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MOTIVATION Calcium imaging is a powerful tool for monitoring the activities of multiple neurons and un-
derstanding brain function, but its generally low signal-to-noise ratio (SNR) and slow dynamics limit its pre-
cision and temporal resolution compared with the traditional electrophysiological recording. To overcome
this limitation, reliable models for spike inference from calcium signals will be beneficial. Here, we aim to
develop efficient and calibration-free spike inference models that generalize well to a broad range of cal-
cium data, including various calcium indicators, SNRs, brain regions, and so on.
SUMMARY
Calcium imaging provides advantages in monitoring large populations of neuronal activities simultaneously.
However, it lacks the signal quality provided by neural spike recording in traditional electrophysiology. To
address this issue, we developed a supervised data-driven approach to extract spike information fromcalcium
signals. We propose the ENS2 (effective and efficient neural networks for spike inference from calcium signals)
system for spike-rate and spike-event predictions using DF/F0 calcium inputs based on a U-Net deep neural
network. When testing on a large, ground-truth public database, it consistently outperformed state-of-the-
art algorithms in both spike-rate and spike-event predictions with reduced computational load. We further
demonstrated that ENS2 can be applied to analyses of orientation selectivity in primary visual cortex neurons.
We conclude that it would be a versatile inference system that may benefit diverse neuroscience studies.
INTRODUCTION

One key to understanding the complex functions of the brain is to

simultaneously measure the activity of neurons across different

layers and brain areas. Electrophysiological recordings, such

as patch-clamp1,2 and multielectrode extracellular recording,3

have long been the major method to record neuronal spiking

events. These recordings are typically of high temporal resolu-

tion andwith high signal-to-noise ratio (SNR). However, it is tech-

nically challenging with these methods to acquire recordings

from a large number of neurons stably in vivo.4

In recent decades, the optical-based two-photoncalcium imag-

ing technique has increasingly been used for in vivo neuroscience

research.5–12 This imaging technique enables simultaneousmoni-

toring of activities of thousands of neurons over a considerable

period of time.Moreover, asmoreeffective fluorescent calcium in-

dicators13–17 and imagingdevices18–20 havebecomeavailable, it is

now possible to localize and extract the individual activities of a

large number of neurons in various subcellular structures.21
Cell R
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Nevertheless, calcium imaging is only an indirect measure-

ment of neuronal activities. In brief, the concentration of intra-

cellular calcium evoked by neuronal firings undergoes

nonlinear changes. These fluctuations in calcium are again

nonlinearly reflected by calcium indicators, whose fluorescent

intensities could be imaged. Afterward, the locations of indi-

vidual neurons or compartments (region of interest [ROI]) are

identified on images, and the time-varying fluctuations of fluo-

rescence signals in the ROIs are extracted as a surrogate of

neuronal activities. Another limitation of calcium imaging is

that the signals can commonly have a low SNR,21 especially

for those recorded in deep brain regions in vivo or at low

signal conditions. Furthermore, the indicators’ slow temporal

dynamics up to hundreds of milliseconds14,22 would result in

low-pass-filtered activities. These indicators come in different

types, typically synthetic dyes or genetically encoded calcium

indicators (GECIs), and their different dynamics further

complicate the task to convert the calcium signal into

neuronal signals.
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Previous work has shown that spike inference plays a crucial

role in interpreting calcium data and dissecting neural circuits.5–8

In the past decades, researchers have developed various algo-

rithms to recover multiunit neuronal spikes. These algorithms

can be generally divided into two major categories: model-based

systems23–34 and data-driven systems.35–39 In model-based sys-

tems, physiologically constrained models were typically built,

considering that the calcium signal concentrates with neuronal fir-

ings and decays exponentially afterward. With these models, cal-

cium traces could be simulated through estimated spike trains

and additive noises. They include systems based on template

matching24,25,27 (e.g., peeling25), deconvolution23,26,30,32–34 (e.g.,

OASIS30), and Bayes’ theorem26,28,29,31 (e.g., MLspike29). For

example, as one of the state-of-the-art algorithms, MLspike was

proposed using a physiologically constrained model and opti-

mized by maximum a posteriori (MAP) estimate to infer the most

likely spike trains from noisy calcium signals. However, these

model-based methods typically require tuning of model parame-

ters for each new recording, either manually or to be estimated

by auxiliary algorithms. Moreover, when likelihood optimization

is involved, they may become rather computationally expensive

to use. On the other hand, data-driven systems based on super-

vised learning also emerged with promising performances. A su-

pervised deep learning algorithm called CASCADE has been

reported recently, which delivered high spike inference perfor-

mancewhen training datawithmatched noise levels as the testing

neuronswere selected for training.38 Previous data-drivenmodels

have faced challenges in validating their generalization ability

because of the limited high-quality paired data for training.35,36,39

An extensive public database of paired data (simultaneously re-

corded calcium fluorescence signals and electrophysiology

ground truths) has been compiled alongside the development of

CASCADE. It has facilitated such data-driven approaches for bet-

ter generalization of the models, although some re-training is still

necessary for noise matching.38 Some other works also use

feature extraction and thresholding40,41 (e.g., GDspike41) to tackle

the problem of spike inference.

For inferring unpaired calcium signals from in vivo imaging, a

calibration-free inference system that could generalize on un-

seen recordings with high performance is desirable. In fact, neu-

ral networks have shown satisfactory performance in processing

bio-signals with severe inter-record variability, including electro-

cardiogram42–44 and electromyography.45 Provided with a suffi-

cient amount of paired data, the generalization ability of neural

networks makes it a promising approach for inferring spikes

from calcium signals. In this work, we performed thorough

research on the impact of each component in the neural

network-based system on the spike inference tasks, based on

a large ground-truth public database (Table S1). The optimal

configurations of network architectures and cost functions

were investigated. We conducted additional simulations to

address factors in the calcium data that could benefit the perfor-

mance of deep-learning-based models for spike inference.

These analyses provided useful insights on how to prepare

(e.g., record, process, and select) calcium data that will favor

future algorithm development, which could help us understand

the complex process in the brain. Here, with these research

and insights, we developed the ENS2 (effective and efficient neu-
2 Cell Reports Methods 3, 100462, May 22, 2023
ral networks for spike inference from calcium signals) system

(Figure 1) with state-of-the-art performance and generalization

ability but with lower computational complexity. To further

demonstrate the validity of the ENS2 system, we deployed the

ENS2 system on a set of calcium imaging data from the primary

visual cortex (V1) and showed how the spike inference can be

applied to the analyses of the experimental data.

RESULTS

Design of neural network-based spike inference system
Network architectures

We tested three different architectures of neural networks to

evaluate their effectiveness in the spike inference task. They

are U-Net,46 Le-Net,47 and FC-Net (fully connected network),

respectively. These existing models were modified for 1D cal-

cium signal inputs. The network architectures are summarized

in Table S2.

