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Abstract

Background: An imprecise quantitative sense for the oscillating levels of proteins and their modifications, interactions, and
translocations as a function of the cell cycle is fundamentally important for a cartoon/narrative understanding for how the
cell cycle works. Mathematical modeling of the same cartoon/narrative models would be greatly enhanced by an open-
ended methodology providing precise quantification of many proteins and their modifications, etc. Here we present
methodology that fulfills these features.

Methodology: Multiparametric flow cytometry was performed on Molt4 cells to measure cyclins A2 and B1, phospho-S10-
histone H3, DNA content, and light scatter (cell size). The resulting 5 dimensional data were analyzed as a series of bivariate
plots to isolate the data as segments of an N-dimensional ‘‘worm’’ through the data space. Sequential, unidirectional
regions of the data were used to assemble expression profiles for each parameter as a function of cell frequency.

Results: Analysis of synthesized data in which the true values where known validated the approach. Triplicate experiments
demonstrated exceptional reproducibility. Comparison of three triplicate experiments stained by two methods (single cyclin
or dual cyclin measurements with common DNA and phospho-histone H3 measurements) supported the feasibility of
combining an unlimited number of epitopes through this methodology. The sequential degradations of cyclin A2 followed
by cyclin B1 followed by de-phosphorylation of histone H3 were precisely mapped. Finally, a two phase expression rate
during interphase for each cyclin was robustly identified.

Conclusions: Very precise, correlated expression profiles for important cell cycle regulating and regulated proteins and their
modifications can be produced, limited only by the number of available high-quality antibodies. These profiles can be
assembled into large information libraries for calibration and validation of mathematical models.
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Introduction

Investigators often determine expression of various biochemical

activities (e.g., protein synthesis; specific phosphorylations) as a

function of the cell cycle to obtain an initial indication that the

activity has a cell cycle function. For measurement of specific

proteins and specific modified protein residues, this is usually

accomplished by synchronization, timed sampling, and immuno-

blotting or immunofluorescence/immunohistochemistry and mi-

croscopy. Often, the degree of synchrony and the cell cycle phase

distributions within each sample are monitored by DNA content

flow cytometry. The same information is available on asynchro-

nous samples using multi-variate cytometry for DNA content

coupled with immunofluorescence. Expression of the cyclin

proteins as a function of DNA content illustrates the general types

of bivariate patterns that result from ,phase specific oscillating

expression [1,2]. At a glance, the experienced investigator can

determine whether expression peaks in G1, S, 4C cells, or at phase

interfaces.

Specific mitotic markers are expressed rapidly at the onset of M,

and DNA content plus a mitotic marker expands phase resolution

by cytometry to G1, S, 4C, and M cells. For somatic cells, adding

either cyclin A2 or cyclin B1 to DNA and a mitotic marker

expands the phase list to a complete cell cycle: G1, S, G2, and M

for the 2C R 4C stemline and the same phases for endo-

reduplicated or multi-nucleate sub-cycles [3-5].

Generally, the expression of additional markers might be

expressed as the average immunofluorescence per each of these

phases [6]. However, this view is limited, and we have previously

explored the ability to extract expression at high resolution from

cytometry data on a relative time basis. In Jacobberger et al. [7],

we showed aspects of the basic process, which is to use the

correlated expression of DNA and another biomarker to obtain

the median sub-population levels of the biomarker as a function of

DNA content when DNA is ‘‘synthesized’’ in S phase. This is

possible because cytometry of an asynchronous population

captures some cells at each point in a programmed process –

i.e., incremental levels of the marker map the process. This works
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for DNA and S phase because DNA synthesis is programmed. A

key element demonstrated by Jacobberger et al. is that expression

can be mapped in cell cycle phases in which rising or falling

markers were not co-expressed, if (1) we have evidence that

synthesis or degradation is uni-directional and (2) we have a means

to measure the distribution of the marker in a state where

expression is essentially not changing and thus, is more narrowly

distributed relative to the phases in which levels are changing. In

that work, we measured the rising expression of cyclin B1 in G1

and G2 cells by multi-Gaussian modeling, using the distribution in

mitotic cells to determine the initial means and standard deviations

for the model components. To put the center values determined by

each Gaussian component onto an expression versus time profile,

the values were plotted in a uniform, incremental manner over

hypothetical periods that are typical for the length of G1, S, and

G2+M (excluding the degradation of cyclin B1 in late mitosis).

While this was an effective means to display the expression features

underlying the cytometry data, and provided a method to read

fold-expression levels as function of the cell cycle, it was not

quantitative with respect to time. Recently, in an effort directed at

converting the relative fluorescence data to molecules, we used the

frequency information from cytometry data as a surrogate for time

[8]. In that study, we converted the median fluorescence within

contiguous regions that traced the cell cycle expression ‘‘back-

bone’’ in bivariate plots of cyclin B1 versus DNA content to

numbers of molecules and plotted those values versus the

cumulative frequency for all regions encompassing G1, S, G2,

and M through metaphase. Since the cell frequency is related to

the residence time within any defined region on the bivariate plots

for the population at the time of fixation, these plots reflect

expression versus cell cycle time. In that work, the focus was on

converting fluorescence to molecules and the process of deriving

expression versus time was used in its simplest and a statistically

loose form. Here, we present a multi-variate analysis that supports

complete extraction of expression profiles from the beginning to

the end of the cell cycle, improve accuracy, and explore precision

of this process. Additionally, we validate multiple sampling,

independent analysis, and synthesis of integrated expression

profiles for multiple markers as opposed to multi-parametric

analysis in which all markers under study are measured

simultaneously. This has the distinct value of opening this

quantitative approach to an unlimited, N-dimensional biomarker

analysis. Throughout the integrated results and discussion, we are

oriented to use of this measurement and analysis system to support

mathematical cell cycle modeling by systems of ordinary

differential equations [9].

