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C9orf72 ablation causes immune 
dysregulation characterized 
by leukocyte expansion, 
autoantibody production, and 
glomerulonephropathy in mice
Amanda Atanasio, Vilma Decman, Derek White, Meg Ramos, Burcin Ikiz, Hoi-Ching Lee, 
Chia-Jen Siao, Susannah Brydges, Elizabeth LaRosa, Yu Bai, Wen Fury, Patricia Burfeind, 
Ralica Zamfirova, Gregg Warshaw, Jamie Orengo, Adelekan Oyejide, Michael Fralish, 
Wojtek Auerbach, William Poueymirou, Jan Freudenberg, Guochun Gong, Brian Zambrowicz, 
David Valenzuela, George Yancopoulos, Andrew Murphy, Gavin Thurston & Ka-Man Venus Lai

The expansion of a hexanucleotide (GGGGCC) repeat in C9ORF72 is the most common cause of 
amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both the function of C9ORF72 
and the mechanism by which the repeat expansion drives neuropathology are unknown. To examine 
whether C9ORF72 haploinsufficiency induces neurological disease, we created a C9orf72-deficient 
mouse line. Null mice developed a robust immune phenotype characterized by myeloid expansion, T cell 
activation, and increased plasma cells. Mice also presented with elevated autoantibodies and evidence 
of immune-mediated glomerulonephropathy. Collectively, our data suggest that C9orf72 regulates 
immune homeostasis and an autoimmune response reminiscent of systemic lupus erythematosus (SLE) 
occurs in its absence. We further imply that haploinsufficiency is unlikely to be the causative factor in 
C9ALS/FTD pathology.

The C9ORF72 locus has been researched extensively following identification of an expanded hexanucleotide 
(GGGGCC) repeat in C9ORF72 as the most common cause of sporadic and familial forms of amyotrophic lat-
eral sclerosis (ALS) and frontotemporal dementia (FTD)1,2. FTD is characterized by cognitive and behavioral 
symptoms and ALS by motor neuron degeneration, yet extensive genetic, clinical, and neuropathological overlap 
indicate the two conditions form opposite ends of a continuous disease spectrum3. Patients may develop ALS, 
FTD, or both (C9ALS/FTD) and generally carry one normal allele comprised of 2–16 copies of the repeat and an 
expanded pathogenic allele with repeats numbering in the hundreds to thousands.

The C9ORF72 repeat is intronic1,2, therefore the mechanism by which the repeat expansion causes neuronal 
cell death is unclear. Toxic buildup of unspliced, repetitive mRNAs is one theory. Studies have demonstrated that 
C9ORF72 repeats sequester certain RNA binding proteins into cytoplasmic foci, perhaps reducing or preventing 
protein synthesis needed for normal cellular processes4–10. An alternate hypothesis implicates insoluble dipeptide 
chains arising from Repeat-Associated non-ATG (RAN) translation of the repeats. C9ALS/FTD autopsy brain 
sections contain cytoplasmic poly-glycine-proline peptide inclusions7,11–14 that could cause neurotoxicity in a 
manner similar to the neurofibrillary tangles and amyloid plaques of Alzheimer’s disease15. Both theories cast the 
repeat as a gain-of-function lesion that may or may not impact the function of C9ORF72 itself.

A third theory to explain C9ALS/FTD pathogenicity is haploinsufficiency of C9ORF72. Repeat expansion as a 
loss-of-function mutation is suggested by studies on repeat carriers who express roughly half as much C9ORF72 
transcript as individuals with two unexpanded copies16,17. In addition, the repeat can cause DNA and RNA to 
form four-stranded G-quadruplexes. Poor transcription/translation of quadruplexed DNA/RNA also implicate 
haploinsufficiency, and therefore impaired C9ORF72 function as pathogenic18–20.
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Functional studies in C. elegans and zebrafish support the haploinsufficiency hypothesis by demonstrating that 
a reduction in C9ORF72 homolog levels results in locomotion defects21,22. However, mouse studies suggest oth-
erwise. Conditional C9orf72 ablation in neurons and glial cells or intracerebral mRNA knockdown did not cause 
motor neuron disease, gliosis, TDP-43 pathology, or increased ubiquitination, defects associated with C9ALS/
FTD23,24. These results imply haploinsufficiency in the central nervous system (CNS) is not pathogenic; however 
ablation may not have occurred in a crucial cell type and knockdown could have allowed residual C9orf72 expres-
sion. The conflicting results and variability intrinsic to cell-specific gene ablation or message knockdown warrant 
further study of C9orf72 in a universal knockout (C9orf72−/−).

In this study, we separate effects intrinsic to the repeat from the function of C9ORF72 by genetically ablating 
the mouse homolog, 3110043O21Rik (hereafter referred to as C9orf72). Heterozygous (C9orf72+/−) mice were 
healthy and lived normal lifespans. In contrast, C9orf72−/− mice developed an autoimmune phenotype consisting 
of expansions in myeloid and lymphoid cell populations, autoantibody production, and glomerulonephropathy. 
Mild, nonspecific neurological deficits arose after the immune response was established but C9orf72 ablation did 
not result in classic motor neuron degeneration. Our results indicate haploinsufficiency is not the main cause of 
C9ALS/FTD neuropathology and describe a novel role for C9ORF72 in immune homeostasis.

Results
C9orf72−/− mouse engineering and validation.  To create a model of C9orf72 haploinsufficiency, we 
replaced the mouse C9orf72 coding sequence and introns with a lacZ reporter (Supplemental Fig. 1A). To confirm 
C9orf72 ablation, we performed gene-specific Taqman analyses on wildtype (WT), C9orf72+/− and C9orf72−/− 
tissue cDNA. We detected high C9orf72 expression in WT central nervous system (CNS), fat, and muscle with 
lower levels in lymphoid tissues. C9orf72+/− mice had roughly half the expression level of WT, and C9orf72−/− 
mice had no detectable C9orf72 expression (Supplemental Fig. 1B). Finally, we confirmed no difference in tran-
scription levels of nearby loci Mob3b, Ak045932, and Ifnk, indicating insertion of lacZ impacts C9orf72 expression 
only (Supplemental Fig. 1C, data not shown).

Consistent with Taqman results, staining for lacZ in tissues from 6 and 28 week C9orf72−/− revealed enzyme 
activity in the brain, spinal cord, spleen, testes, and kidney, corresponding to previously published findings23,25. 
We also observed staining in additional tissues, including fat, muscle, atria, liver, and lung (Supplemental Fig. 1D, 
data not shown). Reporter activity was more limited in intensity and scope in C9orf72+/− tissues, as expected for 
a single lacZ replacement allele.