The U-Net used in this study contains three contracting blocks

and expanding blocks. On one hand, the input information from

contracting blocks passes through the bottleneck block to the

expanding blocks. On the other hand, skip connections from

contracting blocks to the corresponding expanding blocks allow

direct and localized information flows.46 Within each contract-

ing/expanding block and the bottleneck block, two convolution

layers with 3-sized kernels are deployed. Instead of batch

normalization, we used instance normalization48 for regulariza-

tion, because calcium signals with various dynamics may

co-exist in a same batch of data. We observed that this regula-

rization helped in model convergence. A schematic of the pro-

posed U-Net architecture is shown in Figure 1C. The Le-Net con-

sists of three convolution layers with kernel sizes of 3, 3, and 10,

respectively. Average pooling layers with 2-sized kernels are

applied between the three convolution layers. A dropout layer49

is included before the output layer for regularization. A typical

fully connected network with four hidden layers and two dropout

layers is adopted as FC-Net. All three networks are designed to

take 96-sized calcium signal inputs and output 96-sized spike-

rate vectors in a sequence-to-sequence translation manner.

Given that the input data are segmented with steps of one

data point, the spike rate at each time point is indeed predicted

for up to 96 times independently from its adjacent segments

(zero padding was performed at both the beginning and the

end of the recordings before segmentation). We then average

these 96 predictions to provide the final spike-rate output of

each time point (Figure 1A). These 96 segments can provide

long- and short-range information about a specific time bin.

Hence we can achieve more robust inference results with such

expanded ‘‘receptive field’’ after averaging. Spike-event output

can then be estimated from this final spike-rate sequence as

introduced below.

We kept all three networks to have similar numbers (under

150k) of trainable parameters for comparison. They were all

randomly initiated to have zero means and standard deviations

of 0.02. Leaky ReLUs (rectified linear units) with slopes of 0.2

are used as activation functions for all layers except for the

output layers, where ReLU is used for non-negative spike-rate

prediction.



Figure 1. Overall workflow of the proposed ENS2 system

(A and B) The ENS2 system contains a neural network to infer spike rate from calcium inputs (A) and an unsupervised greedy algorithm for estimating spike events

from spike-rate predictions (B). The neural network is trained with calcium trace inputs paired with ground-truth (GT) spike events, whereas it could test on

calcium traces alone after training for obtaining predicted (PD) spike rates. For a given calcium recording, our ENS2 system will first predict the corresponding

spike rate with the procedures in (A).

(C) 1D calcium trace inputs are segmented to have 96 data points and fed to the U-Net-based model. It outputs the corresponding spike-rate prediction of the

same length in a sequence-to-sequence manner, which is gathered through an averaging strategy. Afterward, spike events are estimated by the four-step al-

gorithm in (B). In brief, valid fragments of spike-rate prediction are extracted by thresholding. Then, estimated spike-events sequences (est_spike) are formed by

tentatively inserting spike event in each time bin. The spike-events sequences (est_spike) are convolved with a smoothing window to approximate the spike-rate

segment (est_rate). The sequence with minimumMSE against the prediction (pd_rate) is regarded as the final spike-events prediction. Details are explained in the

results section. Detailed hyper-parameters are summarized in Table S2.

(conv, convolution; ReLU, rectified linear unit; max pool, maximum pooling; up-conv, transposed convolution; concat: concatenation).
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Loss functions and optimization

For each type of network, we optimized them with three different

loss functions, respectively, for comparison. First, mean square

error (MSE) loss is used, which is one of the most commonly

used loss functions applicable to a wide variety of machine

learning tasks. The models are expected to minimize the MSE

between predicted spike rates and ground-truth spike rates,

penalizing the prediction both in time and amplitudes. The loss

function is as follows:

LMSE =
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGT � PDÞ22

q
; (Equation 1)

where n is the number of segments in a batch, and GT and PD

stand for ground truth and prediction, respectively. In addition,

we also used Pearson correlation coefficient (Corr) and van Ros-

sum distance (vRD)50 as loss functions:

LCorr =
E½ðGT � mGTÞðPD � mPDÞ�

sGTsPD

(Equation 2)

LvRD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

R ½GTðtÞ � PDðtÞ�2dtR ½GTðtÞ�2dt

s
; (Equation 3)
where m and s are the mean and standard deviation, respec-

tively, and t is a constant normalizing factor (see the ‘‘evalua-

tion of spike inference algorithms’’ section in STAR Methods).

Note that Corr and vRD are also used as the metrics for evalu-

ating the performance of the models (see STAR Methods). As

such, we would expect that models that use LCorr (or LvRD)

should have the optimal performance when measured with

Corr (or vRD). A major difference between LMSE and LvRD is

that LvRD normalizes each batch of samples by the total

numbers of GT firing events. As such, the optimization through

LvRD is less dependent on the firing rates of the training data but

is slightly more computationally expensive to use than LMSE .

Wewill compare their resultant inference performance in further

detail.

The Adam optimizer51 with a default learning rate of 1e�3 is

used for all models. Each model is allowed to update for a

maximum of 5,000 iterations. In each iteration, a batch of

1,024 paired segments is drawn randomly and fed to the model

for training. The training losses are noted, and early stopping is

introduced when the losses do not improve in the past 500 inter-

actions (patience = 500). Under these criteria, we observed that

most models completed the trainings within 3,000 iterations. The

resultant models are then ready for prediction. Other details of
Cell Reports Methods 3, 100462, May 22, 2023 3
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hyper-parameters and operational environment are summarized

in Table S3.
Estimation of spike events from spike-rate predictions
To reliably convert the spike-rates output by the neural networks

to spike-event predictions, we propose an unsupervised greedy

algorithm that is simple and straightforward (Figure 1B). The

workflow is briefly introduced here.

Step 1: Fragments of spike-rate predictions (pd_rates) with

non-zero spike rate are identified by thresholding the spike-

rate sequence output with an epsilon value. We do not use

zero threshold to avoid including any fragment with overly

low peak amplitude (i.e., those showing extremely small

spiking probabilities or background noise), where no spike

should be estimated.

Step 2: For each pd_rate of length L (in terms of number of

data points), we initialize a zero-filled vector (est_spike) with

L bins.

Step 3: One spike is assigned to any one bin in est_spike at

one time. Then the est_spike vector is convolved into a

spike-rate vector (est_rate) with the smoothing windows (as

in the pre-processing step described in Methods). The corre-

sponding MSE between the resultant est_rate and pd_rate is

calculated. This step is implemented in parallel to all L bins to

determine the most suitable bin (i.e., with the smallest MSE)

for assigning the spike.