Note: in this paper, we refer to 4C cells. These are cells with 4

genome complements. They can be stemline G2 + stemline M +
4C G1 cells of endoreduplicated or bi-nucleate progeny or they

can be stemline G2 + 4C G1 cells depending on the bivariate view

and/or how the data are gated.

Results and Discussion

The type of data that encodes complete cell cycle expression

information is typified by single cell DNA content measurements

from exponentially expanding cell populations. The frequency

distribution for DNA content of many individual, asynchronous

G1, S, and G2+M cells (perfectly measured) describes the

programmed expression for DNA over one expression period,

which is the cell cycle time (Tc). Within this program, there are

three states, two defined by constant DNA levels that differ by a

factor of 2, and one defined by net DNA synthesis. These states are

equivalent to kinetically defined G1, S, and G2+M phases. The

frequencies of measured G1, S, and G2+M cells are directly

proportional to the residence time in each phase or state after

adjustment for the age distribution resulting from binary division

[10,11]. Figure 1 shows a hypothetical expression profile for

DNA, typical for cultured mammalian somatic cells, with each

simulated cell measurement occupying a discrete position along

the program continuum. The length of each of the three segments

relative to the abscissa in Figure 1 is proportional, after

adjustment for age distribution, to the size (area) of components

in a typical DNA content analysis of an asynchronous cell

population measured by cytometry [12]. Histograms of these data

are often modeled with three major components: two bounding

Gaussian functions and a compound center function that can take

several forms with a multi-Gaussian summation being the most

versatile [13]. The shape, defined by immediate amplitudes of the

sub-component representing the middle segment (S phase) is a

function of the rate(s) of DNA synthesis during S phase [12]. The

general purpose of modeling histograms is to estimate the number

of cells in G1, S, and G2+M in an accurate manner. In a multi-

Gaussian model, G1 and G2+M phases are single model

components, but S phase is sub-divided into a variable number

of sub-components, each defined by a Gaussian function. To

extract the expression information from a DNA content

histogram, the center values of each component or sub-component

are plotted at the center of an interval equal to the fraction of cells

in the component/sub-component on a scale of 0–1, with 1 = Tc.

Figure 2A shows a theoretical distribution built from multiple

Gaussian functions that closely matches typical cytometry data.

Proof-of-principle
To extract expression information from cytometry data, there

are two facets to the problem. The first is to define expression over

‘‘stretches’’ of ‘‘time’’ where programmed expression increases or

decreases for a single cell as a function of time, and for cytometry

data, cells representing each point along that expression curve (see

Figure 1) have been measured. Within these ‘‘stretches’’ multi-

Gaussian fitting (to account for measurement error) or contiguous

arbitrary division of the data into bins (regions) should not be

statistically different (since both provide center values for

expression and an arbitrary length of Tc fraction based on

Figure 1. Fundamental Principle of Cytometry. Random sampling
from an asynchronous population and measurement (on a cell-by-cell
basis) of a parameter that reads out a programmed process populate
the programmed expression profile at every point from the beginning
of the cell cycle to the end. The example shows a ‘‘cell’’ at each point in
time through the programmed expression of DNA content.
doi:10.1371/journal.pone.0030870.g001
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frequency of measurements associated with that center value. The

second facet is that for data regions where the underlying state is

constant expression values, the error does have to be estimated

and either a Gaussian component fitting or region set to enclose

data that vary due to measurement error. Sub-dividing these

clusters would lead to erroneous expression curves, since the

statistical variation would be measured as either decreases or

increases of expression. Both of these facets are illustrated in

Figure 1A by the vertical lines that define regions or the Gaussian

traces (blue) that define both a model fit and the entire distribution

(sum of the Gaussians). The only significant difference between an

apparent ‘‘ideal’’ approach of multi-Gaussian fitting and the

practical, empirical approach of using cursor-delimited regions

should be at the major transition boundaries - when the expression

slope changes. To test this assertion, we synthesized data similar to

that of a typical DNA content histogram and compared the known

expression information from the synthetic data to expression

extracted from the same data by contiguous regions (Figure 2A).

This exercise also illustrates the fundamental process of expression

extraction. The histogram in Figure 2A illustrates a one

parameter distribution, simulating a DNA histogram with 60%

G1, 30% S, and 10% G2+M. These data were synthesized using 8

normal Gaussian distributions and therefore, the perfect solution

for extraction from the composite histogram is a multi-Gaussian fit

with single Gaussian components for G1 and G2+M and 6 S

phase components (using the same means, standard deviations,

and areas that were used to generate the composite). The mean

values for each Gaussian component (Y axis) were plotted as

described above (Figure 2B, blue symbols). For the expression

profile to be complete, additional data points were created to

occupy the ends (Y intercepts at X = 0 and 1) and to place at the

boundaries where expression changed (arrows). The Gaussian

components (Figure 2A) and data (Figure 2B) are numbered. The

generated points (arrows) were generated by extrapolation. We

then analyzed the same histogram using contiguous regions

(dashed divisions, Figure 2A) and plotted the center values using

the same logic in Figure 2B (brown/orange symbols). Potentially,

the part of this manual procedure where most error could occur is

choosing the region boundaries between components (regions 1

and 8). However, the agreement between the manual procedure

and the perfect solution is quite good. Therefore, we conclude that

we are correct, the error in using the less accurate, more empirical

approach is sufficient to obtain the cell cycle related programmed

expression of biochemical activities.