C9orf72−/− mice show mild motor deficits.  Given the association of C9ORF72 to neuropathology, we 
performed clinical exams26 to determine whether loss of C9orf72 causes an ALS-like phenotype. At 40 weeks of 
age, C9orf72−/− showed progressive weakness and collapse of hind limbs towards the lateral midline, with mild 
tremor and rigidity not observed in WT or C9orf72+/− (Supplemental Fig. 2A, data not shown). Open field obser-
vations demonstrated decreased locomotor behaviors and fewer rearing events in null mice compared with WT. 
CatWalk gait analyses also revealed signs of impaired lower interlimb coordination and reduced stride length 
with bradykinesia and dragging of hind limbs (Supplemental Fig. 2B). No difference between WT and C9orf72−/− 
mice was observed in maximum time spent on the rotarod (Supplemental Fig. 2C).

C9orf72−/− mice exhibit lymphadenopathy and splenomegaly. During neurological testing, we 
unexpectedly noted palpable cervical masses in all C9orf72−/− animals, but not in WT or C9orf72+/− controls. 
Masses were palpable as early as 8 weeks of age and present in all null mice by 18 weeks, before onset of observed 
motor deficits. Upon dissection, the masses proved to originate from cervical lymph node (LN) (Fig. 1A, data not 
shown) and systemic lymphadenopathy was noted in certain null mice. Peyer’s patches (PP) were also enlarged 
and splenomegaly was apparent by 8 weeks of age (Fig. 1B, data not shown). By 36 weeks, C9orf72−/− ceased 
gaining weight compared with WT and only 9 out of 17 survived to the end of the neurological assay period  
(60 weeks) (Supplemental Fig. 2D, data not shown).

C9orf72−/− mice display mixed inflammatory infiltrates in multiple organs.  The enlargement of 
C9orf72−/− spleens and LN suggests a disease process such as neoplasm or immune dysregulation, an unexpected 
finding given that ALS/FTD is not linked to such pathology in human patients. To address these possibilities, 
histopathology was conducted on spleen and LN from 8–60 week old mice. The basic cellular organization of 
the enlarged C9orf72−/− LN was preserved, with immunohistochemistry (IHC) identifying a B cell-rich rim 
(CD45R+) arranged in follicles within the cortex and a T cell (CD3+) infiltrate between follicles and in the para-
cortex zone (data not shown). A mixed cell population consisting mostly of large round cells with variably distinct 
borders, a single round nucleus, and eosinophilic, foamy cytoplasm expanded the cortical and medullary nodal 
architecture. A similar cellular infiltrate was present in C9orf72−/− spleen, predominantly located within the red 
pulp, expanding the splenic architecture and corresponding to grossly increased spleen weights. These cells did 
not stain consistently with CD45R or CD3 but were strongly positive for the macrophage lineage marker F4/80. 
(Fig. 1C, data not shown). Abundant plasmacytoid cells containing perinuclear halos, consistent with plasma 
cell morphology, and occasional Mott cells (enlarged plasma cells containing cytoplasmic immunoglobulin (Ig) 
inclusions) were also present. We did not observe similar infiltrates in WT and C9orf72+/− controls.

H&E and IHC analyses of additional organs from mice aged 8–60 weeks revealed a prominent F4/80+ pop-
ulation of elongated to angular cells in the liver and kidneys of null mice. This population was pronounced in 
C9orf72−/− mouse liver at 8 weeks, though there was no evidence of associated liver disease (data not shown). 
Increased F4/80+ cell populations observed in C9orf72−/− kidney were located primarily within the cortex, form-
ing prominent cuffs around glomeruli and aggregates in the vicinity of the macula densa and adjacent tubules 
(Fig. 1C). Increasing infiltrates of mixed leukocytes were also observed with age, accompanied by varying degrees 
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of immune-mediated glomerular disease that was well established by 35–60 weeks. Inflammation was not present 
in brain or spinal cord tissue in any animals examined. These data implicate the spleen, LN and kidney as major 
sites of C9orf72−/− immune pathology.

C9orf72−/− lymphoid organs contain increased percentages of myeloid lineage cells. To fur-
ther interrogate the cellular infiltrate observed on histopathology, flow cytometric analysis was performed on 
spleen, cervical and mesenteric LN, PP, BM, blood and kidney from C9orf72−/− and WT controls. Specific focus 
was on the 28–35 week time point in females, as the majority show renal pathology but remain viable. Total 
CD45+ (leukocyte common antigen) cell counts were increased in all C9orf72−/− tissues examined, consist-
ent with the immune infiltration described above, however CD45+ percentages compared with total cell pop-
ulations assayed were either unchanged or reduced compared with WT. To determine if homeostasis within 
leukocyte subsets was altered, we narrowed our focus using specific antibody panels. F4/80+ macrophages 
(CD45+CD11b+F4/80+Ly6G−) were increased in the spleen, LN, kidney, and blood in C9orf72−/− mice, consist-
ent with the F4/80+ infiltration observed by IHC (Fig 1D). Neutrophil (CD45+CD11b+Ly6G+Ly6CintCD115−) 
and total monocyte (CD45+CD11b+CD115+) percentages were also increased in C9orf72−/− tissues com-
pared with controls. Staining for Ly6G and Ly6C revealed an increased percentage of inflammatory monocytes 
(CD45+CD11b+CD115+Ly6G−Ly6Chi) in C9orf72−/− spleen, LN, blood, and kidney. Myeloid dendritic cell 
(CD45+CD11b+CD11c+MHCII+) percentages measured in the spleen, cervical LN, mesenteric LN, PP, BM, 
and blood were increased in C9orf72−/− relative to WT, whereas the NK cell (NKp46+CD49b+) fraction was 
decreased in spleen and BM. Co-staining for the activation marker CD86 revealed activated myeloid DC pop-
ulations (CD45+CD11b+CD11c+MHCII+CD86+) in all tissues examined (data not shown). Similar perturba-
tions in myeloid cell populations by FACS analyses on males aged 9–60 weeks are summarized in Supplemental 
Fig. 3 with representative FACS plots provided in Supplemental Fig. 4. Complete Blood Count (CBC) fraction-
ation of leukocyte populations also revealed increases in circulating neutrophils, monocytes, and eosinophils in 
C9orf72−/− compared with controls, in addition to significant anemia and thrombocytopenia (data not shown).