We then repeat step 3 to assign another spike each time to the

most suitable bin in a greedy manner, until the MSE would no

longer be reduced by adding a spike to any location in est_spike.

Then the updated est_spike is regarded as the final estimation of

spike events for the concerned pd_rate fragments. The time

stamp of a spike is defined as the center time of the correspond-

ing bin within est_spike. If multiple spikes are predicted in the

same bin, the same time stamp is repeated accordingly.

For a spike-rate sequence output with N fragments of

pd_rates, this algorithm executes in O(N 3 L 3 k) time, where

k is the maximum number of spikes in any one bin. In practice,

considering the typically slow dynamics of calcium signals and

relatively low firing rates of neurons imaged, this estimation

method operates in linear time proportional to the duration of

recordings. We have validated our system with this spike-

events estimation algorithm against several existing studies,

including MLspike,29 OASIS,32 and CASCADE38 with its Monte

Carlo importance sampling-based spike-events estimation

algorithm.
U-Net and MSE loss achieve the best overall
performance in spike inferring tasks
As described above, our benchmark involved configurations

from three types of neural network model and three loss func-

tions, resulting in a total of nine configurations of models. Our

simulations followed the leave-one-dataset-out protocol. For

example, when benchmarking on excitatory neurons, each

time the model was first trained on 19 datasets and tested on

the remaining one. This was repeated 20 times such that all 20

datasets (1–20) with excitatory neuronswere tested respectively.
4 Cell Reports Methods 3, 100462, May 22, 2023
The procedure is similar for the six datasets (21–26) with inhibi-

tory neurons. We then recorded the neuron-wise performance

in all 26 datasets. The results are presented for each neuron

from the testing datasets (Figures 2A–2D). All datasets were

re-sampled to a frame rate of 60 Hz for benchmark (see STAR

Methods).

First, we compared the three architectures of neural networks

(U-Net, Le-Net, and FC-Net, see above). As shown in

Figures 2A–2D, U-Net delivered the best overall performance

against either Le-Net or FC-Net (p < 0.0001 for all cases, when

MSE or vRD loss function was used). Next, we assessed how

different loss functions would affect the performance of our

models. Here, MSE, vRD, and Corr were used as the loss func-

tions, respectively. The vRD and Corr were used as loss function

to test whether they would favor spike-rate prediction because

they are also evaluated by vRDandCorr. Nevertheless, our results

show that MSE loss appeared to be the better choice in general.

When measured in Corr (Figure 2A), using MSE loss showed

similar performance with using Corr loss (p = 0.52) and obtained

higherCorr comparedwith vRD loss (p = 0.0006).Whenmeasured

in vRD (Figure 2B), using MSE loss also showed similar perfor-

mance with using vRD loss (p > 0.99) and obtained lower vRD

comparedwith when using Corr loss (p < 0.0001). For spike-event

predictions, using MSE loss again gained advantages over using

vRD loss in error rate (ER) measurement (p = 0.0032; Figure 2C),

and comparable performance in Victor-Purpura distance (VPD)

measurement (p R 0.99; Figure 2D). Note that when Corr loss

was used, the performance of all three models was significantly

compromised, except when measured in Corr. The degradation

in performance was most prominent in spike event predictions

(measured in ER and VPD; Figures 2C and 2D). We believe that

the major reason is that the Corr is a scale-free measurement,

and Corr loss function fails to differentiate predictions of different

amplitudes (but only different temporal patterns). As shown in Fig-

ure 2G, the prediction obtained with models using Corr loss

tended to havemuch lower spike rate (in amplitude) as compared

with other configurations (Figures 2E–2G). As a consequence,

spike event could not be reliably estimated from the predicted

spike rate due to low SNR. Putting the above results together,

we took U-Net and MSE loss function in our proposed ENS2 as

it achieved the best overall performance in the benchmark.

To show that the difference in performance resulted from the

model configurations rather than specific hyper-parameter set-

tings, we repeated the simulation with U-Net and MSE loss

with various hyper-parameters (Figure S1). The filled bars repre-

sent the default hyper-parameter combination used in this study

as described above. Regardless, we showed that they all had lit-

tle effect on the final performance. The Corr approached 70%,

and vRD remained less than 3 in all cases. The VPD and ER

were around 0.6 and 50%, respectively.

We also proved that our models were trained adequately with

our early-stopping criteria (see above). Figure S1G illustrates the

MSE training losses for all 20 datasets with excitatory neurons

(red) and all 6 datasets with inhibitory neurons (blue). The losses

decreased with more iterations generally and stabilized suffi-

ciently as the training stops. Moreover, Figure S1 demonstrates

that the patience of iterations (see above) before early stopping

had little influence on performance. Together, we proved that our



Figure 2. Performance comparison among various model architectures and loss functions

(A–D) Performances of various system configurations measured in (A) correlation, (B) van Rossum distance, (C) error rate, and (D) Victor-Purpura distance,

respectively. Generally, the configuration of U-Net trained with MSE loss provides the best overall performance for both spike-rate prediction and spike-event

prediction.

(E) Examples of different (pre-processed) calcium inputs (colored), paired with ground-truth (GT) spike rate and spike events (black).

(F) Examples of spike rates and spike events predicted (PD) by our proposed ENS2 method and state-of-the-art methods.

(G) Examples of spike rates and spike events predicted by our proposed method with different configurations.

All error bars in this work represent medians with 95% confidence intervals. Asterisks indicate significant difference using Friedman’s test with Dunn’s multiple

comparisons between the indicated configurations (see STAR Methods, n = 286). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Colored dots in (A)–(D) represent measured performance of each neuron. Metrics shown in (F) and (G) measure the performance on the corresponding neuron.

Orange shaded areas represent regions of interest where discrepancies in predictions are observed among different methods. These conventions are consistent

for the remaining figures.
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models have been trained and regularized sufficiently by iter-

ating over only thousands of batches of data to avoid over-fitting.

Comparison with state-of-the-art models
Based on our investigations above, we selected the configura-

tion of U-Net andMSE loss as our proposed ENS2 system, which

takes original DF/F0 signals as inputs. We took this further to

compare it with three representative state-of-the-art studies,

including CASCADE,38 MLspike,29 and OASIS.32 We selected

CASCADE and MLspike as they are among the top-performing

systems within the two major categories: data-driven systems

and model-based systems, respectively. Moreover, both of

them have already shown surpassing performance over previous

methods using various datasets and evaluation metrics in their

studies. On the other hand, OASIS is one of the most represen-

tative methods based on deconvolution and has been imple-

mented in Suite2P52 and CalmAn53 for wide experimental

usages. Results are summarized in Figure 3.

