changing the
EMT status (i.e. to ER phenotype) or could push cells to
a resistant state by making them more mesenchymal.

Interestingly, when ER� was silenced in MCF7 cells (24),
there was a marked increase in the levels of mesenchymal
genes such as SLUG, VIM and ZEB1 and a significant de-
crease in levels of CDH1. The effect of ER� silencing was
also observed in decreased early and late estrogen receptor
activities, and a concurrent increase in the activity levels of
EMT hallmark gene signature (GSE27473; Figure 3E). This
result establishes that ER� silencing alone can drive EMT
and consequently exhibit a drug resistant phenotype. Fur-
ther, in resistant MCF7 cells derived from sensitive parental

population (59), the estrogen response pathways were found
to be significantly suppressed, together with upregulated
EMT program (GSE67916; Figure 3F). Proteomic analy-
sis of MCF-7 cells resistant to tamoxifen were also found to
exhibit enhanced migration, a hallmark of EMT (36). In an-
other dataset consisting of sensitive and resistant cells (60),
both CDH1 and ESR1 levels were lower in resistant cells
and SLUG was significantly upregulated (GSE 26459; Sup-
plementary Figure S4D). Although ZEB1 and VIM were
not distinctly upregulated, the overall EMT program was
higher in resistant cells than in sensitive breast cancer cells
(Supplementary Figure S4D). Given the profiles of CDH1,
ZEB1, ESR1 and VIM in these MCF7 cells, these cells
could be construed as a hybrid-resistant (HR) phenotype,
at least at a bulk level.

Further, we evaluated whether these trends were also pre-
served at a single-cell level. We first investigated the 10
cell sequencing data of ER+ breast cancer cells (61). The
2D scatter of activity levels of epithelial and mesenchy-
mal genes revealed an expected negative correlation, denot-
ing the reciprocal epithelial and mesenchymal phenotypes
(GSE147356; Figure 3G). Intriguingly, we found that ep-
ithelial cells were more likely to harbor a responsive estro-
gen receptor pathway (Figure 3G). Further, the activities
of early and late estrogen receptor hallmark genes showed
a strong positive correlation with the 76GS EMT scoring
method where higher scores indicate a more epithelial phe-
notype (Supplementary Figure S4E). The activity of BRCA
specific ESR1 regulon was also found to be significantly
positively correlated with 76GS EMT scoring metric, sug-
gestive of an active estrogen receptor signaling in epithelial
cells rather than mesenchymal ones (Supplementary Figure
S4E). Finally, we examined whether EMT induction at a
single cell level could itself drive a suppression of the estro-
gen receptor pathway activity. In MCF7 cells treated with
TGF� to induce EMT, we plotted the EMT program ac-
tivity as a function of pseudo-time as reported earlier (62).
EMT activity score showed a significant positive correla-
tion with the pseudo-time, establishing pseudo-time as a
proxy for EMT progression. Upon coloring by the BRCA-
specific ESR1 regulon activity, we found that lower values of
EMT activity were more likely to be associated with a higher
ESR1 regulon activity level (GSE147405; Figure 3H). We
confirmed this observation by plotting the activities of early
and the late estrogen receptor hallmark genes and the ESR1
regulon with pseudo-time. All of them showed a significant
negative correlation with pseudo-time, further supporting
repression of these pathways alongside EMT (Supplemen-
tary Figure S4F).

Overall, we demonstrated that induction of EMT can
suppress estrogen signaling axis and vice versa, resulting in
concurrent change in cellular phenotypes along both the
EMP axis and in levels of drug resistance in ER+ breast
cancer cells (Figure 3I).

Stochastic transitions between different phenotypes on EMT
and drug resistance axes