Figure 1. C9orf72−/− mice develop lymphadenopathy and splenomegaly, and display infiltration of 
F4/80+ cells by IHC and FACS Analysis. (A,B) Representative pictures of gross cervical LN enlargement and 
splenomegaly observed in C9orf72−/− in comparison to age-matched WT control. Significantly increased cell 
counts obtained via FACS analysis correspond to lymphadenopathy and splenomegaly observed grossly.  
(C) The expanded cell populations infiltrating the red pulp of the spleen and surrounding lymphoid follicles 
of the cervical LN stained positive by IHC for mouse macrophage marker F4/80. Periglomerular infiltrates 
observed in C9orf72−/− kidneys are also largely positive for F4/80 macrophage lineage marker. Sections shown 
are females, 37 week old C9orf72−/− and 40 week old WT (D) FACS analysis confirmed H&E and IHC findings 
by showing increased percentages of CD11b+F4/80+Ly6G− macrophages in kidney, spleen, cervical LN, 
and blood (30–35 week old female, n =  4 per genotype). (A–D) Data are shown as mean ±  s.e.m (*P ≤  0.05, 
**P ≤  0.01 and ***P ≤  0.001 by unpaired Students t-test). (C) Scale bar represents 50 μm, original magnification, 
× 600.
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IL-12, IL-17a, IL-10, and TNF are increased in C9orf72−/− serum. To further characterize the global 
effects of C9orf72 ablation, we measured various cytokines and chemokines in 8–60 week mouse serum (Fig. 2A, 
data not shown). IL-12total was approximately 6-fold increased in C9orf72−/− animals compared with controls. 
IL-10, IL-17a, and TNFα  were also upregulated, although to a lesser extent. We did not observe changes in IL-1β , 
IL-2, or IL-4 suggesting this effect on cytokine secretion was not global. While there was a trend toward increased 
IL-6 in C9orf72−/− serum compared with WT, this difference did not reach statistical significance. MCP-1 
chemokine was significantly increased in female C9orf72−/− animals and IFNγ  was significantly increased in 
males with an increasing trend observed in females.

RNAseq analyses reveal global inflammatory gene signatures in C9orf72−/− mice. C9orf72 abla-
tion appears to cause a systemic immune response resulting in elevated inflammatory cytokines and myeloid cell 
expansion. High expression of C9orf72 has been observed in monocytes, macrophages and DCs, with lower levels 
measured in lymphocytes. C9orf72 may indeed modulate the immune system, particularly the myeloid com-
partment (Supplemental Fig. 5)27. To confirm this observation, we performed RNASeq analyses, mapping global 
transcriptome changes between WT and C9orf72−/− brain and lymphoid tissues. In the brain, hierarchical clus-
tering primarily separated samples by gender and age, indicating that profiling differences in this tissue are due to 
the basic biology of samples (data not shown). In contrast, spleen and LN samples clustered based on genotype, 
with age and sex secondary, thus transcriptome differences in these organs result from loss of C9orf72 expression. 
Furthermore, over 100 loci associated with immune function showed significant expression differences between 

Figure 2. Serum cytokine data and molecular profiling signatures indicate myeloid cell infiltration and 
involvement of macrophage activating pathways in C9orf72−/− mice. (A) C9orf72−/− show increased levels of 
circulating cytokines and chemokines involved with macrophage recruitment and activation. C9orf72+/− mice 
demonstrate values comparable to WT, consistent with absence of any observed phenotype. Graphs represent 
mean ±  s.e.m. (**P ≤  0.01 and ****P ≤  0.0001 by one-way ANOVA) from 8–38 week female mice, n ≥  19 per 
genotype. (B) Molecular profiling signatures from C9orf72−/− spleen and cervical LN suggest infiltration 
of macrophage, monocyte, and granulocyte cell populations by increased expression of associated markers. 
Depletion of T and B cells is also indicated, which may reflect the increase in proportion of myeloid cells. Data 
shown is from 8 week old females, 9–10 week old males, and 35–39 week old males, n ≥  3 per genotype.
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C9orf72−/− and WT tissues in both genders and ages. C9orf72−/− spleen and LN gene signatures indicate myeloid 
infiltration with a decrease in the lymphocytic signature. (Fig. 2B). A NextBio enrichment analysis of this sample 
set revealed the strongest perturbations in gene sets involved in immune response, mouse models of inflamma-
tory conditions, and human infectious diseases, consistent with C9orf72 ablation resulting in global immune 
dysregulation.

C9orf72−/− mice have increased percentages of activated T lymphocytes and plasma cells.  An 
increase in activation markers on monocytic cells is often accompanied by increases in lymphocyte activation 
parameters. In addition, the elevation in IL-12 observed in C9orf72−/− serum could up regulate T cell activity28. 
To quantify T cell populations, we performed flow cytometric analyses on spleens, LN, BM, blood and kidney 
from 30–35 week C9orf72−/− and WT female mice, gating on CD45 leukocyte common antigen, CD4 or CD8, 
and various activation status markers. Percentages of CD45+CD8+ and CD45+CD4+ cells were reduced overall 
in C9orf72−/− animals compared with controls, likely a consequence of myeloid expansion and consistent with 
RNA profiling results. Conversely, but reflective of expansion of lymphoid tissue and immune infiltration, total 
cell counts for these T cell populations were increased in null mice (data not shown). Co-staining CD8+ T cells 
with activation markers revealed increases in the early activation and effector memory T cell markers CD69 and 
CD44 in C9orf72−/− spleen and kidney compared with controls. We observed significantly increased percentages 
of CD8+ T cells expressing PD-1, a co-inhibitory receptor up regulated on activated cells with an important role 
in down-regulating the immune system. Cervical LN showed significantly increased expression of CD44 and 
PD-1, although CD69 expression was relatively unchanged (Fig. 3A). CD44, CD69, and PD-1 expression was also 
increased on CD4+ T cells in C9orf72−/− spleen, LN, and kidney (Fig. 3B). We also measured less pronounced 
increases in activated T cell populations in the blood and BM (data not shown). CD4+ FoxP3+ regulatory T (Treg) 

Figure 3. C9orf72−/− mice show increased expression of T cell activation markers by FACS analysis.  
(A) CD8+ T cell summary data reflect increases in the percentage of CD8 T cells expressing the activation 
markers CD44 and CD69 and the co-inhibitory receptor PD-1 in C9orf72−/− compared with WT. (B) Similarly, 
CD4+ T cell summary data represent increased percentages of C9orf72−/− CD4 T cells expressing CD44, 
CD69, and PD1 in spleen, cervical LN, and kidney with varying significance. Graphs represent mean ±  s.e.m. 
(*P ≤  0.05, **P ≤  0.01, ***P ≤  0.001, ****P ≤  0.0001 by unpaired Students t-test) 30–35 week females, n =  4 per 
genotype.
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cell percentages were elevated in spleens and LN from C9orf72−/− animals compared with WT (data not shown). 
Finally, reduced expression of the naïve and central memory markers CD62L and CD127 in C9orf72−/− spleens 
corroborates ongoing immune activation, as these molecules are down-regulated once cells become activated 
(Supplemental Fig. 6A). Total cell counts for activated T cell populations are depicted in Supplemental Fig. 6B,C 
and representative FACS plots are shown in Supplemental Fig. 7A.