We first benchmarked their performance across all 26 data-

sets (see STAR Methods). Figures 3A–3D shows that the

data-driven systems (i.e., our proposed ENS2 and CASCADE)

generally performed better than the model-based system (e.g.,

p < 0.0001 for all cases of ENS2 vs. MLspike/OASIS) in both
spike-rate (Corr and vRD) and spike-event (VPD and ER) predic-

tions. For example, our ENS2 showed around 34%/36% higher

in Corr and 18%/15% lower in ER than MLspike/OASIS. When

compared with CASCADE, our systems also showed better per-

formance for both spike-rate prediction and spike-event predic-

tion (p < 0.0001 for all cases; Figures 3A–3D, S2C, and S2D). In

particular, our ENS2 showed around 5% higher in Corr and 4%

lower in ER than CASCADE.

We took a deeper look into these results by considering the

excitatory neurons and inhibitory neurons separately (Fig-

ure S3). Generally speaking, all four systems performed worse

in inhibitory neurons than in excitatory neurons (see discus-

sion). Notwithstanding, the ENS2 system presented better

results in inhibitory neurons than the other models (Corr:

p = 0.013 for ENS2 vs. CASCADE, p < 0.0001 for the rest;

vRD: p = 0.0093/0.0018 for ENS2 vs. CASCADE/OASIS,

p < 0.0001 for the rest; ER: p < 0.0001 for ENS2 vs. MLspike;

VPD: p < 0.0001 for ENS2 vs. MLspike/OASIS). For example,

our ENS2 showed around 11%/54%/27% higher in Corr and

6%/40%/2% lower in ER than CASCADE/MLspike/OASIS for

inhibitory neurons. These results proved that our ENS2 system

yielded better performance consistently for both excitatory and

inhibitory neurons.
Cell Reports Methods 3, 100462, May 22, 2023 5



Figure 3. Performance comparison of our proposed ENS2 system against state-of-the-art models

(A–D) Neuron-wise performance is measured in (A) correlation, (B) van Rossum distance, (C) error rate, and (D) Victor-Purpura distance, respectively.

(E–H) Inference performance on each neuron in all datasets is summarized in (E)–(H) heatmaps.

Colored circles in (A)–(D) denote the performance for each individual neuron. Error bars represent medians with 95% confidence intervals. Asterisks indicate

significant difference using Friedman’s test with Dunn’s multiple comparisons between the indicated systems (****p < 0.0001).
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We also investigated how the performance of each algorithm

varied for each single neuron (or dataset) (Figures 3E–3H). The

comparison showed that neurons that were well/badly predicted

by one algorithm were usually predicted (relatively) well/badly by

the other algorithms as well (e.g., better on datasets 9–13 but

worse on datasets 14–15). This suggests that the performance of

inference for certain neuron (or dataset), regardless of algorithm,

would depend significantly on their own properties. We explored

the underlying factors to such phenomenonin further details in

the section ‘‘Factors affecting inference performance’’ below.

We selected several specific segments of recording from five

different neurons (Figures 2E, 2F, and 4A–4D) for further compar-

ison among the four algorithms. In Figure 2E, the recording with

GCaMP6s indicator has a relatively high frame rate of �158 Hz,

and the original calcium trace (in DF/F0) has large amplitudes

with only small noise. Figure 2F shows that CASCADE tended

to output broader spike-rate prediction and thus longer se-
6 Cell Reports Methods 3, 100462, May 22, 2023
quences of spike events than ENS2. This may be because the

‘‘noise-matching input’’ used by CASCADE could contain more

noise than the actual input because of rounding of noise level

to integer values in the algorithm. As such, the model perceived

more noise than actually existing in the inputs. In contrast, both

MLspike and OASIS significantly over-estimated with long se-

quences of spike events. Overall, our system (ENS2) showed

better predictions than these three methods for all evaluation

metrics (values on the right in Figure 2F). Figure 4A shows

another sample recording of high SNR but with GCaMP6f indica-

tor. In this case, our ENS2 system again recovered the spike-rate

and spike-event patterns the most properly, whereas the other

three systems tended to under-estimate and missed several

spikes. In contrast, when the frame rate of the recording was

decreased to 30 Hz with lower SNR (Figure 4B), the inference

task becamemore challenging. We observed slight over-estima-

tion from the ENS2 system and several missed spikes from the



Figure 4. Examples of spike-rates and spike-events prediction, computational complexity, and run time of our proposed ENS2 and state-of-

the-art models

(A–D) Spike-rates and spike-events prediction and the corresponding performance measured from ENS2 and state-of-the-art models. DF/F0 calcium inputs and

noise-matching inputs are shownwith the ground truth (GT) on top. The predicted (PD) spike rates and corresponding spike events by variousmethods are shown

below. Metrics on the right measure the performance on the corresponding neurons. Orange shaded areas represent regions of interest where discrepancies in

predictions are significant among different methods.

(E) Comparison of neural networks adopted in ENS2 and CASCADE.

(F) Comparison of the run time for training neural network models in ENS2 and CASCADE.

(G) Comparison of run time spent for spike-rate inference among different algorithms. The run time is measured for each neuron and normalized to 1 min.

(H) Same as (G), but for spike-event inference. Colored circles present each neuron from all 26 datasets.

Error bars represent medians with 95% confidence intervals. Text denotes mean values of all neurons. Asterisks indicate significant difference using Friedman’s

test with Dunn’s multiple comparisons (G) or two-sided Wilcoxon signed-rank test (F) and (H) between the indicated systems (****p < 0.0001). The run time was

measured on a PC with an Intel Xeon E5 1630 v4 CPU and Nvidia GTX 1080 GPU.
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Figure 5. Spike inference with ENS2 for calcium imaging data collected in primary visual cortex (V1) in a visual-stimulating experiment

(A) An example of image (A1) recorded from the binocular zone of the left V1 (A2) of mice subject to visual grating stimuli (A3). Visually responsive neurons are

labeled in (A1) and are considered for further analyses (see STARMethods). The inner color denotes the response type of the neurons. ‘‘Contra’’ and ‘‘ipsi’’ refers

to the neurons that are responsive to contralateral (right) and ipsilateral (left) eye inputs, respectively. ‘‘Both’’ means the neurons are responsive to both sides of

inputs. The outer color denotes the OSI computed from DF/F0 signal for that neuron.

(B and C) Examples of recorded calcium signals and the predicted spike rates and spike events by ENS2 (B1–B4 and C1–C4). Tuning curves and selectivity

indexes (B5–B10 and C5–C10) are computed based on three types of input (B2–B4 and C2–C4), respectively.