The idea of translating cell-based DNA content measurements

to an expression trace is obvious from theory [10,11], but seldom if

ever done, likely because the expression program can be imagined

accurately and therefore, the need to plot DNA expression doesn’t

exist. The idea is valid for any other parameter, and for other

parameters with more complex expression programs, the need

does exist, but the exercise has not been done except for isolated

partial attempts [7,8,14]. Therefore, we set out to derive the

expression of DNA content, cyclin A2, cyclin B1, and phosphor-

ylation of histone H3 (PHH3) from multiparametric cytometry

data to explore the problem in multi-parameter data space, to

determine the error involved using contiguous regions in multiple

dimensions, and to illustrate expression of these three cell cycle

programs. To do this, we fixed and stained Molt4 cells for DNA,

cyclin A2 or cyclin B1, and PHH3 (3 samples each) and stained 3

samples from the same population for all 4 markers.

Data preprocessing
There is significant pre-processing of the data prior to the

extraction procedure. This consists of aggregate removal,

compensation, non-specific antibody back ground subtraction,

and rejoining cytokinetic cells (excluded in the aggregate removal

step) to the data set. These steps are illustrated in Figure S1.

Unambiguous trajectory
To perform the same procedure as illustrated for DNA content

with more complex data, it is necessary for the analytical setup to

provide data that unambiguously captures cells at each point along

the expression profile. At a minimum, for each dimension, we

need defined variation to create ends for each expression profile,

and over any region of each profile, ‘‘x’’, that oscillates, another

parameter, ‘‘y’’, must either be rising or falling sufficiently to allow

separation of the rise and fall of parameter, ‘‘x’’. The concept is

illustrated in Figure 3. Expression of PHH3 versus DNA content

provides a bivariate view that captures expression in G0/G1, S,

G2, and M. However, the mitotic cells that represent rising

expression of PHH3 map to the same data space as cells that

represent falling expression. The first are at the beginning of

mitosis and the last are at the end of mitosis (arrows, Figure 3A).

In this case, during the period when PHH3 is rising then falling,

DNA content does not change, and therefore, the rise and fall of

PHH3 cannot be resolved. Addition of cyclin A2 provides a

complete, unambiguous data trajectory that can be traced from

the beginning of the cell cycle to the end (Figure 3B). When

PHH3 is rising, so is cyclin A2, but when cyclin A2 is falling,

PHH3 is ,constant, then PHH3 falls when cyclin A2 is essentially

Figure 2. Segmentation of cytometric data. A simulated DNA
content distribution composed of the sum (A, dashed black line) of
multiple normal Gaussian components (A, thin blue lines) provides a
means to extract a perfect DNA content expression profile from idealize
typical cytometry histograms (B, blue circles). Segmenting the same
histogram by contiguous regions yields the same expression profile (B,
orange circles). The segmentation needs to account for measurement
variation at the ends of the histogram.
doi:10.1371/journal.pone.0030870.g002
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nil. Note, however, that this is not independent of DNA content.

Figure S1 shows that segmentation of the 2C stemline from the 4C

and higher sub-cycles requires the combination of the three

parameters, DNA content, PHH3, and cyclin A2. The unidirec-

tional progression of a hypothetical cell through the data space, as

depicted in Figure 3B can be verified by monitoring the passage

of a BrdU-label through segments of the data space [4].

Primary segmentation
Expression profile derivation for cyclin A2 and PHH3 can be

performed as in Figure 4. The approach is to create regions that

enclose statistically irreducible clusters (generally, at the ends and

corners of the data trajectory) and divide the ‘‘stretches’’ between

these clusters into regions with a significant number of events and

a goal of providing as many regions within the stretch as is

practical. This is valid provided that a cell’s residence in any

‘‘state’’ described by a segmented region is dependent on having

existed in a previous ‘‘state’’ described by an adjacent region at

an immediately earlier time, and that all previous regions are to

one side of the immediate region - i.e., the ‘‘states’’ and regions

are contiguous, ordered, and unidirectional. This requirement

can be satisfied either from direct experimentation - e.g., [4],

prior knowledge, or inferred logic. The directionality for cyclin

A2 versus PHH3 is shown by arrows in Figure 3B. The shape of

any bivariate region is conceptually straightforward. The goal is

to create adjacent, contiguous ‘‘sides’’ for tri- or tetragons that are

perpendicular to a line that follows the local slope of the data.

The other two sides are trivial, enclose the data, but could be

thought of as parallel to the local slope of the data. This approach

is an attempt to assign cells to a level of expression that

approximates two-dimensional Gaussian fitting – i.e., account for

appropriate variation in two dimensions. The second rule is to

bound data at the ends of ‘‘stretches’’ by regions that are not

further reducible. For example, R7 in Figure 4A, which encloses

G1 cells, cannot be made smaller without creating a center

statistic for expression that maps variation rather than expression,

since that region includes variation that is not further resolvable.

This is often not a difficult decision point, since the frequency

information, in this case denoted by contour lines, provides

information that can be used to determine the best placement of

the region boundary. Equally, when the data turn at a right

angle, the width of the data in each arm can direct the height and

width of the region at the corner. For example, the center and

width of the data region bounded by R42 and R44 can guide the

size of R43 (Figure 4B). In practice, segmenting orthogonal data

is very straight forward, whereas data with curvature is

problematic because of current software limitations. When data

are not orthogonal (e.g., the data captured by regions, R15

through R24, Figure 4A), the intent is to follow the two

dimensional peak range (i.e., the backbone), distributing the data

within a region in a manner perpendicular to the slope. However,

we do not know of current software packages that provide the

ability to create the desired region shape or eliminate region-to-

region overlap with any assurance. For the data presented in

Figures 4, 5, 6, 7, to ensure non-overlap and comprehensive

inclusion, we calculated the region vertices in a spreadsheet

program, then directly modified the ‘‘wlx’’ file (an ‘‘XML’’

descriptor file) in WinList.