B cell (CD45+B220+CD19+) percentages were either unchanged or reduced in C9orf72−/− spleen but increased 
in LN compared with controls. Similar to T cell populations, total B cell counts were increased overall in spleen 
and LN, reflective of lymphoid expansion (data not shown). Analysis of specific B cell subsets revealed significantly 
increased marginal zone (MZ), (CD45+CD19+B220+CD21+CD23−), follicular (FO) (CD45+CD19+B220+CD21
+/−CD23+CD93−), and germinal center (GC) (CD45+CD19+B220+CD38−IgD−GL7+Fas+) B cells in C9orf72−/− 
cervical LN compared with WT. B cell populations in null spleens were overall unchanged or reduced however, 
similar to myeloid DC, staining for the activation marker CD86 demonstrated an increased activated B cell popu-
lation (CD45+CD19+B220+CD86+) in both C9orf72−/− spleen and LN (Supplemental Fig. 8A,B). Representative 
FACS plots are provided in Supplementary Fig. 8C. CD138 co-staining demonstrated increased percentages of 
mature plasma cells (CD45+CD19−B220−CD138+) in C9orf72−/− LN, spleen, and BM, and an expanded popula-
tion of B cells transitioning to plasma cells (CD45+CD19intB220intCD138+) in all three tissues (Fig. 4A–D and data 
not shown). We did not find consistent differences between C9orf72−/− and WT in these cell types in the blood 

Figure 4. Increased percentages of plasma cells and autoantibody production contribute to autoimmune 
dysfunction in C9orf72−/− mice. (A) FACS analysis reveals a population of cells transitioning from mature 
B cells to plasma cells indicated by a decrease in expression of mature B cell markers, CD19 and B220 (blue 
box), and concomitant strong expression of the mature plasma cell marker CD138. Gating strategy from 
WT and C9orf72−/− 18 week male spleen is represented to show a transitioning plasma cell population that 
is prominent in C9orf72−/− compared with WT. (B) Gating strategy for a mature plasma cell population 
(B220−CD19−CD45Int/HiCD138+) in 18 week male spleen demonstrates increased mature plasma cells in 
C9orf72−/− compared with WT. (C) Graphical representation of increased transitioning and (D) mature plasma 
cell populations by FACS analysis shows significantly increased percentages in C9orf72−/− spleen and LN in 
comparison to WT at 18 weeks of age and older. (E,F) Serum ELISA assays indicate significant increases in IgG 
and IgM type RF autoantibodies, consistent with the observed systemic autoimmune response in null mice. 
C9orf72+/− mice display values comparable to WT, consistent with absence of any observed phenotype.  
(C,D) Graphs represent mean ±  s.e.m. (*P ≤  0.05, **P ≤  0.01 and ***P ≤  0.001 by unpaired Students t-test), 
n =  4 females per genotype (E,F) Graphs represent mean ±  s.e.m. (*P ≤  0.05, **P ≤  0.01 and ***P ≤  0.001 by 
one-way ANOVA), n ≥  22 per genotype, 9–65 week old males and 8–42 week old females.
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(data not shown). Taken together, FACS analyses reveal increases in myeloid and lymphoid cell populations, and 
upregulation in C9orf72−/− T and B cell activation markers indicative of a systemic immune response.

C9orf72−/− mice have high titers of autoantibodies.  Expansions in plasma cells and transitioning B 
cells/plasmablasts can be associated with neoplasms such as multiple myeloma and plasmacytoma29,30, in addi-
tion to autoimmunity31,32. The spleen and LN of C9orf72−/− animals were enlarged by infiltrates of F4/80+ foamy 
macrophages occupying appropriate regions for their lineage without obliteration of tissue architecture. Despite 
showing abnormal proliferation, the mitotic index was low, with only rare mitoses (data not shown). Thus, while 
a pre-neoplastic condition cannot be excluded, the presence of plasma cells, occasional Mott cells, and glomerulo-
nephritis are more indicative of a potential primary autoimmune process. Serum chemistry panels demonstrated 
elevated globulin in C9orf72−/− mice compared with controls and ELISAs showed significantly increased total 
IgG and IgM in C9orf72−/− mouse serum (data not shown). We therefore tested WT, C9orf72+/−, and C9orf72−/− 
serums for the common autoantibody, anti-rheumatoid factor (RF), high titers of which are linked to a variety of 
autoimmune disorders33. Both IgG and IgM-type anti-RF titers were significantly elevated in C9orf72−/− serum 
compared with controls (Fig. 4E,F).

Aging C9orf72−/− mice exhibit varying degrees of proliferative glomerulonephropathy.  As 
prefaced earlier, F4/80+ monocytes were present in high numbers in C9orf72−/− kidneys (Fig. 1C) with evidence 
of progressive glomerular disease observed by histopathology. To further characterize renal changes in null mice, 
H&E stained kidney sections were analyzed and scored in five categories of disease. Results showed significantly 
higher average scoring for membranoproliferative glomerulonephritis in C9orf72−/− with evidence of occasional 
glomerulosclerosis, hyaline casts, basophilic tubules and interstitial mononuclear inflammation compared with 
WT controls (Fig. 5A). Individual histopath scores are shown in Supplemental Table 1. H&E staining of the renal 
cortex (Supplemental Fig. 9) is representative of mild (middle row) to marked (bottom row) disease progression. 
Descriptively, mild changes consisted of glomerular enlargement with increased cellularity, and enlargement of 
Bowman’s space. Moderate to severely affected animals also had tubular changes, increased interstitial leuko-
cytic infiltration, thickened capillary walls, and proliferation of visceral (podocytes) and parietal epithelium. In 
3/11 null mice, glomerulosclerosis was present, characterized by expansion of the mesangial matrix with acel-
lular, eosinophilic hyaline material, and a variable degree of periglomerular fibrosis. Tubular changes observed 
in 4/11 C9orf72−/− kidneys included basophilic tubules (with degeneration/regeneration), cortical and medul-
lary tubular dilatation, hyaline proteinaceous casts, and interstitial infiltrates of mononuclear cells. Consistent 
with impaired glomerular filtration and correlative to histopathological renal findings, a serum chemistry panel 
revealed significant elevation of blood urea nitrogen (BUN) and decreased serum albumin in C9orf72−/− com-
pared with controls (data not shown). Onset of albuminuria is also indicated by urinary albumin to creatinine 
ratios (ACR) assayed at 14 and 24 week time points. Elevated ACR observed at 24 weeks in null mice is indicative 
of a progressing renal disease course (Fig. 5B).