Next, we investigated whether under the influence of biolog-
ical noise (63), these different phenotypes can switch among
one another on EMT and/or tamoxifen resistance axes. We
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Figure 3. Induction of EMT can drive suppression of estrogen signaling and vice versa. (A) Impact of over-expression/down-expression of ZEB1 levels in
RACIPE simulations on frequencies of different biological phenotypes. Error bars denote standard deviation across n = 3 replicates. (B) Experimental data
(GSE43495) for EMT induction via Twist, Snail or Slug in HMLE cells and the concurrent decrease in the magnitude of early and late estrogen response.
(C) Experimental data showing EMT induction via TGF�, Twist, Gsc and Snail in HMLE epithelial cells and the concurrent decrease in the magnitude
of early and late estrogen response (GSE24202). (D) Same as (A) but for over-expression/down-expression of ER�66. (E) Experimental data showing
differences in gene expression levels of Cdh1, Vim, Snai2 (Slug), Vim and Zeb1 and change in magnitude of early and late estrogen response and the EMT
program (ssGSEA on MSigDB hallmark EMT signature) in control and ER� silenced MCF7 cells (GSE27473). (F) Experimental data showing differences
in activity levels of early ER response, late ER response and EMT program in sensitive and resistant MCF7 cell lines (GSE67916). For A–F, * denotes
a statistically significant difference between the control and perturbed/induced case assessed by a two-tailed Student’s t-test assuming unequal variances.
(G) Scatter plot showing association between activity of early estrogen response and cells with varying positions on a 2D epithelial–mesenchymal plane
(GSE147356). Spearman’s correlation coefficient between epithelial and mesenchymal scores, and corresponding P-value are reported. Color bar represents
the activity of early estrogen response. (H) Scatter plot showing activity of EMT signature in TGF� treated MCF7 individual cells in pseudo time and
the concurrent decrease in BRCA ESR1 regulon activity. Color bar represents the range of activity level of the ESR1 regulon (GSE147405). (I) Schematic
showing bidirectional associations between the EMP and the drug resistance program, i.e. induction of EMT drives a switch to a therapy-resistant state,
and acquisition of therapy resistance often drives EMT.

identified the parameter sets simulated via RACIPE that
gave rise to multi-stability (i.e. more than one steady state
solutions, depending on the initial condition chosen) and
performed stochastic simulations.

We first characterized the proportion of parameter sets
simulated by RACIPE that are monostable versus multi-
stable. Approximately two-thirds (∼65%) of the parameter
sets were found to be bistable, followed by 20% parameter
sets exhibiting tristability, and 8% monostable cases (Fig-
ure 4A), indicating that the GRN simulated is poised for

multistability. Within the monostable solutions obtained,
{ES} and {MR} are the most predominant phases. Among
bistable cases, the most common resultant phase is that of
{ES, MR}, followed by {HS, MR} and by {ES, HR}. Fi-
nally, among tristable cases, {ES, HR, MR} phase is the
most predominant followed by {ES, ER, MR} and then
by {ES, HS, MR} (Figure 4A). Put together, these results
suggest that epithelial sensitive and mesenchymal resistant
are likely to be most frequent subpopulations in a given
cancer cell populations, with smaller proportions of hybrid
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Figure 4. Stochastic stimulations showing dynamic state transitions among different biological phenotypes. (A) Fraction of RACIPE parameter sets re-
sulting in monostable and multistable solutions (bi-, tri-, others) and the frequency distribution of phases that compose the monostable and multistable
solution sets. (B) System dynamics for a representative {ES, HR, MR} parameter set showing the existence of the three biological EM phenotypes (E, H,
M) and resistant (R) and sensitive (S) phenotypes when started from multiple initial conditions. (C) Time course showing the transition of the system from
a MR to an ES phenotype through a HR state under the influence of noise. Sensitivity score is defined as negative of the tamoxifen resistance score, i.e.
ER�66–ER�36. (D) Marginal distribution of the EM score from the time course shown in (C); three peaks denote existence of three distinct states along
EM spectrum. (E) (top) Stochastic time series for multiple initial conditions tracking EM and Resistance scores in a representative parameter set from the
{ES, HS, MR} phase. (Bottom) Landscape obtained by simulation of that parameter set with valleys representing stable states possible in the system. (F)
Same as (E) but for a representative parameter set from the {ES, HR, MR} phase. (G) Changes in SLUG levels as the system transitions from ES to MR
phenotype through either HS or HR state. HR state is characterized by high levels of SLUG compared to HS cell state. Student’s t-test results show the
level of statistical significance between various comparisons.

E/M cells which may be tamoxifen-sensitive or tamoxifen-
resistant.

We focused on tristable parameter sets that contain ES
and MR phenotypes and can enable transition between
them through an intermediate state. We considered a repre-
sentative parameter set from the {ES, HR, MR} phase and
plotted the levels of EM score (ZEB1 – miR200 levels on
log2 scale) and the resistance score (ER�36 – ER�66 levels
on log2 scale), sampling multiple possible initial conditions.
As expected, we observed three distinct levels in steady-state
EM scores, corresponding to one each in the E, H or M re-
gion. The resistance score also showed three distinct levels;
however, two of them were classified as R phenotype with

one of them as S (Figure 4B). Stochastic simulations for
this parameter set revealed noise-induced switching from
a mesenchymal-resistant (MR) phenotype to an epithelial-
sensitive (ES) phenotype through a hybrid-resistant (HR)
phenotype (Figure 4C). The existence of these three states
was further corroborated by plotting the marginal distribu-
tion of the EM Score obtained from the time profile that
revealed three peaks with varying EMT scores (Figure 4D).