Expression profiles of cyclin A2 and PHH3
Figure 5 shows the expression profiles of cyclin A2 and PHH3,

directly measured from the regions in Figure 4. The entire cycle,

emphasizing interphase is shown in Figure 5A. The detail that

occurred in late G2 and mitosis (represented by 4% of the cell

population) is shown in Figure 5B. These data are the composite

results from three independent assays of the same population – i.e.,

Figure 3. Defining ambiguity. Molt4 cells were stained for phospho-S10-histone H3 (PHH3-A488), cyclin A2 (Cyclin A2-A647), and DNA content. A:
typical view for counting mitotic cells (green dots). This view provides ambiguous data vis-à-vis profile extraction since the cells between the G2
cluster and the bulk of mitotic events at the highest PHH3 levels represent cells that were in the processes of net gain and net loss of PHH3 (A, dual
arrows). The ambiguity can be resolved by plotting PHH3 versus cyclin A2 (B). Arrows show the direction of movement through the data space of cell
traversing the cell cycle.
doi:10.1371/journal.pone.0030870.g003
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from one batch of fixed cells, three samples were stained and

measured and analyzed independently. In this case, the cyclin A2

probe was labeled with Alexa Fluor 647 and the PHH3 probe with

Alexa Fluor 488 to minimize spectral overlap. The data set

contains staining error and sampling error. The analysis adds

analytical error with respect to region size differences. This error is

low for measuring center values of expression but larger for

establishing the frequency to which a specific level belongs. This is

relatively easy to understand. Since the profiles are built on

cumulative frequency data, any non-random variation in setting

an early region is propagated through the entire curve as a shift.

Thus, variation in setting R7 (the G1 region), which is first and

contains ,34% of the events, is propagated as a shift that shows

up dramatically at the end of the cell cycle where profile dynamics

are abrupt. Nevertheless, the error is acceptable and small relative

to the inability to obtain robust profiles by any other currently

practiced technology.

Expression of cyclin A2
The features of cyclin A2 expression are as expected – net

synthesis of cyclin A2 beginning at the G1/S boundary.

Expression increases in two phases. The first is an approximately

linear phase (fits a second order polynomial from Frequency values

of 0.38 to 0.7) and the second is exponential (fits an exponential

function from Frequency = 0.7 to 0.95). See Figure S2 for fitting

information. There is evidence for two cell cycle transcriptional

modes - see references in [15,16], which may in part explain the

two-phase shape of the interphase expression of cyclin A2. In late

G2, cyclin A2 expression abruptly peaks and declines as these cells

entered mitosis, as determined by elevated PHH3 expression. The

abrupt decrease in cyclin A2 levels apparently stabilizes at a new

steady state that is maintained for most of the early period of

mitosis. We have little detailed information for this period, since

the cells are not further divided into individual states and therefore

expression is represented by one value. The cells that comprise this

Figure 4. Segmentation in two dimensions. Molt4 cells were stained as in Figure 3. A: segmentation of interphase; B: segmentation of mitosis
and the beginning of interphase (R48). For a description of the logic, see the text.
doi:10.1371/journal.pone.0030870.g004

Figure 5. Expression profiles of cyclin A2 and PHH3. Three samples of Molt4 cells from the same culture were fixed, stained (as in Figure 3),
and measured independently. Segmentation was as in Figure 4. Expression information and frequency calculations were as described in the text.
doi:10.1371/journal.pone.0030870.g005

Cell Cycle Expression

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e30870



period of high cyclin A2 levels are largely prophase cells [17]. In

the last quarter of mitosis, cyclin A2 is dramatically degraded to

levels that are below our ability to detect by this approach. These

interpretations are consistent with current narrative models of

cyclin A2 expression in mitosis [18]. This two step decline in cyclin

A2 expression, which could be unique to these cells and/or unique

to this experiment, is important, since the easiest explanation is

that Anaphase Promoting Complex/Cyclosome (APC/C) is

activated early but held in check during most of prophase and

then dominates after nuclear membrane breakdown. The slight

decrease in early prophase may not be an important point for

large-view biology, but for mathematical models of cell regulatory

biochemistry, subtle results like this, should be useful for model

validation. Figure 6 compares the bivariate histogram and

expression data for mitosis. It is significant that even with relatively

few cells occupying any one region, the variation in this analysis is

relatively low by biology standards. This figure also illustrates that

important features like the first period of cyclin A2 decline are

readily appreciated from the extracted profile while in the

bivariate (in log-log space) are too subtle to be readily noticed.

Thus, the act of profile extraction is more instructive than visual

inspection of bivariate data.

Expression of PHH3
Histone H3 is phosphorylated more often at serine 10 when

cells are in mitosis. In general, it is a relatively good marker for

mitotic cells in that it increases very early in prophase and is still

elevated when cells end cytokinesis. This is obvious from the

expression profile. Like for cyclin A2, the state wherein PHH3 is

maximum and cyclin A2 is at a mitotic plateau (in these cells) is

relatively long and uniform in expression of both epitopes,

therefore we lose time based expression information. In

Figure 6B, we have added lines (black) that might be more

probable, if we had information at a finer resolution. PHH3 is also

Figure 6. Information details: cyclin A2 and PHH3 expression. Molt 4 cells were stained and analyzed as in Figures 3, 4, and 5. A: brackets
show are of cyclin A2 decrease in early mitosis; small arrow points to ‘‘new born’’ cells; large arrow points to large cluster in early mitosis, largely
composes of prophase cells. B: gray zone highlights the data derived from bracketed segments in A; small arrow points to data derived from the large
mitotic cluster in A; added lines indicate expected expression profile if more data could be obtain within the large cluster in A.
doi:10.1371/journal.pone.0030870.g006

Figure 7. DNA expression profile extraction. A: profile extraction by indirect means. The DNA values were obtained for the cells falling within
regions from cyclin A2 vs PHH3 plots as in Figure 4. Error bars are SEM. B: direct extraction compared to indirect. The line traces the data in A; the
error bars are the 95% confidence intervals. Circles represent values calculated from each of three Molt4 data sets, derived by directly segmenting
DNA histograms as demonstrated in Figure 2.
doi:10.1371/journal.pone.0030870.g007

Cell Cycle Expression

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e30870



expressed above the average G1 level in a small subset of cells in

G1 (arrow, Figure 6A). These are cells that have recently divided.