Deposition of soluble immune complexes within the glomerular capillaries, followed by complement fixation 
can cause renal disease such as immune-mediated glomerulonephropathy34 (GN). High magnification periodic 
acid schiff (PAS) staining represented in Fig. 5C demonstrated regional thickening of the glomerular basement 
membrane in capillary loops associated with immune-mediated GN in C9orf72−/− mice, but not WT. To further 
evaluate whether increased total Ig and autoantibody levels contribute to GN, we performed IHC on C9orf72−/− 
and WT, 8–63 week kidney sections for total IgG and IgM as well as complement C3 on a 60–63 week surviving 
cohort of females. Overall, C9orf72−/− kidneys demonstrated increased IgG immunostaining compared with WT 
at all time points, with diffuse, intense IHC signal in the vasculature and tubular epithelium of the medulla and 
cortex observed as early as 8 weeks. Correlating with the onset of GN pathology, we noted an increase in glomer-
ular IgG and IgM staining by 38 weeks (Fig. 5C, Supplemental Fig. 9). Staining for both IgG and IgM was also 
frequently associated with the parietal layer of Bowman’s capsule. IgG was occasionally observed in the urinary 
space and/or within proximal renal tubules, indicating impaired glomerular filtration. Intense IgG staining was 
present in tubule epithelial cells in animals with severe disease, consistent with reabsorption of abundant IgG. 
Occasionally, similar, less intense staining was observed for IgM. Staining in sclerotic glomeruli was diminished 
compared with WT, consistent with impaired blood flow to these units. However, glomeruli that retained pat-
ent vascular loops tended to have increased IgG in comparison with WT. Fine granular deposits and/or linear 
staining of IgG and IgM associated with vascular membranes suggestive of immune complex deposition were 
frequently present (Fig. 5C). Complement factor C3 deposition is commonly associated with immunoglobulin 
deposits on basement membranes in immune-mediated glomerular disease34. IHC for C3 revealed increased 
staining in glomerular tufts of C9orf72−/− mice compared with WT (Supplemental Fig. 9A). Granular and linear 
staining was most prominent on the membranes of the visceral layer of glomerular capsule, delineating the capil-
lary loops and podocytes as depicted in 60×  magnification (Fig. 5C).

C9orf72−/− mice develop SLE-like disease.  Systemic lupus erythematosis (SLE) is characterized by 
immune dysregulation affecting many organs of the body35. C9orf72−/− mice develop the lymphoid hyperpla-
sia, anemia, and renal disease common in SLE patients and reminiscent of phenotypes observed in spontaneous 
mouse models of SLE such as the MRL/lpr and NZB/W F1 strains36. A hallmark of SLE is high titer antinu-
clear antibodies (ANA) of certain specific types37. We therefore tested C9orf72−/− and control mouse serum for 
ANA encompassing a subset of autoantibodies against proteins and structures in the nucleus; specifically, we 
tested for anti-Smith (Sm) antibodies that recognize core units of small nuclear ribonucleic proteins (snRNP), 
anti-double-stranded DNA (dsDNA) antibodies, as well as anti-cardiolipin antibodies that are reactive to an essen-
tial element of the inner mitochondrial membrane. ANA, anti-dsDNA and anti-cardiolipin were significantly 
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increased in female C9orf72−/− mice by 8 weeks compared with controls. Anti-Sm was slightly elevated at 8 weeks 
in null mice with a dramatic increase above WT observed by the 24 week timepoint (Fig. 6A, data not shown).

Increased autoantibody titers in lupus patients are positively correlated with an increased frequency of circulat-
ing T follicular helper (Tfh) cells38. Interrogation of this specific cell population (CD4+CXCR5+CD44+ICOS+PD-
1+Bcl-6+) in spleen, cervical LN, mesenteric LN, and blood by FACS analysis revealed significantly increased Tfh 
cell populations in C9orf72−/− tissues compared with controls. (Fig. 6B data not shown). Elevated Tfh cells were 

Figure 5. C9orf72−/− mice show evidence of progressive glomerulonephropathy (A) Weighted graphs of 
histopathological scoring demonstrate the most significant renal changes observed in C9orf72−/− mice are 
associated with membranoproliferative glomerulonephritis. (B) Urine ACR measurements assayed at 14 and 24 
week timepoints from the same cohort of mice indicate onset of albuminuria in C9orf72−/− animals with age. 
Heterozygous mice display values comparable to WT consistent with the absence of an observed phenotype. 
(C) PAS Staining and IHC immunoreactivity of mouse glomeruli for IgG, IgM, and C3 demonstrate immune-
mediated kidney damage. Mesangial matrix (red chevron) is PAS+  and markedly expanded in C9orf72−/− 
mouse compared with the delicate matrix seen in the WT. Basement membrane of the vasculature is markedly 
expanded by PAS+  matrix (black arrows), obliterating the capillary loop. The parietal epithelium is proliferative 
(*), and Bowman’s capsule is surrounded by connective tissue and mononuclear cells (black chevron). IHC for 
IgG, IgM, and C3 in WT (top panel) shows delicate capillary loops (black arrows) supported by scant mesangial 
matrix; faint chromogenic staining of the capillary endothelia is representative of physiologic IgG, IgM, and 
C3. IHC stippling is also observed in the mesangium (red chevrons). In contrast, glomeruli from C9orf72−/− 
mice have increased mesangial matrix (red chevrons) and granular deposits of IgG, IgM, and C3. Capillary 
loop basement membranes are thickened and delineated by subendothelial/subepithelial granular to confluent 
deposits (black arrows). Chromogenic staining for IgG is also apparent in surrounding renal tissue. Note the 
increased size of the C9orf72−/− glomerulus compared with that of the WT, and the increase in the urinary 
space of the glomerulus. (A,C) Data represented is from 35–63 week old females, n ≥  8 per genotype analyzed. 
Scale bar represents 50 μm, original magnification, × 600. (A) Graphs represent mean ±  s.e.m. (***P ≤  0.0001 
by non-parametric Mann-Whitney) (B) Graphs represent mean ±  s.e.m. (*P ≤  0.05, ***P ≤  0.0001 by one way 
ANOVA).
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also observed in C9orf72−/− BM that did not reach significance (data not shown). Collectively, our data suggest 
an immune response similar to human SLE occurs in the absence of C9orf72 expression.