(legend continued on next page)
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CASCADE system. However, both MLspike and OASIS per-

formed poorly in this case, probably because of biased parame-

ters during auto-calibrations. Figure 4C demonstrates an

example with synthetic dyes, where the calcium dynamics are

slow, and much lower frame rate at 7.8Hz, and hence the signal

quality reduces. This slow dynamic caused shifted predictions in

time on ENS2, CASCADE, and MLspike. The low SNR caused

MLspike to over-estimate, whereas OASIS failed to detect any

spike in this segment. Nevertheless, the ENS2 system still recov-

ered the firing pattern the best among the four. In contrast, we

have shown that these systems performed worse on inhibitory

neurons (Figure S3), where the firing rate is generally much

higher with bursting. Figure 4D shows the inference results on

an inhibitory neuron. Considering the low frame rate and slow dy-

namic of calcium imaging, the ground-truth spiking activities

would be extremely challenging to be recovered with such high

firing rate. Nevertheless, predictions from ENS2 and CASCADE

resembled the temporal patterns of the ground truth much better

than MLspike and OASIS, in that MLspike tended to under-esti-

mate and OASIS tended to over-estimate. Together, we showed

that our proposed ENS2 systems could maintain robust infer-

ence capability under various conditions.

We would also like to point out that although our proposed

ENS2 is data driven, it is less computationally demanding than

the previous method (e.g., CASCADE; Figure 4E). For a specific

sampling rate (e.g., 60 Hz), series of noisematchingmodels were

trained in CASCADE to meet the need of different noise levels.

Each of their noise-matching models consisted of five identical

networks for ensemble learning to boost performance. In

contrast, only a single network is required in our ENS2 to predict

data under each sampling rate for various conditions. This may

benefit from our U-Net architecture design andmodel regulariza-

tion. The U-Net architecture may provide higher capacity with a

similar number of parameters. Proper regularization relieves

over-fitting and reduces the need of ensemble from multiple

models. As a result, the ENS2with U-Net requires 20,000 (around

18%) fewer trainable parameters, and only a maximum of 5.12

million data segments are fed for training, which is only 1/50 of

that in CASCADE (Figure 4E). In fact, the ENS2 system could

perform at similar level with only 50,000 trainable parameters

(around 30% of that in CASCADE) (Figure S1). In particular,

training of ENS2 on millions of samples during benchmarking

was completed in around 2min on average for each testing data-

set, which was one order faster than CASCADE (Figure 4F). This

will enable cost-effective re-training or fine-tuning when more

paired datasets are available to improve our model further.

We also evaluated the efficiency of these systems during infer-

ence (Figures 4G and 4H). For spike-rate inference, our ENS2

system took one order less time than CASCADE to complete

for every 1 min of recording, and two orders less time than

MLspike on average. The OASIS system showed the fastest

spike-rate inference, despite compromised performance shown

in our comparisons (Figures 3A–3D, S2C, and S2D). For spike-
(D and E) Comparisons of OSI/DSI computed from DF/F0 signal and after spike

circle/cross/dot represents one recorded neuron.

Error bars represent medians with 95% confidence intervals. Asterisks indicate

between the indicated predictions (****p < 0.0001).
event inference, our ENS2 system with the greedy estimation al-

gorithm (see above; Figure 1B) took two orders less time to com-

plete than MLspike. The run time was not measured for

CASCADE as its built-in estimation algorithm took days to com-

plete the benchmark for all datasets. The run time was not pre-

sented for OASIS either because the spike-event predictions

were obtained by hard thresholding. Overall, we show that our

ENS2 demonstrated better performance and computational effi-

ciency for inferring spikes from calcium data than the state-of-art

methods.

Application to information encoding in V1
In the above benchmark, we showed that ENS2 accomplished

relatively high performance and high efficiency for inference in

un-seen recordings. Next, we ask whether our system would

provide additional insights to physiological observations in vivo

as previous models did.5,7,8 Here, we trained our full ENS2 sys-

tem with all 20 excitatory datasets available and then deployed

it to un-seen calcium imaging data recorded from the V1 (Fig-

ures 5 andS4).We collected in vivo calcium fluorescence images

with GCaMP6s indicators from V1 of mice that were shown to

drift grating stimuli of four unique orientations that move in two

opposing directions (eight directions total) (Figure 5A; see

STAR Methods). Responsive neurons were selected, and their

fluorescence signals were processed into calcium traces (DF/

F0) for further analyses (Figures 5B1, 5B2, 5C1, and 5C2; see

STAR Methods). We then used our ENS2 system to predict the

spike rates (Figures 5B3 and 5C3) and spike events

(Figures 5B4 and 5C4) accordingly. We compared our analyses

with these different inputs and verified whether the spike infer-

ence has any positive impact in understanding the information

encoding in V1 than the rawDF/F0 trace alone. Here, two presen-

tative neurons are shown in Figures 5B and 5C.

We first constructed the tuning curves (see STARMethods) for

each neuron (Figures 5B5–7 and 5C5–7). It was observed that

the resultant tuning curves were broader when computed using

DF/F0 (Figures 5B5 and 5C5) than using spike rate or spike event

(Figures 5B6, 5B7, 5C6, and 5C7). In particular, the spike-rate/

spike-event tuning curves exhibited sharpened preferred orien-

tation for these cells. The broader tuning curve by DF/F0 was

mainly due to the long ‘‘tail’’ (decaying edges) in DF/F0 signal af-

ter each peak (Figures 5B1 and 5C1) resulting from the slow dy-

namics of calcium indicators. Consequently, the long ‘‘tail’’ of

DF/F0may lead to a shift in the preferred orientation and broader

tuning curves. In contrast, by predicting the spike rate/spike

event with our ENS2 system, we successfully removed these

long tails in the signal. We further quantified the preferred orien-

tations by computing the orientation selectivity index (OSI) and

direction selectivity index (DSI) from the tuning curves for each

neuron (see STARMethods). The neuron in Figure 5B is a sample

cell that exhibited high OSI but low DSI, whereas the neuron in

Figure 5C is exhibiting high OSI and high DSI54 (see STAR

Methods). Our results show that OSI computed from DF/F0
inference with ENS2 for all 290 contra and 245 ipsi neurons considered. Each

significant difference using Friedman’s test with Dunn’s multiple comparisons
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was lower for both neurons in Figures 5B and 5C but was higher

when computed from spike rate/spike event (from 0.47 to 0.79/

0.80 and from 0.26 to 0.79/0.73, respectively). Similarly, DSI

computed from DF/F0 was lower for the neuron in Figure 5C

but increased when computed from spike rate/spike event

(from 0.36 to 0.71/0.63). Figures S4A and S4B showed two neu-

rons that appeared to have a preferred orientation at 0� but with a

strong decaying tail in their DF/F0. Due to such up-shifted ampli-

tude in DF/F0, the computed OSI or DSI tends to be higher. In

contrast, the predicted spikes removed the up-shifting and re-

sulted in a more clear-cut readout of the OSI/DSI measurement

(such as in Figure S4B).