This population correlates with a similar population marked by an

antibody reactive with phospho-S780-Rb (unpublished data), and

that state displays BrdU-labeled cells prior to the bulk of G1 cells

in kinetic experiments [4].

DNA content and indirect profile derivation
In principle, it is possible to derive additional parameter

expression profiles from the regions set up as in Figure 4, since

that set of regions unambiguously traverses the entire cell cycle.

The caveat is that any expression profile that is derived should not

oscillate within any single region, since this would create ambiguity

for that parameter. Additionally, there is a problem with using

regions set up on a bivariate to indirectly derive third parameter

expression. The data trajectory can be visualized as a worm

contorted through three dimensional data space. Regions set up

on two parameters are unlikely to appropriately have the correct

orientation with respect to the three dimensional trajectory, since

current software correlates the third parameter orthogonal to the

plane of the bivariate within the bivariate region. To ask whether

we can accept the error involved, we derived the expression profile

for DNA content from the regions set as in Figure 4 and

compared the results to expression profile data for each replicate,

derived from single parameter DNA histograms as in Figure 2.

The results are shown in Figure 7. It is clear that in this instance,

the error was acceptable. Figure 7A shows the DNA expression

profile derived indirectly with error bars equal to SEM. Figure 7B
shows the same plot without symbols and error bars equal to the

95% confidence intervals. The data are from single dimension

histograms for each replicate, analyzed independently - i.e., there

is no relationship to the regions between analyses other than that

nine regions were used in each instance. It is clear that the directly

derived profiles (Figure 7B) and the profile derived indirectly

agree exceptionally well. An added benefit to the indirect method

(in this case) is that the boundary at G1/S (arrows) is better defined

because immunofluorescent detection of cyclin A2 is a more

sensitive marker for S phase than is DNA content measured by dye

fluorescence.

Cyclin B1 expression
In this series of stained samples, the same population of Molt4

cells used for cyclin A2 and PHH3 (above) were stained for cyclin

B1, PHH3, and DNA content. The purpose was to obtain the

cleanest measure of cyclin B1 (i.e., without fluorescence compen-

sation) and to test the ability to measure cyclins A2 and B1

independently and put them back together through the frequency

domain. Figure 8 shows segmentation of flow cytometry data for

cyclin B1 versus PHH3 for a sample from the same population of

Molt4 cells for which the cyclin A2 analyses were made.

Essentially, the cytometric data patterns look similar from this

view, reflecting the similar shapes of the expression profiles for

these two cell cycle regulated proteins. We can measure cyclin B1

in G1, earlier than cyclin A2, and the subsequent rise cyclin B1,

peaking at the G2/M transition, can be fit by a compound

equation with two exponential components (Figure S2). Appar-

ently, both cyclins are expressed at one rate through S and a

second, increased rate in G2, with cyclin B1 affected more

dramatically. This comparison is shown in Figure 9C. In

Figure 9, the data sets for cyclin A2 and cyclin B1 (3

independently analyzed samples of each) are co-plotted. In

Figure 9A/9B, the PHH3 profiles from the two data sets are

co-plotted, demonstrating remarkable accuracy for two indepen-

dently stained and measured samples, and independent analyses of

the two data sets. The agreement in the two PHH3 profiles

validates co-plotting of the cyclins with the features of each cyclin,

relative to the other, valid as well. As independent confirmation,

the analysis shows that cyclin A2 expression decreases to

background levels prior to a similar decrease in cyclin B1

(Figure 9D), which is known to be the case [18]. Figure 9D
(inset) shows that both sets of data indicate a decrease in both

cyclins at the same time in the beginning of M when PHH3 is

rising. This adds weight the idea that this is a real event, at least for

this cell line under the culture conditions at the time of the

experiment, and if more generally observed, should eventually be

accounted in mathematical models of the biochemistry of mitotic

entry. The data presented in Figure 9 show that by the expression

profile extraction approach, the relative expression behavior of an

essentially unlimited number of biomarkers can be assessed as a

Figure 8. Segmentation for cyclin B1 and PHH3. The approach is as in Figure 4 with differences due to the pattern created by the relationship
between cyclin B1 and PHH3. A:interphase segmentation. B: mitotic segmentation.
doi:10.1371/journal.pone.0030870.g008
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function of the cell cycle by independent sampling, measurement,

and analysis, and quantitatively put together as a whole analysis.

This then becomes a powerful approach to validating mathemat-

ical models of the cell cycle. Figure 10 shows a close-up of mitosis

from the view of both analyses. In this figure, the means for the

two sets of PHH3 expression data are plotted as one set,

demonstrating an increase in information by (1) more points

defining PHH3 during the periods of cyclin degradation (arrow)

and (2) the temporal offsets of cyclins A2 and B1 degradation and

PHH3 dephosphorylation.