Discussion
The association between C9ORF72 GGGGCC repeat expansion and neurological disease is well-established, but 
the pathogenic mechanism remains elusive. The absence of phenotype in C9orf72+/− mice presented in our study 
contradicts haploinsufficiency of C9ORF72 as the main cause of C9ALS/FTD pathology. More importantly, our 
study highlights a novel immune regulatory role for C9orf72 through the first comprehensive phenotypic anal-
ysis of a mouse line with global C9orf72 ablation. Since analog immunological findings are not typically present 
among ALS patients, our data indicate that C9orf72 gene function is unrelated to known C9ALS/FTD pathology, 
making a nonspecific effect of the repeat expansion on C9ALS/FTD pathology more likely.

Global ablation of C9orf72 resulted in select expansions of myeloid and lymphoid compartments, with 
increased T, B and DC cell activation and elevated plasma cells. C9orf72−/− mice demonstrated elevated serum 
IL-12 and other cytokines, in addition to tissue RNA signatures consistent with myeloid upregulation. Renal dis-
ease with accompanying pathological changes was present in the majority of mice by 35 weeks. At a microscopic 
level, glomeruli stained heavily with antibody to Ig and C3 in a pattern suggesting immune complex deposition. 
Null mice also had increased Tfh cell populations and high titer anti-RF, ANA, anti-Sm, and anti-cardiolipin 
autoantibodies that are commonly associated with human SLE37,38. In summary, loss of C9orf72 expression pro-
foundly disturbs immune homeostasis and results in systemic autoimmune disease.

SLE is a constellation of immunological abnormalities affecting multiple organ systems. Patients may have man-
ifestations in the kidney, skin, joints, lungs, and/or heart that usually follow a fluctuating course, with periodic 
flares and periods of reduced disease activity35. 95–98% of patients have elevated ANA and an elevated anti-Sm 
antibody titer is pathognomonic for SLE39. Mouse models of SLE include the spontaneously occurring MRL/lpr 
and NZB/W F1 strains, as well as other inducible models, however none fully represent human disease36. NZB/W 
F1 mice replicate the female bias toward worsened pathology, elevated ANA with anti-dsDNA and immune 
complex-mediated glomerulonephritis, but do not develop anti-Sm ribonuclear protein antibodies. MRL/lpr mice 
have inflammation in many classic SLE sites and elevated anti-Sm and anti-cardiolipin, although males and females 
are equally affected. Neither of these strains or any single-gene or inducible model replicates the waxing and waning 

Figure 6. C9orf72−/− mice show increased serum autoantibodies and increased T follicular helper cells 
reminiscent of human SLE. (A) Serum ELISAs from the same cohort of mice assayed at 8 and 24 weeks of age 
demonstrate elevated levels of circulation ANA and SLE-specific autoantibodies, anti-Sm, and anti-cardiolipin 
as early as 8 weeks in C9orf72−/− mice. At 24 week timepoint, all three autoantibodies are significantly increased 
in null mice with fold increases observed in comparison to WT. Heterozygous mice display values comparable 
to WT consistent with the absence of an observed phenotype. (B) Tfh cells (CD4+CXCR5+CD44+ICOS+PD-
1+Bcl-6+) are significantly increased by percent and total cell count in C9orf72−/− spleen and cervical LN  
(A) Graphs represent mean ±  s.e.m. (***P ≤  0.001 and ****P ≤  0.0001 by one-way ANOVA), 8 and 24 week 
females, n ≥  12 per genotype. (B) Graphs represent mean ±  s.e.m. (*P ≤  0.05, **P ≤  0.01 by unpaired Students 
t-test ), 26 week females, n =  5 per genotype.
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in symptoms characteristic of human disease. C9orf72−/− animals display a subset of lupus-like symptoms, namely 
lymphoid activation and hyperplasia, a characteristic autoantibody profile and evidence of GN. They do not rep-
licate all aspects of human SLE and the same caveats relevant to established models should also be applied to our 
mice.

Human SLE may also comprise neuropsychiatric symptoms, including cognitive dysfunction, mood disor-
ders, psychosis, and cerebrovascular diseases, collectively referred to as neuropsychiatric SLE (NP-SLE). Onset of 
symptoms may be associated with high titer autoantibodies, increased blood-brain barrier (BBB) permeability, 
and cytokine production40. The MRL/lpr mouse strain develops behavioral abnormalities and is commonly used 
as a model to study such manifestations41. High titer anti-cardiolipin correlates positively with neuropsychiatric 
symptoms42,43 and is observed in both MRL/lpr and our C9orf72−/− mice. We observed mild motor impairment 
in C9orf72−/− that suggested neurological deficit, however lymphoid organ hyperplasia and GN were already 
established, suggesting defects could be secondary to the immune phenotype. We did not observe overt pathology 
or marked transcriptome changes in C9orf72−/− brain and spinal cord, however we cannot rule out highly local-
ized disease processes not obvious by our assays. Given the growing body of evidence supporting a link between 
autoimmune mechanisms and neurological disease44, studies to evaluate behavioral and cognitive disorders in 
C9orf72−/− mice should also be considered.

C9orf72 expression profiling in immune cell types assembled by the Immunological Genome Project 
(Immgen) and additional microarray expression studies reflect high expression of C9orf72 in monocyte, mac-
rophages and DC populations27,45. Relative to this insight, expanded proliferative potential of the monocyte sys-
tem with increased F4/80+ macrophages has previously been described in MRL/lpr and NZB/W mice. These 
strains show early involvement of the BM in monocytopoiesis, and retain up-regulated extramedullary monocyte 
proliferation, in contrast to control strains that down-regulate this process as the BM develops its full activity46.  
Defects in phagocytosis intrinsic to F4/80+ cells have been described in mouse SLE models and human 
patients47,48 and inefficient clearance of apoptotic debris is considered a hallmark of SLE49. Indeed, polymor-
phisms in the autophagy-related gene, ATG5 are linked to increased susceptibility to SLE50,51, as is activation of 
the negative regulator of autophagy, mTOR52. Alternatively, other studies have reported enhanced autophagy 
in patient and mouse model B cells53,54 and patient serum factors are capable of inducing autophagy in neu-
roblastoma cell lines55. We have not yet assessed the phagocytic potential of the predominating F4/80+ cells in 
C9orf72−/− mice, but such experiments could determine whether dysregulation of autophagy is associated with 
C9orf72 ablation and contributing to the SLE phenotype or is simply a byproduct of other processes.