Next, we constructed landscapes to interpret cell-state
transitions possible in the co-existing phenotypic combina-
tions of {ES, HS, MR} and {ES, HR, MR}. To do so, we
simulated the system from multiple initial conditions un-
der the influence of noise and obtained the pseudo poten-
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tial of the points in state-space as the negative logarithm
of the probability of occurrence. We observed that for the
representative case from the phase {ES, HS, MR}, trajec-
tories that started out as hybrid-sensitive phenotype (HS)
switched to a mesenchymal-resistant (MR) phenotype (Fig-
ure 4E, top), thus unraveling the dynamic nature of the ob-
served cell states. The landscape constructed for this param-
eter set revealed three distinct valleys or ‘attractors’––ES,
HS and MR (Figure 4E, bottom). For a representative pa-
rameter set from the phase {ES, HR, MR}, we again saw
three distinct EM states and the corresponding expected
resistant states (Figure 4F, top). The three ‘attractors’ ob-
served here was shifted along the axis of the resistance
score––from <0 for HS to >0 to HR (Figure 4F, bottom
versus Figure 4E, bottom). Similar dynamics were observed
for other kinetic parameter sets belonging to these two
tristable phases (Supplementary Figure S5A, B). A key dif-
ference noted in the HS and HR states was the levels of
SLUG, suggesting SLUG as a potential marker for hybrid
E/M resistant phenotype (Figure 4G).

The analysis of these two tristable cases––{ES, HS, MR}
and {ES, HR, MR}––shows that the phenomenon of ac-
quiring a reversible resistance and a change in the EMT
status, although correlated, can be semi-independent of
one another i.e. first the cells can become hybrid E/M
(but still sensitive) and then as they become mesenchymal,
they acquire resistance traits or alternatively simultaneously
first switch to a hybrid E/M resistant state and then an
additional switch to a mesenchymal phenotype. However,
cells can also switch directly between ES and HR states in
bistable parameter scenarios (Supplementary Figure S5C–
E).

These results demonstrate that the different states in
the two-dimensional space of EMT and tamoxifen resis-
tance (i.e. non-genetic heterogeneity) can also switch among
one another (i.e. phenotypic plasticity) under stochastic
variations in gene expression and/or biochemical rates. It
should be noted that these state transitions can also be
driven through external perturbations such as treatment
with TGF� or with anti-estrogen treatments such as tamox-
ifen. Simulations shown here demonstrate the paths cells
traverse through while transitioning to other state(s).

Complementary roles of heterogeneity and plasticity for
the tumour survival of ER+ breast cancer cells under anti-
estrogen treatments

After elucidating the emergent intra-cellular dynamics of
the coupled gene regulatory network (GRN) of EMT
and ER� signaling, we probed the effect of the dynami-
cal traits of this network––phenotypic plasticity and non-
genetic heterogeneity––at a cell population level. To gain
a better understanding of how these two cell-autonomous
traits, (i) heterogeneity in sensitivity of a cell toward a drug
and (ii) ability of cells to switch bidirectionally between a
sensitive and a resistant phenotype, can influence the long-
term survival of a cell population, we developed a simple
mathematical model involving only two components: drug
sensitive (S) cells and drug resistant (R) cells. Previous mod-
eling efforts in population dynamics have highlighted the
importance of heterogeneity in enabling survival under vari-

ous stressed conditions such as drug exposure, but they usu-
ally do not explicitly consider two subpopulations of cells
(64–67).

In this modeling framework, cells can belong to either a
sensitive (S) phenotype or a resistant (R) phenotype. The
degree of sensitivity of a cell to a drug is defined by a ‘resis-
tance score’ which is sampled from a Gaussian distribution
with a given mean and standard deviation. Heterogeneity
in the system is modelled via changing the standard devia-
tion of the Gaussian from which the resistance score is sam-
pled. The sensitivity of each cell (probability that the cell es-
capes drug-induced killing) depends on the resistance score
through a sigmoidal curve (Figure 5A), reminiscent of typ-
ical IC50 curves. Further, the cells can switch from a sensi-
tive to a resistant phenotype with a given probability PSR
and can switch back with a probability PRS, thus introduc-
ing plasticity into the system (Figure 5A). These probabili-
ties can depend on various external conditions such as drug
exposure time and/or drug concentration, but there is no
noncell autonomous behavior such as cooperation and/or
competition among the resistant and sensitive cell subpop-
ulations (68–70).