Comparison of unified and independent analyses
Improvements in instrumentation, antibody specificity and

affinity, and fluorescence labeling probes have colluded in recent

years to push the possibility of multiparameter cytometric analyses

to 17 or more biomarkers [19]. However, fluorescence spectral

overlap and the general non-availability of labeled antibodies often

reduce the practical number of simultaneous biomarkers to much

less than this. In analyses like we have presented here, where

expression does not equal well-separated clusters of ‘‘negative’’

and ‘‘positive’’ cells but rather forms a continuum from low to high

expression, the spectral overlap problems are even more

inhibitory. This is something that we have suspected or known,

but is difficult to demonstrate. We performed the measurements

and analyses presented in Figures 11, 12, 13 to (1) further

validate that the composite analyses in Figure 10 was correct, and

(2) to evaluate the impact of spectral compensation for the overlap

of Alexa Fluor 488 (on the PHH3 antibody) and phycoerythrin (on

the cyclin A2 antibody). Three samples from the same population

of cells used to generate the ‘‘single color’’ cyclins A2 and B1 data

were stained for cyclin B1 (Alexa Fluor 647), cyclin A2

(phycoerythrin), PHH3 (Alexa Fluor 488), and DNA content

(DAPI). Bivariate plots of the resulting data for one sample, and

the segmentation scheme are shown in Figure 11. We used a

different segmentation scheme that takes advantage of the

correlation between cyclins A2 and B1 and the early rise of cyclin

B1 to produce a smaller base cluster in G1 (orange dots,

Figure 9. Overlayed expression profiles of cyclins A2 and B1. Overlays of expression profiles for PHH3 (A, B) from the data set Molt4 cells
stained for cyclin A2, PHH3, and DNA content (labeled PHH3 from A2) presented in Figure 5, and from cells stained for cyclin B1, PHH3, and DNA
content (labeled PHH3 from B1). C, D: overlays of expression profiles for cyclin A2 and cyclin B1 obtained independently on the same samples. Inset in
D: zoomed view of initial decrease in both cyclins as cells enter mitosis. In A, B, and C, means (of median specific fluorescence) are shown. In D, error
bars are SEM.
doi:10.1371/journal.pone.0030870.g009

Figure 10. Joined expression profiles for PHH3, and overlayed
profiles for cyclins A2 and B1: mitotic view. For PHH3, means
values are shown as in Figure 9, but each data set has been joined. The
data density along the profile is enhanced; the arrow points to region of
obviously enhanced data density.
doi:10.1371/journal.pone.0030870.g010
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Figure 11B) and to ask whether a different segmentation scheme

affected the data. Additionally, since cyclins A2 and B1 were

correlated, we could dissect mitosis in more detail, examining the

periods of time when first cyclin A2 and then cyclin B1 is

degraded. The segmentation starts in Figure 11A with the region

labeled ‘‘1’’, then jumps to Figure 11B to region ‘‘2’’. The

consecutive regions move unidirectionally from ‘‘2’’ to ‘‘21’’

following the bivariate synthesis pattern of the two cyclins in

interphase. The next region, ‘‘22’’, appears in Figure 11A with

consecutive, unlabeled regions ending at ‘‘34’’. This region set is

very similar to the mitotic regions in Figure 4B. The next region,

‘‘35’’, starts in Figure 11C and ends just before the terminal cluster

in this bivariate plot. Regions ‘‘39’’ and ‘‘40’’ finish the sequence

and are shown in the three dimension view of PHH3, cyclin B1,

and cyclin A2 expression in mitosis (Figure 11D). The expression

profile data for each of the three measured samples are plotted for

cyclin A2 (black circles) and PHH3 (blue circles) with the ‘‘single

color’’ data of Figure 5 (red and green data) in Figure 12. It is

obvious the PHH3 data are not different and for interphase and

early mitosis, the cyclin A2 data match as well. However, the

cyclin A2 data appear to be lower in values than expected (from

‘‘single color’’ data) when cyclin A2 was actively degraded in

mitosis. This is also the data that are most sensitive to spectral

compensation problems and where event numbers are small. Co-

plotting of the multi-color (MC) cyclin B1 data with ‘‘single color’’

(SC) data in Figure 13B show that cyclin B1 was not subject to

the same errors. The cyclin B1 probe, labeled with Alexa Fluor

647 was not subject to spectral overlap problems and compensa-

tion was not employed. Figure 13A shows the overlay of multi-

color PHH3 with single color PHH3 from the cyclin B1 series of

samples and shows identity. The payoff from multiparametric data

is enhanced clarity of information as shown from the cyclin B1

Figure 11. Segmentation of multiparametric data. Samples from the same Molt4 population as shown in previous figures were stained for
cyclins A2, B1, PHH3, and DNA content. Segmentation is more complex then single cyclin stained samples, requiring four bivariate views. The first
segment (labeled ‘‘1’’) begins in A (cyclin A2 vs. PHH3) then jumps to B, which is a plot of cyclin A2 vs. cyclin B1 for interphase cells (NOT gated for
mitotic cells identified by a region (not shown) set as in Figure S1), and begins with ‘‘2’’ and ends with ‘‘21’’. The next segment is back in A, labeled
‘‘22’’ and ends at ‘‘34’’. The next segment, ‘‘35’’ is in C, which is a plot of cyclin A2 vs. cyclin B1 for mitotic cells (AND gated for mitotic cells as in Figure
S1). The final cluster is segmented in a bivariate of PHH3 vs. cyclin B1 (not shown). D shows resolution of the last mitotic cluster by color (cyan,
magenta), labeled ‘‘39’’ and ‘‘40’’ in a 3D plot of PHH3, cyclin A2, and cyclin B1 to show the orthogonal nature of the segment continuum for mitotic
cells.
doi:10.1371/journal.pone.0030870.g011
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values (Figure 13B, arrow) that were obtained indirectly from the

regions set on the cyclin A2 versus PHH3 plot on the region that

defines the period of cyclin A2 degradation. These measurements

are not possible in ‘‘single color’’ cyclin B1 data.