C9ORF72 protein is widely expressed and highly conserved as a single-gene copy across all vertebrates with 
remarkably high sequence identity across species. Notably, it has not been duplicated, even in fish genome, all of 
which have undergone rounds of duplication suggesting its function is crucial, but under constraint. Although 
still largely unknown, C9ORF72 function has been linked to intracellular trafficking via Rab-dependent pathways 
essential for endosomal transport. Depletion of C9ORF72 by siRNA in neuronal cell lines inhibited endocytosis 
and dysregulated autophagy, an important process for cellular homeostasis56. Given that autophagy can protect 
against neurodegenerative disease by preventing accumulation of toxic proteins, disrupting this process by reduc-
ing C9ORF72 expression may render cells more susceptible to repetitive RNA and the products of erroneous 
hexanucleotide repeat translation.

Recent studies using human C9ORF72 isoform-specific antibodies demonstrated colocalization of the short 
isoform with components of the nuclear pore complex. Interestingly, motor neurons derived from C9ALS/
FTD patients exhibited loss of the short C9ORF72 isoform and mislocalization of TDP-43, indicating defects 
in nucleocytoplasmic shuttling57. More recently, however, three studies suggest the repeat expansion itself 
can affect shuttling independent of its surrounding genetic locus. Yeast expressing dipeptide inclusions and 
Drosophilia expressing RNA repeats presented with defects in intracellular transport, a finding then replicated 
in repeat-transfected cell lines, patient inducible pluripotent stem cell neurons and C9ALS–FTD patient brain 
tissue58–60. To date, all relevant protein function and repeat-associated studies have been restricted to neuronal 
cell lines and tissue samples. Further experimentation in a wider array of cell types could help to elucidate a spe-
cific role for C9ORF72 and separate processes relevant to protein function from those associated with the repeat. 
Furthermore, pursuing similar experiments outside the CNS could reveal novel relationships between autoim-
munity and neurodegeneration and unveil new pathways with therapeutic potential.

In summary, our results implicate loss of mouse C9orf72 expression with autoimmunity that resembles human 
SLE and suggest a new role for C9ORF72 as an important regulator of the immune system. C9ORF72 has not 
yet been linked to SLE in humans and pursuit of potential disease variants with a specific focus on autoimmune 
populations should be considered. Further experimentation in cell lines outside the CNS should also be under-
taken to help elucidate the function of C9ORF72. In addition, we propose loss of C9orf72 protein is not the likely 
cause of C9ALS/FTD neuropathology. Generation of a mouse model with the repeat expansion targeted into the 
C9orf72 locus to more closely mimic the human genetic lesion will help to address C9ALS/FTD pathological 
mechanisms.

Methods
Generation of C9orf72−/− mice. We employed the VelociGene®  and VelociMouse®  methods as described 
previously61–64 in which targeted ES cells (F1 hybrid 129S6SvEvTac/C57BL6NTac ES cells) were injected into 
uncompacted 8-cell stage Swiss Webster embryos to produce healthy fully ES cell-derived F0 generation mice 
heterozygous (Het) for the C9orf72 mutation. F0 generation male Hets were crossed with C57Bl6/NTac females 
to generate F1 Hets that were intercrossed to produce F2 generation WT, C9orf72+/− and C9orf72−/− mice for 
phenotypic analyses. A second cohort of N2F2 generation mice was generated via in-vitro fertilization (IVF) 
using frozen F1 heterozygous sperm and oocytes from C57Bl6/NTac donor females. N2F1 Het offspring were 
then intercrossed to generate N2F2 WT, C9orf72+/− and C9orf72−/− mice for phenotypic analysis.
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Animals. Phenotypic studies of F2 and N2F2 mice began at 6 weeks of age. Mice were observed from birth for 
various developmental milestones (runting, breathing, facial and limb abnormalities, skin color, posture, right-
ing and eye opening) until 6 weeks of age, when they were housed 2–5 per cage in 12 hours of light per day at 
20–23 °C, and 40–60% humidity for study. Mice were housed in 95.6 ×  309.1 ×  133.4 mm cages (Thoren) with 
cob bedding (The Andersons Lab Bedding) and a cotton nestlet for enrichment (Ancare). Mice had access to nor-
mal chow (LabDiet) and water ad libitum and were monitored twice daily for health status. All animal procedures 
were carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory 
Animals of the National Institutes of Health and were approved by the Regeneron Pharmaceuticals Institutional 
Animal Care and Use Committee (IACUC).

Taqman expression analysis. Axillary and brachial lymph nodes, cervical lymph nodes, gonadal fat pad, 
frontal cortex, diaphragm, spinal cord, spleen, and thymus were dissected fresh into RNALater stabilization rea-
gent (Qiagen) and stored at − 20 °C. Tissues were homogenized in TRIzol and chloroform was used for phase sep-
aration. The aqueous phase, containing total RNA, was purified using miRNeasy Mini Kit (Qiagen, Cat#217004) 
according to manufacturer’s specifications. Genomic DNA was removed using MagMAX™ Turbo™ DNase 
Buffer and TURBO DNase (Ambion by Life Technologies). mRNA was reverse-transcribed into cDNA using 
SuperScript®  VILO™  Master Mix (Invitrogen by Life Technologies, Cat# 11755500). cDNA was amplified with 
the TaqMan®  Gene Expression Master Mix (Applied Biosystems by Life Technologies, Cat# 4370074) using the 
ABI 7900HT Sequence Detection System (Applied Biosystems). Actb was used as the internal control gene to 
normalize cDNA input differences. WT thymus was used as a reference sample to calculate the fold difference of 
mRNA between samples.

LacZ expression profiling.  Mice were deeply anesthetized via Ketamine/Xylazine (120/5 mg/kg) intraperi-
toneal (IP) injection and fixed by cardiac perfusion using a 0.2% glutaraldehyde, 4% paraformaldehyde (PFA) 
solution. Brain, ribcage, lymph nodes, salivary glands, thymus, heart, lung, liver, spleen, stomach, kidney, intes-
tine, urogenital, muscle, and hind limb tissues were dissected, rinsed in phosphate buffered saline (PBS) and 
post-fixed for 30 minutes in a 0.2% glutaraldehyde, 4% PFA solution. Tissues were washed and incubated in X-gal 
(1 mg/mL) staining solution for roughly 12 hours at 37 °C. After staining, tissues were washed, post-fixed in 4% 
PFA and cleared in a series of 50%, 70% and 100% glycerol. Photographs were taken with a Nikon SMZ1500 ster-
eomicroscope and Nikon DS-Ri1 digital camera using NIS-Elements D Imaging Software (Nikon).