Simulations for this model showed that in the absence of
any drug, an initially fully sensitive population of cells with
no heterogeneity (resistance score for all cells < 0, SD = 0),
and no plasticity (PSR = PRS = 0) could grow to and even-
tually saturate to a population size close to the carrying ca-
pacity (105 cells) (Supplementary Figure S6A; blue curve).
However, the presence of drug can eliminate this population
of non-plastic and homogeneous drug-sensitive cells (Sup-
plementary Figure S6A; green curve); the rate of elimina-
tion depends on intrinsic growth and death rates of cells
(Supplementary Figure S6A; orange and violet curves).
Next, we characterized the role of increasing heterogene-
ity in a system devoid of plasticity (PSR = PRS = 0) i.e. for
unimodal distributions. We observed that increasing hetero-
geneity (shown by different standard deviation values) can
delay the time taken to eliminate a population of cells, but
it was not sufficient in enabling the survival of population,
as long as the population overall is predominantly sensitive
as per the survival probability curve (Figure 5B; Supple-
mentary Figure S6B–E). Furthermore, as reported earlier
(64,71), for unimodal cell populations that are resistant, an
increase in the variance can decrease the overall fitness of
the population, contrary to what is observed for the sensi-
tive populations (Supplementary Figure S6D).

Next, we examined the influence of plasticity (i.e. bimodal
populations) in the absence of heterogeneity (SD = 0). For
PSR = 0 (no switching from a sensitive to a resistant pheno-
type), irrespective of the value of PRS, the cell population
is eliminated (Figure 5C; blue and orange curves). For PRS
= 0 (no switching from resistant to sensitive population),
if the probability of switching from sensitive to resistant is
very high (PSR = 1), the population of cells survive. How-
ever, increasing values of PRS can decrease the final popu-
lation size (Figure 5C; green and purple profiles). Further,
we performed an exhaustive analysis of the PSR–PRS plane
with values ranging from 0 to 1 with steps of 0.1 and col-
ored the matrix based on the final population size at time t
= 100 steps. We first performed this analysis for two extreme
values of heterogeneity (SD = 0 and 1). We observed that
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Figure 5. Effect of heterogeneity and plasticity on tumor survival in the presence of an anti-estrogen drug. (A) Schematic for model formulation showing
inter-conversions between sensitive and resistant phenotypes (transition probabilities: PSR, PRS). Heterogeneity in the cell population is modelled by
standard deviation (SD) of Gaussians from which resistance scores are sampled. Survival probability of cells is a function of resistance score approximated
as a sigmoidal curve (shown in red). (B) Effect of heterogeneity on population sizes over time, starting with an initially all sensitive cell population and
at PSR = PRS = 0. (C) Effect of plasticity on population sizes over time starting with an initially all sensitive cell population and no heterogeneity (SD
= 0). (D) Population sizes (at time [t] = 100) as a function of PSR and PRS at two different heterogeneity levels, starting with an initially all sensitive cell
population. Dotted lines indicate a qualitative boundary between tumor survival and elimination scenarios. (E) Distinct qualitative scenarios––collapse
of initial population of cells, maintenance of the cell population around starting initial conditions (in the time frame considered) and net growth in a
population of cells leading to survival of the tumor––at varying levels of PSR and PRS. All simulations start with a fixed heterogeneity (SD = 0.5) and a
fully sensitive population. (F) Population sizes over time as a function of varying values of (PSR, PRS). All simulations start with no heterogeneity (SD =
0) and a fully sensitive population. Shaded area represents the standard deviation around the mean of n=10 replicates.

in presence of higher heterogeneity, population survival and
growth was seen for more combinations of (PSR, PRS) val-
ues (compare Figure 5D; top and bottom panels). Further,
if PSR << PRS, an increase in heterogeneity alone cannot
rescue the population and the population is eliminated. On
the other hand, if PSR >> PRS, the population survives and
reaches near maximum colony sizes (close to carrying ca-
pacity in the system) (Figure 5D). These trends were qual-
itatively similar for other levels of heterogeneity (Supple-
mentary Figure S7) as well, highlighting potentially univer-
sal organizing principles in determining cancer cell popula-
tion fitness.