This observation is consistent for the neuron population we

have recorded (290 contra and 245 ipsi neurons; see STAR

Methods). Figures 5D1 and 5D2 showed that OSI computed

with spike event was higher than that computed with DF/F0 in

>80% of the cells (82.76% for contra neurons and 81.63% for

ipsi neurons). Also, Figures 5D3 and 5D4 show that DSI

computed with spike event was higher than that computed

with DF/F0 in >60% of the cells (62.41% for contra neurons

and 67.76% for ipsi neurons). Overall, the mean OSI/DSI for

both contra and ipsi neurons was higher with spike event/spike

rate than DF/F0 (p < 0.0001 for all cases; Figure 5E). From the re-

sults of all these cases, we believe that the OSI and DSI

computed from spike rate/spike event predicted from our

ENS2 system would discriminate the response pattern of these

neurons better than those derived from the original DF/F0.

It is also worth noting how the spike inference would benefit

analyses of neurons that show weak responses or where the

SNR is low (Figures S4C and S4D). In Figure S4C, the DF/F0 of

this neuron varied over a range of only 0.2 such that the SNR

was very low. The resultant noisy tuning curves suggested

imprecise orientation or direction selectivity for this neuron.

Instead, the spike inference increased the response SNR such

that the tuning curve was much sharpened, showing preferred

orientation at 0� and 180� and hence an increased OSI. On the

contrary, in Figure S4D, the tuning curve from DF/F0 resulted in

a sizable OSI (0.43), which may (falsely) suggest that this neuron

has an orientation preference at 0�. Nevertheless, after spike

inference with our ENS2, the small peaks in the original DF/F0
signal were filtered out, resulting in negligible OSI and DSI.

This suggested that this neuron in fact has very weak selectivity

and may not be considered a real responsive cell. In this sense,

the spike inference by our ENS2 increased the SNR of the

neuronal response to not only improve the sensitivity in detecting

the orientation selectivity of the neurons but also to screen out

some marginally responsive neurons.

Factors affecting inference performance
To understand further what contributed to good spike inference

performance for data-driven methods, we investigated how the

data itself affected the performance of these models. These in-

sights may further facilitate data collection and preparation for

improving data-driven models (e.g., our ENS2).

Figures 6A–6D show the performance with individual dataset

achieved by different configurations of models (the configura-

tions are numbered horizontally in the same order as in

Figures 2A–2D). The results show that performance indeed de-
10 Cell Reports Methods 3, 100462, May 22, 2023
pended strongly on the dataset. For instance, regardless of the

networks used, datasets 15 and 17 achieved notably worse

vRD than other datasets (Figure 6B), and some datasets (e.g.,

21 and 22) showed considerably worse ER than the others (Fig-

ure 6C). These were also observed when comparing our ENS2

with state-of-the-art methods (Figures 3E–3H). We extracted a

number of parameters from the calcium recording for each

neuron, such as noise level, peak firing rate, frame rate, and cal-

cium transient amplitude (see STAR Methods), and examined

how they may affect the inference performance (Figures 6E–6H

and S2I). Among these, it is shown that the transient amplitude

and the ratio of transient amplitude by noise level (as a general

index of SNR) of the dataset were the key predictors for the infer-

ence performance (including Corr, vRD, ER, and VPD). We also

noticed that the original transient amplitudes in DF/F0 were of

critical importance for inference, which related the number of

spike events for a certain calcium indicator. A previous model-

based study also testified that an accurate estimate of transient

amplitude improved performance.55 The transient amplitude

indeed strongly depends on the calcium indicators’ sensitivity.

The frame rate also correlated with the inference performance

significantly, probably because higher frame rate can capture

the transient amplitude better.

We next investigated the preferred ways of supplying the

training data for our system. We first examined this by training

the model using two different subsets of the training data for

each of the testing data, according to the types of calcium indi-

cators. Here, ‘‘All’’ used all the possible training sets in training

(same as the default leave-one-dataset-out protocol), whereas

‘‘Same’’ used only those training datasets with the same calcium

indicator as the testing data. Note that these simulations were

performed separately for datasets with excitatory and inhibitory

neurons, respectively (see STAR Methods). Also note that some

of the indicators comprise only one dataset (e.g., GCaMP5k) and

hence they were not tested in the ‘‘Same’’ protocol. Figures 6J–

6M and S2J show that ‘‘Same’’ did not perform better than ‘‘All’’

significantly in general. Similar observation was found in Rup-

precht et al.,38 where they reported that clustering the same cal-

cium indicators for training showed no advantage in CASCADE.

It seems that a generalized inference model (‘‘All’’) is sufficiently

good for the inference task than using multiple indicator-specific

models (‘‘Same’’). The advantage of indicator-specific training

was most prominent in datasets with GCaMP6f indicators

(Figures 6I–6M, S2J, and S2K). This was probably because

GCaMP6f is the dominating indicator in the whole benchmark

database. Nevertheless, the difference remained quite small.

As such, we recommend training the neural network-based

model (e.g., our ENS2 system) with all available paired data to

exploit their generalization capability.

Because our ENS2 is a data-driven model, we also wondered

howmuch training data are needed for achieving good inference

performance. We randomly sampled different numbers of seg-

ments from the total of over 20 h of available paired data from

all excitatory datasets. When supplying all available paired

data to the model, the total duration was approximately 20 3

96 h because the paired data were segmented with a step of

one data point (see STAR Methods). Not surprisingly, the perfor-

mance of inference increases with the amount of training data,



Figure 6. Effect of dataset properties, types of calcium indicator, and training data size on spike inference performance

(A–D) Performance with different configurations (see Figures 2A–2D) (x axis) on each dataset (y axis). Colormap shows the performance of the median neurons of

each dataset.

(E–H) Spearman’s rank correlation coefficients (r) between the five properties of each dataset and the corresponding spike inference performances. Red dots

represent each neuron from all datasets.

(I) An example to illustrate how the division of datasets was made based on calcium indicator when a GCaMP6f dataset was regarded as testing dataset. When

testing on an excitatory/inhibitory dataset, ‘‘All’’ refers to all the other 19/5 datasets, and ‘‘Same’’ refers to the datasets that also used GCaMP6f. Note that the

simulations were performed separately for excitatory/inhibitory datasets.

(J–M) Performance of spike inference for different types of calcium indicator. Colored circles present the performance of median neurons of each testing dataset.

Asterisks indicate significant difference using two-sided Wilcoxon signed-rank test between the indicated partitions (*p < 0.05).

(N–Q) Performance of spike inference with different length of training data. Shaded areas denote medians with 95% confidence intervals.
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but it plateaued with roughly 5 h of paired data (Figures 6N–6Q,

S2L, and S2M).