Additional Discussion
Here we presented the case for extraction of the cell cycle

expression of biomarker sets defined by antibody reactivity and

DNA binding dyes that requires two antibodies, reactive with one

Figure 12. Expression profiles from multi-parametric data. PHH3 (green) and cyclin A2 (red) profiles, extracted from single cyclin sample data,
are co-plotted with PHH3 (blue) and cyclin A2, extracted from multi-cyclin sample data, in three views that emphasize the entire cell cycle (top), G2
and M (lower left) and mitosis (lower right).
doi:10.1371/journal.pone.0030870.g012

Figure 13. Expression profiles from multiparametric data. Joined PHH3 profiles extracted from single cyclin sample data (both cyclins A2 and
B1) and multi-cyclin data are co-plotted (left). A cyclin B1 expression profile extracted from single cyclin data (SC) is co-plotted with an expression
profile extracted from multi-cyclin data (MC).
doi:10.1371/journal.pone.0030870.g013
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mitotic cyclin and one marker that is expressed highly in mitosis,

and the DNA dye, and at least one other marker of interest.

Analytically, this system of measures and analysis has no limits

provided that multi-variate data can be obtained that ‘‘worms’’

unidirectionally through multi-variate data space unambiguously

(in the simplest version, that is what a mitotic cyclin, a mitotic

marker, and DNA content provide). Practically, the system is

limited by the availability of high quality (high specificity and high

affinity) antibodies. Nevertheless, the current catalog of readily

available probes that meet these requirements is quite large, and

significant studies could be designed to capture expression data for

a large set of cell cycle related epitopes.

Aside from natural curiosity, our current drive for this work is to

provide a means to validate mathematical models of the cell cycle

based on systems of ordinary differential equations (unpublished

data). As presented here, there are two problems that we have not

addressed. The first is that this measurement system produces

correlated, relative expression data that provides timing informa-

tion but not data in a final form that reflects expression molecule

for molecule. The second is that use of cell frequency as a

surrogate for time needs an additional transformation to account

for the one mitotic cell giving rise to two G1 cells. Each of these

problems can be addressed, and we have addressed them in other

publications. To address the first, we used the same example

measurement system as this communication, but used the ‘‘single

color’’ files to generate a relative relationship between expression

of one epitope and expression of a second (in the example, cyclins

A2 and B1). That relationship was used to transform multi-variate

data to the same relative scale (unpublished data). To transform

those relative scales to a molecular scale, quantitative western

blotting with purified molecular standards, as we have previously

published [8,20], can be employed. This approach is not exact - it

is dependent on a high level of procedural rigor, and the

antibodies should have similar affinities and be of the same isotype.

Error is introduced by unequal affinities, differential recognition

by the secondary antibody, and any differences in epitope

masking. Nevertheless, this approach is a good and feasible first

step toward production of a model based on reality.

We used a concrete, but unsophisticated method for extracting

the expression information from cytometry data. First, we used

one or more bivariate plots to segment the data based on the local

bivariate slopes along a twisting data path. Aside from the simple

approach to chopping Gaussian distributed data into blocks, the

main problem with this approach is that any other parameters are

necessarily assumed to be orthogonal in the 3rd dimension relative

to the X and Y of the bivariate plot. They often are not. However,

we showed in this paper that we don’t seem to pay a large penalty

for this. Most likely, this is because we are measuring centers and

over the entire span of the N dimensional data, the imprecision in

this approach has a small effect. Whatever the reason, empirically,

we have shown that this approach works. The reason that we

chose this approach is that current cytometry software is severely

limited with respect to analyzing multidimensional continuums.

There are two steps toward a more sophisticated approach. The

first is the create software with N-dimensional region setting. A

significant problem is that analyses of this type of data are almost

completely visually guided and exactly how to approach

dimensionality past three is not clear. A next, second step would

be to write N-dimensional Gaussian component modeling. We

have used this approach in single dimensions with good results

[8,21]. The problems with this is that most immunofluorescence

distributions approximate normal or log-normal distributions, but

often not exactly, and often in parts of the data path, the number

of events populating a region may be too low for good fits,

especially in N dimensions. Further, it is unclear at the outset that

the penalty that any gains in accuracy will offset the relative

robustness and reproducibility of the current approach. Currently,

writing software for multi-dimensional analysis is an expensive and

time-intensive undertaking. The value of the current approach is

that with minor modifications (chiefly, easy insurance that regions

don’t under- or over-lap each other), current software could be

revised to make this approach easily accessible. An intriguing new

development is embodied by a concept termed ‘‘probability state

modeling’’ [22]. In this system, data are clustered along profiles

that, for the type of work presented here, look exactly like

expression profiles. Multi-dimensional data are analyzed by

assigning data to sequential profiles and the correlated nature of

the data sequentially restricts the data to regions along the profile

X axis until uncertainties are minimized. The result is the best

partitioning of the data along an expression profile that is

statistically supported in a rigorous and sophisticated manner. It

seems to us that this approach is the right direction for the type of

analysis presented here, however, it is difficult to see at this time

how that could be implemented de novo (without the prior

expression profile knowledge).

Materials and Methods

Cell Culture
Molt4 cells ([23]; obtained from Keith Shults) were cultured in

RMPI 1640 medium without phenol red with 10% fetal bovine

serum and gentamycin at 37uC with 5% CO2 in T75 flasks. Cells

were split approximately twice per week to maintain concentra-

tions between 36105–16106. Samples were from exponentially

growing cultures.