Finally, we characterized different qualitative properties
exhibited by a cell population under varying values of PSR
and PRS but at a fixed heterogeneity level. To visualize the
proportion of cells in the sensitive and the resistant com-
ponent separately, we plotted a 3D histogram showing the
temporal evolution of cell population, colored by corre-
sponding resistance scores. For an intermediate value of
heterogeneity, depending on the relative values of PSR and
PRS, three distinct qualitative outcomes for cell population
are possible: (i) it can be eliminated completely; (ii) it can
maintain its critical population size similar in magnitude to
the initial number of cells; and (c) it can increase rapidly to
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saturate at a higher value to establish a colony (Figure 5E).
Next, we explored the effect of relative and absolute values
of PSR and PRS on the overall population dynamics of the
system. In absence of heterogeneity, as a representative case,
we simulated various scenarios where the ratio PSR/PRS was
fixed to be 0.5, 1 or 2. When PSR/PRS = 0.5, the population
always collapsed irrespective of absolute values of PSR and
PRS (Figure 5F). However, simulation cases that had higher
absolute values of PSR and PRS showed a slower rate of ex-
tinction; this trend was seen also for PSR/PRS = 1 and 2
(Figure 5F). These cases highlight that not only the relative
rates of plasticity in either direction (S to R or vice versa)
but also the absolute residence times (proxied by PSR and
PRS) can influence the population dynamics, by modulat-
ing the time of exposure of cells to the therapy. As expected,
higher PSR/PRS increases the propensity of population sur-
vival, and thus a faster growth curve and higher colony size.
Collectively, these results indicate the complementary roles
of heterogeneity and plasticity in the cell population to de-
termine the survival probability of a population of cancer
cells in the presence of an anti-estrogen therapy such as ta-
moxifen.

‘What does not kill [cancer cells] makes them stronger’––the
influence of drug-induced plasticity and intrinsic non-genetic
heterogeneity in population survival

As described above, depending on the absolute values of
PSR and PRS, a population of cells can collapse, grow a
colony or maintain the population size around the initial
value. The last case is likely to be a metastable state as under
the effect of intrinsic noise, the population can be pushed to
be eliminated completely or grow and saturate to carrying
capacity of the system. This feature enables us to define the
extinction probability for a cell population for a set of sim-
ulations from specified initial conditions. Extinction proba-
bility is defined as the fraction of cases in which the popula-
tion is eliminated after a long time. For most values of PSR
and PRS, the extinction probability is either 0 (population
always grows and establishes a fixed colony) or is 1 (popu-
lation is eliminated), under the influence of no heterogeneity
(SD = 0). We explored whether increasing heterogeneity can
have an extinction probability between 0 and 1. As a repre-
sentative case, we found that starting from an initially all
sensitive population (resistance score < 0), with PSR = 0.5
and PRS = 1, intermediate heterogeneity level (SD = 0.65)
led to extinction of the population (Figure 6A, left; extinc-
tion probability = 1.0). However, increasing the heterogene-
ity (SD = 0.7) led to a decrease in extinction probability
(0.43 ± 0.03) with the surviving cases saturating at a pop-
ulation level of ∼750 cells (Figure 6A, middle). A further
increase in heterogeneity further reduced extinction proba-
bility (0.14 ± 0.02) concomitant with an increasing saturat-
ing population size of ∼1500 cells (Figure 6A, right). These
simulations illustrate a protective role of non-genetic het-
erogeneity in maintaining a cancer cell population, under
the influence of therapy, especially at high enough intrinsic
switching rate of cells to a resistant state, due to stochastic
dynamics of phenomenon such as EMT.

Next, we investigated the effect of initial fraction of ‘pre-
existing resistant cells’ (72) on the population extinction

probability. At fixed heterogeneity (SD = 0.8) and plastic-
ity levels (PSR = PRS = 0.2), starting with only sensitive cells
(resistance score < 0), the extinction probability was 0.49 ±
0.03 but increasing the initial fraction to 0.25 (i.e. 25% of
initial cells have resistance score > 0) caused a modest de-
crease in extinction probability (0.40 ± 0.03) (Figure 6B), as
compared to the impact of heterogeneity, where a decrease
of approximately 60% was noted for extinction probability
(Figure 6A). A further increase in this initial fraction also
had a similar weak effect in changing either the extinction
probability (0.31 ± 0.04) or the final population size (Fig-
ure 6B). This analysis revealed that the initial fraction of re-
versibly resistant cells is perhaps a weaker factor, especially
at lower intrinsic transition probabilities between sensitive
and resistant cells.

Finally, we investigated the effect of drug-induced plas-
ticity (i.e. externally induced transitions from a sensitive to
a resistant state) (9) on the cell population dynamics. In our
model, sensitive cells that can survive drug exposure in stip-
ulated time have a probability to switch to resistant state.
We monitored the final population size with varying levels
of drug induced plasticity (0 and 1) at two different levels of
heterogeneity (SD = 0 or 1). We observed that under high
drug-induced plasticity conditions, especially with smaller
PRS values, a marked increase in final population size was
observed, irrespective of the extent of heterogeneity (Figure
6C and Supplementary Figure S8).

Put together, these observations show diverse mecha-
nisms that can promote the survival of a cancer cell popula-
tion under the influence of various anti-estrogen drugs: (i)
nongenetic heterogeneity in initial cell population, includ-
ing the percentage of de novo reversibly resistant cells and
(ii) stochastic switching between cell states (ES, MR) un-
der the influence of noise, maintaining a dynamic equilib-
rium of sensitive and resistant cells and (ii) drug-induced
switch to a reversible resistant state for cells that do not die
upon exposure of the drug, i.e. cells that tend to follow the
Nietzsche’s proposal of ‘what does not kill me makes me
stronger’ (73).