Several other factors may also have significant impact on the

inference performance, such as sampling rate (resolution of pre-

diction), size of smoothing window (for spike-rate prediction; see

STAR Methods), and hyper-parameter of evaluation metric (e.g.,

ERwindow size; see STARMethods). The comparisons are sum-

marized in Figures 7A–7D. Figure 7A shows that the Corr

increased consistently with larger smoothing windows. Similar

observations can also be found in several recent studies.35,36,56

This is because the GT spike rates convolved from the GT spike

events with larger smoothing windows have smoother and

broader patterns, which favored the measure of Corr. Figure 7F

shows the GT spike rates obtained by convolving the GT spike

events in Figure 7E with varying smoothing window sizes (25–

200 ms) and their corresponding predictions. Apparently, the

smoother and broader waveform of GT spike rate (with larger

smoothing windows) simplified the prediction task, and it was

easier to achieve a high Corr with such simpler and smoother

PD spike-rate waveform. This was also true for the spike-rate

evaluation with vRD and Error (Figures 7 and S2N). However,

we argued that such resultant ‘‘better’’ performance (e.g., high

Corr) would not always guarantee meaningful predictions as re-

flected in the PD spike events, because multiple GT spike events

could be merged into a single peak of spike rate (Figures 7E and

7F). Instead, the temporal firing patterns could be better

predicted with narrower smoothing windows. In contrast,

spike-event predictions (VPD and ER; Figures 7C, 7D, and 7G)

generally improved with higher sampling rates. This is quite

reasonable because smaller bin sizes allow more precise esti-

mation of spike events from spike-rate predictions. Moreover,

when high sampling rates were used (e.g., 30 or 60 Hz), VPD

and ER also reduced along with smoothing window sizes, indi-

cating improved spike-event predictions. Here, the spike-event

inference performancewould possibly be restricted by the overly

smoothed spike rates (e.g., Figure 7F). We also analyzed the ef-

fect of ER window sizes on ER evaluation (Figure 7G). As

expected, smaller ER window sizes put higher demand on the

evaluation of the algorithm and hence resulted in larger ER,

which is similar to the findings reported in a previous study.29

Given these observations from our simulation results, we sug-

gest that our ENS2 system should be trained with inputs at sam-

pling rate of 60 Hz (by re-sampling when necessary) with 25-ms

smoothing windows for practical use (labeled with white dashed

boxes in Figures 7A–7D, S2N, and S2O). Further increase in the

sampling rate would cause computational overhead, whereas to

reduce the smoothing window size further might be harmful to

training neural networks with gradient descent. We also

repeated our benchmark using Causal smoothing kernels as in

CASCADE.38 Nevertheless, we found that using Gaussian

smoothing kernels generally outperforms Causal smoothing ker-

nels (p < 0.001 for Corr/ER/Error; p < 0.0001 for vRD; p = 0.42 for

VPD; data not shown). It is also worth noting that the CASCADE

algorithm38 was indeed benchmarked under 7.5 Hz with 200-ms

smoothing windows. Figure S5 shows that our ENS2 consistently

outperformed the CASCADE algorithm at these settings for both

spike-rate and spike-event predictions (Corr: p = 0.0058; vRD/

error/bias: p < 0.001; ER/VPD: p < 0.0001) (also labeled in red
12 Cell Reports Methods 3, 100462, May 22, 2023
dashed boxes in Figures 7A–7D, S2N, and S2O). These results

support that our ENS2 is a versatile and highly effective algorithm

for spike inference from calcium signals.

DISCUSSION

In this work, we have developed a high-performance inference

system (ENS2) and showed its usefulness in inferring both spike

rates and spike events. We found that networks with convolu-

tional layers (e.g., U-Net and Le-Net) typically out-performed

the other (e.g., FC-Net). This may be partly due to the regulariza-

tion capability of the convolutional layers. In other words, it pro-

vides larger receptive fields (with context information such as

calcium dynamics) with fewer trainable parameters and con-

strained kernel shapes. In contrast, it is quite intuitive for humans

to examine the calcium segments fraction by fraction to identify

spike events, just as sliding a kernel for convolution by the

artificial neural networks. In fact, recent data-driven models

(CASCADE,38 S2S39) also used a network with convolutional

layers. We speculate that the state-of-art performance of

ENS2 also benefits from the skip-connection structure and

sequence-to-sequence prediction manner of our modified

U-Net (Figure 1C). Recently, a 3D U-Net-based model has also

been proposed to improve SNR in calcium images and facilitate

calcium signal extraction.57 In contrast, we revealed in our re-

sults that MSE loss could readily regulate the optimization of

such models. Although Corr is indisputably a major evaluation

metric for spike inference, we suggest that using Corr as the

sole loss function for deep learning models (e.g., in S2S39) might

not be ideal in real-world tasks. For example, the inferred spike

rates may have the correct temporal pattern but are incorrect

in the absolute amplitudes, hence the spike events cannot be

recovered faithfully.

Although inferring spikes from calcium signals is a typical

sequence-to-sequence translation task, recurrent neural net-

works (RNNs) (e.g., LSTM-based [long short-term memory]

models36) may also be applied here. Nevertheless, RNN has to

iteratively compute on each data point along time. Thus,

the computational efficiency would be quite low compared

with CNN-based models. A similar issue is also faced by the

powerful Transformer-based models58 designed for sequence-

to-sequence translation, which have overly large numbers of pa-

rameters for online application of spike inference. On the contrary,

in this work, we used deep convolutional networks with

sequence-to-sequence translation ability (e.g., 1D U-Net) to

retrieve local information in data segments for inference, and it

showed state-of-art performance with desirable efficiency. To

further improve the performance potentially, one may provide

global information (e.g., statistical indicators such as global noise

level) explicitly to the models. However, this requires sufficiently

long recording for obtaining reliable statistics and would compro-

mise the system efficiency when online application is needed.

Inhibitory neurons typically have higher instantaneous firing

rates (Table S1), which complicated the spike inference task.

Furthermore, the low frame rate and slow dynamics of calcium

imaging may cause losses of even more details of the high-fre-

quency spiking activities, leading to lower SNR in these neurons

(e.g., Figure 4D). As a result, it should be expected that the



Figure 7. Effect of sampling rate, smoothing

window size, and error rate window size on

spike inference performance

(A–D) Performance in terms of correlation, van Ros-

sum distance, error rate, and Victor-Purpura dis-

tance, respectively, when measured under different

sampling rates and smoothing window sizes. Shown

values represent median performance among all

neurons. White and red squares denote the choice of

sampling rate and smoothing window size adopted

by ENS2 and CASCADE, respectively.