Cell Fixation and staining
Samples were washed and fixed with formaldehyde and

methanol, stored at 220uC until staining, then stained for cyclin

A2, cyclin B1, PHH3, and DNA content as previously published in

detail [24]. Three samples were stained simultaneously for cyclin

A2, PHH3, and DNA and three samples were stained for cyclin

B1, PHH3, and DNA by indirect method for each cyclin. A third

set of three samples was stained with directly conjugated

antibodies for all three epitopes and DNA content as in indirect

samples.

Antibodies and dyes
26106 fixed cells per sample were stained with the following.

For indirect staining, cyclin B1 (clone GS11, BD Biosciences, San

Jose, CA) and cyclin A2 (Beckman Coulter, Brea, CA) antibodies

were both used at 0.125 ug in 50 ul volume of PBS-BSA

(phosphate buffered saline with 2% bovine serum albumin,

Sigma-Aldrich, St. Louis, MO). The secondary antibody, used at

0.25 ug per sample in 50 ul PBS-BSA, was goat anti-mouse

conjugated to Alexa Fluor 647 (GAM-A647) from Invitrogen/

Molecular Probes (Carlsbad, CA). The cyclin B1 antibody used for

direct staining was the same clone described above, conjugated to

Alexa Fluor 647 (A647) with kit from Molecular Probes, used

according to manufacturer’s directions. 0.06 ug in 50 ul PBS-BSA

per sample was used for staining. The cyclin A2 antibody used for

direct staining was the same clone as above but conjugated to

phycoerythrin (Cyclin A2-PE, Beckman Coulter). This was used at

0.125 ug sample. The PHH3 antibody, directly conjugated to

Alexa Fluor 488 (#9708, Cell Signaling Technology, Danvers,

MA) was used at 0.0125 ug per sample in all reactions. 49,6-

diamidino-2-phenylindole (DAPI) was purchased from Sigma-

Aldrich and used at 0.25 ug/ml in PBS (26106 cells, 500 ul PBS).
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Cytometry
Samples were measured on an LSR II with uv, violet, blue, and

red excitation, using stock filters for blue (DAPI), green (A488-

PHH3), orange (PE-cyclin A2), and red (A647-cyclin A2 or B1)

fluorescence.

Software
WinList 7.0 (Verity Software House, Topsham, ME) was used

for all data file processing and primary analysis. Prism 5.04

(Graphpad, graphpad.com) was used for non-linear regression and

plotting expression profiles. Excel 2007 (Microsoft, Redman, WA)

was used to generate the multi-gaussian model of a DNA

histogram. Prism was used to plot the results. For segmentation

of bivariate plots, we used the normal visual/mouse click interface

of WinList to set preliminary partial regions that followed the local

slope across the bivariate data peak values from each region. We

then calculated the vertice positions for bounding lines that would

be orthogonal to the local slope. The vertice information was

obtained from a hypertext file written by the program. This was

manually adjusted to the new calculated vertices. In this manner,

we could ensure that the regions were not over or under-lapping.

This logic was used for regions where data runs were not

orthogonal to an axis. For other region logic, consult the text or

Figure legends.

Supporting Information

Figure S1 Data preprocessing. There are several steps to

prepare cytometry list mode data for profile extraction. A: removal

of aggregates and debris by a 99% contour gate on the singlet

population from a plot of pulse width (UV 440-W) vs. integrated

pulse (DNA) for the DAPI signal. Arrow points to mitotic events

(red dots) that are not included in this gate. These represent some

anaphase, telophase, and cytokinetic cells. B: mitotic gate (R3)

based on PHH3 fluorescence of cells gated from the Singlet Gate

(R2). Background subtraction for cyclin A2 or B1 is accomplished

by plotting cyclin fluorescence versus side scatter (SSC-A). The G1

cells are negative for cyclin A2 and partially negative for cyclin B1.

We use the compensation mechanism to subtract from all data an

amount of cyclin staining related fluorescence that rises in G1 as a

function of cell size. C: cyclin A2 data prior to subtraction. D:

cyclin A2 data after subtraction. If everything goes correctly, the

median fluorescence of G1 cells should be close to zero. To

remove some outliers, a restricting gate is applied to a cyclin

fluorescence vs. DNA plot of interphase cells (AND gated on R2,

NOT gated on R3). This removes doublets, aberrant S phase cells

without cyclins, and outliers. E: gate (R5) is set at .99% contour

level. F: a final outlier gate is set on interphase cells plus mitotic

cells that have been gated ((R2 AND R5) OR R3). The final gating

strategy uses ((R2 AND R4 AND R5) OR R3)) to obtain an entire

cell cycle distribution of the 2C stem line. Sometimes additional

gates are applied on SSC vs. cyclin fluorescence or DNA vs.

acquisition time (position in the list). The objective of either of

these is to further clean up outliers.

(TIF)

Figure S2 Two-phase, differential rates of accumula-
tion of both cyclin A2 and B1 expression in interphase
can be fit to a complex equations. Cyclin A2 was fit to a

compound equation: y = c + bx + ax2 from 0.38 to 0.7, and c*ekx

from 0.7 to 0.95. Cyclin B1 was fit to y = c1*ek1x from 0.32 to 0.79

and y = c2*ek2x from 0.79 to 0.95. Therefore, both cyclins appear

to have an early, slow rate and a late, fast rate with cyclin B1

having a more exponential character. The fits were done to

specific fluorescence values from single cyclin analyses using

experimental procedures that make the amplitude relationships

relevant. Therefore, cyclin B1 accumulates at slower rate during S

phase than cyclin A2 but at a faster rate in late S/G2. It is also

obvious from these plots that cyclin B1 begins accumulation earlier

than cyclin A2.

(TIF)
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