Behavioral scoring tests.  The assessment of overall motor function was performed using blinded subjective 
scoring assays. Motor impairment score was measured using the system generated by ALS Therapy Development 
Institute (ALS TDI)26. Tremor and rigidity scores were measured using a 0–3 scale, where 0 =  no symptoms, 
1 =  mild, 2 =  moderate, and 3 =  severe. Locomotor behaviors were evaluated for 60 minutes every other week 
using the automated Open Field system (Kinder Scientific), which measures fine movements, X+ Y ambulation, 
distance traveled, number of rearing events, time spent rearing, and immobility time via infrared beam breaks. 
Rotarod (IITC Life Science, Woodland Hills, CA) was used to measure the latency for a mouse to fall from a rotat-
ing beam with a ramping speed, starting at 1 rpm and accelerating to 15 rpm over 180 seconds. The average and 
maximum of the three longest durations of time that the animals stay on the beam without falling were used to 
evaluate latency. Gait analysis was performed using the CatWalk XT 10 (Noldus). Mice spontaneously ambulated 
across a runway and the footprints were automatically analyzed for interlimb coordination (the percentage of 
normal step sequences) and stride length (the distance between successive placements of the same paw).

Cell preparation and FACS analysis. Blood was collected into heparin-coated tubes by cardiac punc-
ture immediately following CO2 euthanization. Spleen, BM, cervical LN, mesenteric LN, and PP were har-
vested and dissociated into single cell suspensions in Dulbecco’s 1×  PBS with 2% fetal bovine serum, (Stem 
Cell Technologies), plus 2 mM EDTA, (Ambion). Red blood cell (RBC) lysis was performed using 1×  RBC lysis 
buffer (eBioscience) or ACK Lysing Buffer (Life Technologies). All staining was performed using LIVE/DEAD 
Fixable Aqua or Blue Stain (Invitrogen; 15 minutes at room temperature) and Fc block (Purified Rat Anti-Mouse 
CD16/CD32; BD Pharmingen, 5 minutes at room temperature). Surface staining was completed with the indi-
cated directly conjugated antibodies for 30 minutes on ice. Foxp3 and Bcl-6 staining (eBioscience) were exe-
cuted according to the manufacturers instructions. Antibodies to CD3, CD4, CD8, CD11b, CD11c, CD25, CD45, 
B220, CD62L, CD44, CD69, CD127, PD1 (RPMI-30), NKp46, Ly6C, and Ly6G were purchased from BioLegend 
(San Diego, CA). Antibodies to CD115, Bcl-6 and Foxp3 were purchased from eBioscience (San Diego, CA). 
Antibodies to CD19, CD49b, CD138, F4/80, CXCR5, ICOS, were purchased from BD Biosciences (San Jose CA). 
Samples were fixed with 1×  Stabilizing fixative and collected using FACSCanto or Fortessa Flow Cytometers (BD 
Biosciences, San Jose, CA). Data were analyzed by FlowJo Software (Tree Star).

Histology. Tissues were directly harvested into 4% PFA or collected following transcardial perfusion with 
50 mL of saline solution, 50 mL of 4% PFA solution in acetate buffer at pH 6.5 and finally 50 ml of 4% PFA solu-
tion in borate buffer at pH 9.5. Spinal cords were collected into 15% followed by 30% sucrose solution in borate 
buffer until they sank. All other tissues were post-fixed in 4% PFA and transferred to 70% ethanol after 24 hours. 
Paraffin embedding, sectioning, and H&E staining were performed by Histoserv, Inc. (Germantown, MD). PAS 
staining and IHC for IgG, IgM, C3, CD45R, CD3, CD138, and F4/80 was completed by Histotox Labs, (Boulder, 
CO). Histopathological scoring of H&E stained kidney sections was performed by a blinded, board certified 
veterinary pathologist and evaluated in disease categories according to guidelines set forth by The International 
Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice (INHAND) Project65.
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Hematology assays. Blood samples were collected by either retro-orbital eye bleeds under isoflurane anes-
thesia or cardiac puncture after euthanasia by CO2 inhalation in accordance with Regeneron IACUC protocol. 
CBC with differential was performed on 20 μL of whole blood using Hemavet 950 (Drew Scientific Group) and 
clinical chemistry was completed on serum samples using ADVIA 1800 Chemistry System (Siemans Medical 
Solutions USA). ELISAs were performed on plasma samples using the following; Mouse IgG and IgM Rheumatoid 
Factor ELISA Kit (Shibayagi Co., Ltd), Mouse Anti-dsDNA Total Ig ELISA kit, Mouse ANA Total Ig ELISA kit, 
Mouse Anti-Sm Total Ig ELISA kit, Mouse Anti-Cardiolipin Total Ig ELISA kit (Alpha Diagnostic Intl.), and IgG 
and IgM mouse ELISA kit (Abcam) as per the manufacturer’s instructions. IFN-γ , IL-1β , IL-2, IL-4, IL-6, IL-10, 
IL-12total, IL-17, MCP-1, and TNF-α  were measured in plasma samples using a Multi-Spot®  10plex electro-
chemiluminescence detection assay (Meso Scale Discovery) according to the manufacturer’s instructions.

Urinalysis. Urine samples were obtained via spot collection and urinary albumin concentration was deter-
mined with Albuwell M indirect competitive ELISA kit (Exocell, Philadelphia, PA). Urinary creatinine con-
centration was assayed using the Creatinine Companion kit (Exocell). Assays were performed according to 
manufacturer’s instructions and data obtained were used to calculate the urine albumin-to-creatinine ratio.

RNA isolation, sequencing and analysis. Spleen and cervical lymph nodes were dissected fresh into 
RNALater stabilization reagent (Qiagen) and stored at − 20 °C. Total RNA was isolated using MagMAX™  Nucleic 
Acid Isolation Kit (Ambion) per the manufacturer’s instructions. RNA was quantified using UV spectrophotom-
eter, and RNA integrity was evaluated by Qiaxcel (Qiagen). PolyA mRNA was purified from total RNA using 
Dynabeads mRNA kit (Invitrogen) and strand specific RNA-Seq libraries were prepared with the ScriptSeq 
RNA-seq Library Preparation kit (Illumina). RNA-Seq libraries were sequenced to a length of 33 bp using Hiseq 
2000 NGS sequencer (Illumina). Gene expression levels were derived from raw sequencing reads using Nimbus2, 
an RNA-Seq analysis pipeline developed in house.

Statistical analysis. Statistical and graphical analyses were performed using GraphPad Prism software 
(version 3.0). Data were analyzed using unpaired Student’s t-test, one-way analysis of variance (ANOVA) and 
non-parametric Mann-Whitney as indicated. Results were considered statistically significant at P values <  0.05.
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