Combinatorial strategies to target a plastic and heteroge-
neous cancer cell population

After deciphering multiple possible routes to long-term sus-
tenance of a resistant population which can lead to tumor
growth, we investigated what mechanisms can be efficiently
deployed to target a plastic and heterogeneous cancer cell
population. From our network simulations and follow-up
analysis of bulk and single-cell transcriptomic data, we es-
tablished a consistent association between epithelial state
and higher drug sensitivity, as well as a mesenchymal one ex-
hibiting recalcitrance to tamoxifen (Figures 1 and 2). Thus,
in our cell population dynamics framework, we incorpo-
rated the effect of an MET-inducer, i.e. an external sig-
nal that increased PRS, just as drug-induced switching in-
creased PSR. Thus, this MET-induced sensitivity forced cells
to switch from a more mesenchymal (i.e. resistant) to an ep-
ithelial (i.e. sensitive) cells, thus reducing the fraction of re-
sistant cells in the population.

To simulate the effects of such a scenario, we first chose a
representative parameter set that enabled a surviving pop-
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Figure 6. Different mechanisms promoting survival of a cancer cell population in the presence of an anti-estrogen drug. (A) Simulations showing increase
in survival probability (decrease in extinction probability) of a cancer cell population with varying heterogeneity levels (SD = 0.65, 0.70 and 0.75) starting
form an all sensitive population and fixed values of PSR and PRS at 0.5 and 1.0, respectively. (B) Simulations showing a modest increase in the survival
probability of a cell population with varying levels of initially resistant cells (initial fraction = 0.0, 0.25 and 0.50) and fixed values of PSR and PRS at 0.5 and
1.0, respectively. Orange ribbon represents the collection of all states that survive and form a colony and blue ribbon for all those cases that are eventually
eliminated. The dark line represents the mean and the band represents the SD around that mean for an ensemble of simulations. (C) Final population sizes
(at time [t] = 100) as a function of PSR and PRS at two different heterogeneity levels (SD = 0, 1) and two different levels of drug induced plasticity (0 and 1)
starting with an initially all sensitive cell population. Dotted lines indicate a qualitative boundary between cases where a tumour survives or is eliminated
by the presence of the drug.

ulation of cells, with a larger frequency of sensitive cells
than resistant ones (Figure 7A, i). Upon introducing drug-
induced plasticity into the system, we observed faster satu-
ration, and a changed demographic with most of the popu-
lation consisting of resistant cells (Figure 7A, ii). Upon in-
troduction of the MET inducer in absence of drug-induced
plasticity, the population undergoes a rapid collapse as the
cells are sensitized to the drug, causing drugs to kill the
cells (Figure 7A, iii). However, in the presence of drug
induced plasticity, the population undergoes a relatively
slower collapse as these two factors (drug-induced plasticity
and MET-induced sensitivity) are opposing in nature (Fig-
ure 7A, iv).

This behavior is generally conserved across multiple pa-
rameter values corresponding to heterogeneity and plastic-
ity (SD, PSR, PRS). Irrespective of the extent of heterogene-
ity, we see a larger combination of (PSR, PRS) values in the
PSR–PRS plane allowing for population collapse in the pres-
ence of MET-induced sensitivity as compared to the control
case (Figure 7B). These observations suggest that strategies
that can revert the influence of therapy-induced plasticity to
alter the population demographic to a higher proportion of
sensitive cells can be applied together with canonical anti-
estrogen therapies to halt the dynamic adaptability of cell
population, thus ‘trapping’ them in a drug-sensitive state. In
the current paradigm, ‘tolerant’ cells that are able to escape



14 NAR Cancer, 2021, Vol. 3, No. 3

Figure 7. MET inducer, in conjunction with anti-estrogen drugs, can potentially limit the survival of cancer cell population. (A) Temporal evolution of a
population of cancer cells (resistant and sensitive both) under different levels of drug induced plasticity (0 and 1) and MET induced sensitivity (0 and 1).
Simulations were performed starting form an all sensitive population and fixed values of PSR and PRS at 0.2 and 0, respectively. (B) Final population sizes
(at time [t] = 100) as a function of PSR and PRS two different levels of drug induced plasticity (0.1 and 1) and two different levels of MET induced drug
sensitivity (0 and 1) starting with an initially all sensitive cell population with no heterogeneity in the system. Dotted lines indicate a qualitative boundary
between cases where a tumour survives or is eliminated by the presence of the drug.

being killed upon drug exposure are very likely to switch
to a resistant state, given the coupled EMT-estrogen signal-
ing coupling, thus adding to existing tumor burden. How-
ever, alleviating this side-effect of the drug-induced plastic-
ity through MET inducers that may sensitize the population
can be a more efficient therapeutic combination.

DISCUSSION

Drug resistance, similar to many hallmarks of cancer,
has traditionally been presumed to have a strong ge-
netic underpinning. Thus, drug-resistant cells in a tu-
mor population have been thought of containing pre-
existing (de novo) mutations or in acquired mutations dur-
ing the course of therapy (2). However, over the past
decade, accumulating experimental/preclinical and clinical
evidence of nongenetic, stochastic and reversible modes of

drug resistance––labeled often as drug-tolerant persisters
(DTPs)––have been reported in vitro and in vivo (5,74–77),
reminiscent of similar observations in microbial systems
(78). DTPs have been also shown to give rise to stable drug-
resistant phenotypes involving genetic changes upon pro-
longed growth (77), highlighting the importance of realiz-
ing different timescales over which cellular adaptation can
occur. While short-term changes are often phenotypic in
nature and involve foraging of the phenotypic landscape,
long-term survival strategies may involve genomic changes
to enable being trapped in the ‘attractors’ explored during
short-term foraging. While such transitions to a persister
(reversibly resistant) cell state have been largely associated
with epigenetic reprogramming (2), recent studies show sig-
nificant variation in transcriptional program of such cells
too as compared to sensitive cells from the same genetic
background (72,79–81), suggesting a critical role of tran-
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scriptional regulation as well in the emergence of reversible
therapy-resistance (i.e. persistence), a ‘bet-hedging’ strategy
to ensure survival in time- and/or space-varying environ-
ments (78).

Here, we have identified one such transcriptional pro-
gram in ER+ breast cancer cells that can cause a re-
versible resistance to the treatment of tamoxifen, an anti-
estrogen therapeutic. Our results suggest that EMT and
resistance to tamoxifen can drive each other; thus offer-
ing a mechanistic explanation for empirical observations
showing that cells undergoing EMT are more resistant
to tamoxifen (20) and that tamoxifen-resistant cells are
EMT-like (21,25). Notwithstanding this broad association
between the two axes, which was validated in bulk and
single-cell transcriptomic data, our model predicts the co-
existence of and stochastic switching among six possible
phenotypes––epithelial sensitive (ES), epithelial resistant
(ER), hybrid sensitive (HS), hybrid resistant (HR), mes-
enchymal sensitive (MS) and mesenchymal resistant (MR)
(Figure 8A). Thus, a progression to a full EMT need not be
required for acquiring resistance to tamoxifen, and the asso-
ciation between at least a full EMT and drug resistance can
be semi-independent, as seen for coupled EMT-stemness
dynamics in vitro and in vivo (82,83). Our stochastic simula-
tions showed that cells can switch from an ES to MR state
via HS or HR states, highlighting two alternative paths to
acquire resistance. But whether cells show hysteresis in these
paths (i.e. how reversible or irreversible can such transitions
be) need to be investigated more carefully experimentally.
Future efforts should focus on drawing more comprehen-
sive landscapes for transitions along coupled axes of plastic-
ity such as EMT, immune evasion, stemness and metabolic
reprogramming (84), besides drug resistance. We also pro-
posed SLUG as a marker for hybrid E/M and tamoxifen
resistant phenotype, which may help explain association of
worse clinicopathological features with high SLUG levels
(48).

While our model extensively features the connections
among five players (ZEB1, SLUG, miR-200, ER�66 and
ER�36) transcriptionally and their corresponding emer-
gent phenotypes and dynamics, development of EMT
and/or drug resistance is a much more complex process.
Furthermore, the mechanism of drug resistance would
largely depend on the mechanism of action of the drug. For
example, aromatase inhibitors, a major first line endocrine
therapy for postmenopausal metastatic ER+ breast cancer
that operate via inhibiting estradiol synthesis rather than by
inhibiting ER�66 (85,86) may not follow the mechanisms
of reversible drug resistance as proposed here. The scope of
our model is limited to drugs directly affecting the abun-
dance or functionality of the ER�66 itself (e.g. fulvestrant
and tamoxifen). Moreover, although our model does not ex-
plicitly consider it, we are not excluding the possibility of
acquired genetic mutations in ESR1 or other genes which
may alter the network dynamics. Similar to observations in
lung cancer (87), the role of genetic mutations in contribut-
ing to acquired resistance in ER-positive breast cancer also
becomes apparent only at longer time-scales ranging over
months (88), instead of instant adaptation that may be of-
fered by transcriptional and/or epigenetic reprogramming

Figure 8. Schematic depicting dynamical traits of coupled EMT-ER� sig-
naling network and its implications in tumor survival. (A) Landscape
showing multiple phenotypes defined on EMT and drug resistance axes:
ES (epithelial-sensitive) and MR (mesenchymal-resistant) phenotypes are
more dominant (witnessed by depth of the valley in the landscape). Ar-
rows induced transitions under the influence of noise or drug among six
phenotypes (ES, ER, HS, HR, MS, MR). (B) Population dynamics show-
ing multiple parallel paths to long-term resistance (pre-existing reversibly
resistant cells, stochastic switching and dynamic equilibrium, and drug-
induced plasticity) and the predicted effect of combinatorial therapy (anti-
estrogen therapy + MET inducers) to drive population collapse.

as represented through emergent dynamics of the network
investigated here.

Despite these limitations, the model simulations offer
profound conceptual contributions. First, we postulate a
putative mechanism that can explain diverse experimental
observations and proposes a mutual dependence of two axes
of plasticity that are crucial in cancer progression. Such
models can help guide future experimental studies to in-
vestigate this coupling more comprehensively. Second, these
specific molecular players can be thought of representative
of various functional modules, and the fundamental feature
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of multistability demonstrated here can help conceptual-
ize reversible phenotypic plasticity and non-genetic hetero-
geneity along multiple axes, as live-cell imaging and single-
cell RNA-seq data becomes more prominent. Third, the
population dynamics framework used here offers insights
into how bidirectional plasticity and non-genetic hetero-
geneity can contribute to survival of a tumor cell population
as well as the phenotypic demographic of the tumor colony.

The population dynamics framework has been main-
tained intentionally simple. Such simple frameworks are
quite powerful in explaining many experimental phe-
nomenon, as shown recently by Rehman et al. (75), where
they could explain the maintenance of clonal complexity
after drug treatment in tumors in vivo using a population
dynamics model that assumes that all cells in the popula-
tion are equally potent to switch to a reversibly resistant
state and the choice of cell survival is completely indepen-
dent of genetic background. One complexity that can be
added to our model is the effect of ecological interactions
between the two species––sensitive and resistant cells––such
as cooperation or competition for resources (68–70). Other
adaptation of the model can be to include cell-state transi-
tion probabilities as a function of relative stability of states
calculated from the landscape estimated for an intracellu-
lar GRN. Similarly, death rate incorporated in our model
can depend on internal challenge faced by cells during the
metastatic cascade, such as anoikis and/or interaction with
various immune cells.

Our population dynamics framework suggests that phe-
notypic plasticity (reversible transitions between drug-
resistant and -sensitive phenotypes) and non-genetic het-
erogeneity (pre-existing reversibly resistant cells) can pro-
mote the survival of tumor population under drug treat-
ment, with a higher contribution coming from plasticity,
especially a switch from sensitive to resistant state. While
heterogeneity aids in tumor survival, plasticity is crucial for
the effects of heterogeneity to have a significant impact in
terms of tumor fitness and survival. We found that the tu-
mor size is maximum at an optimal plasticity level, beyond
which the effect of plasticity, while still present, is reduced.
These observations are consistent with reports about in-
termediate levels, not extremely high levels, of chromoso-
mal instability being associated with the worst clinical out-
comes (89). Furthermore, composition of final tumor pop-
ulation after a prolonged treatment was found to be vari-
able from purely resistant to purely sensitive. Overall, the
maintenance of long-term ‘resistance’ can be achieved via
multiple paths: (i) non-genetic heterogeneity in initial cell
population, (ii) stochastic transitions among sensitive and
resistant states driven by processes such as EMT, maintain-
ing a dynamic equilibrium of cell subpopulations (30) and
(iii) drug-induced transitions to a reversibly resistant state
(Figure 8B).

Based on these features, we conceptually integrated the
effect of MET on drug resistance, i.e. the broad association
of an epithelial phenotype with a drug-sensitive state. We
observed that MET inducers can minimize the impact of
switch from sensitive to resistant phenotype and can thus
counteract the impact of both drug-induced plasticity and
population heterogeneity to a large extent. Whether such
combinatorial strategies are likely to be more effective si-

multaneously or sequentially (90,91) is a question beyond
the scope of this study, but can be answered by developing
a multi-scale model including non-cell-autonomous effects
such as cooperation or competition, building on the prin-
ciples of multistable regulatory networks and consequent
phenotypic plasticity and non-genetic heterogeneity eluci-
dated here. Future efforts to improve the predictability of
such models will require rich dynamic experimental data
based on which the observed cellular behavior can be real-
ized in hyperspace of phenotypes obtained via mechanism-
based and/or data-based investigation of regulatory net-
works.
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