(E) Example of calcium signals under 60 Hz with

paired spike events.

(F) Examples of ground-truth (GT) spike rates

convolved with different smoothing window sizes

(from 200 to 25 ms). The resultant spike-rate and

spike-event predictions (PD) are also shown.

(G) Performance of error rate when measured under

different sampling rates and error rate window sizes.

Error bars represent medians with 95% confidence

intervals.
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inference performance will be lower in these inhibitory neurons

than the excitatory neurons. In contrast, the high firing rates

also raise challenges to algorithms when discriminating the

actual units of spikes in a single time step (time bin), because

the transient amplitudes may change non-linearly as the number

of spikes increases. It was shown that recovering every single

spike from the calcium trace would be extremely difficult (Fig-

ure 4D). However, systems (e.g., ENS2) that could properly pre-

dict the temporal firing patterns at a longer timescale for inhibi-

tory neurons are still valuable tools for neuroscience research.

Future work could explore how to incorporate the biophysical

properties of these bursting patterns into the neural network,

which will potentially improve the inference performance in the

inhibitory neurons.59

For actual applications, data-driven methods (e.g., ENS2 and

CASCADE) are off the shelf for use without the need of further

calibration, thanks to the generalization ability of neural net-

works, although CASCADEwould need pre-trainingmultiple ver-

sions to cater different noise levels. In contrast, for model-based

methods (e.g., MLspike and OASIS), it is often necessary to

define the parameters empirically or calibrate using some pre-

defined algorithm for fresh recording, where ground-truth paired
Cell R
data are normally unavailable. The similar

scenario was encountered in our leave-

one-dataset-out benchmarking where the

testing dataset was separated from the

training set. Interestingly, we found that

both tested model-based systems tend to

under-estimate the spike rates and/or spike

events (Figures S2D and S3F). The two

data-driven systems appear to perform bet-

ter on these un-seen data, which partly

demonstrate their better generalization

capability in this application.

Importantly, we have demonstrated that

our spike inference algorithm could improve

the analyses of real-world calcium data

such as in the study of neuronal orientation
preference in V1 (Figures 5 and S4). Our results demonstrate

that our algorithm can help perform analyses with both high

throughput (from calcium imaging) and high precision (from

spiking activities) in the study of our brain.

Given that calcium recordings would be extremely noisy in

certain experimental scenarios, we examined how the ENS2

would perform in these conditions. We retrieved 50 artificial cal-

cium recordings synthesized by the NAOMi generator60 avail-

able from Rupprecht et al.38 We then iteratively added white

noise, with noise levels ranging from 1 to 15, onto them. We

tested the existing ENS2 system on these noisy data. The results

are shown in Figure S6, where ‘‘NA’’ represents the noise-free

synthetic data. The performance of ENS2 indeed degraded as

the data were becoming noisier. We showed some examples

of these noisy calcium signals in Figure S6G, where the transient

amplitudes were almost visually undistinguishable from the

noise (e.g., noise level 15). We then retrained the ENS2model us-

ing the 20 benchmark datasets (as described in STARMethods),

but nowwhite noise (up to noise level 15) was randomly added to

the training calcium signal segments. We denote this newmodel

trained withmuch noisier data as ‘‘Noise-Augmented ENS2.’’ We

found that the Noise-Augmented ENS2 generally performed
eports Methods 3, 100462, May 22, 2023 13
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better than the original ENS2 (Figure S6). This suggests that the

designed U-Net architecture and model regularization help in

generalizing to various noise levels in a single model. On one

hand, this simplifies the inference pipeline, because a single

model is sufficient to handle multiple noise levels, in contrary

to some previous data-driven systems where multiple models

were needed for various corresponding noise levels (e.g.,

CASCADE). On the other hand, this calibration-free and general-

ization capability of our data-driven system could also make it

more convenient to use than the model-based systems.

Wealso tested the performance of the ENS2 system in the pres-

ence of ‘‘pink noise’’ and ‘‘red noise,’’ which simulate low-fre-

quency biases or baseline drifting (Figure S7). Figure S7G shows

someexamplesofsyntheticcalciumtracewithaddednoise (white,

pink, or red, with noise level of around 4). The performance of both

original and Noise-Augmented ENS2 significantly degraded in the

pink or red noise (Figure S7). In fact, the Noise-Augmented model

performed even worse than the original one when measured with

vRD and VPD. Apparently, these low-frequency noises are more

challenging to handle. It seems that they were less effectively

captured in the U-Net architecture. Our results suggest that the

low-frequency noise, such as irregular baseline drifts, may be bet-

ter taken care of at the pre-processing stage.

Limitations of study
Several potential improvements for ENS2 are outlined as follows.

Because ENS2 is a data-driven model, its performance would

fluctuate upon different training data with various quality, diver-

sity, and pre-processing procedures, etc. The benchmark data-

base (Table S1) used in this work is essential to produce prom-

ising inference performance with the ENS2 system, yet further

improvement could also be made. We have re-sampled both

the training data and testing data to 60 Hz for good-quality infer-

ence (Figure 7). The re-sampling was performed with a Fourier-

based method (see STAR Methods), which may not provide

notable additional information to our models. We suggest that

adopting diffusion-based probabilistic models designed for

biomedical time-series signal forecasting and imputation (e.g.,

Ho et al.,61 Tashiro et al.,62 and Alcaraz and Strodthoff63) may

strengthen such re-sampling processes with temporal depen-

dency. In contrast, it is possible that including more synthetic

paired data (e.g., NAOMi60) and/or generative models (e.g.,

generative adversarial networks64) for data augmentation may

further improve the generalization capability of our inference sys-

tems. As a preliminary study, we have shown above that intro-

ducing additive random noise to the training data artificially

could improve the noise tolerance of our system. Lastly, our

inference system is designed to be used in an end-to-end trans-

lation manner, where the inputs are DF/F0 calcium traces (see

STAR Methods). In fact, extracting DF/F0 signals from calcium

imaging is another non-trivial process, in addition to the spike

inference task here. During this extraction process, the quality

of the resultant DF/F0 calcium trace may limit and/or bias the

inference of our system. We therefore envision that modifying

our ENS2 to directly take inputs from the source image-end

(e.g., Pnevmatikakis65) and output to the spike-end may allow

further exploitation and utilization of extra and unbiased informa-

tion for spike inference.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Benchmark database Rupprecht et al.38 https://doi.org/10.1038/s41593-021-00895-5

Experimental models: Organisms/strains

Ai148 mice The Jackson Laboratory RRID:IMSR_JAX:030328

Software and algorithms

ENS2 (this work) https://github.com/TinLab/ENS2 https://doi.org/10.5281/zenodo.7787553

CASCADE38 https://github.com/HelmchenLabSoftware/Cascade https://doi.org/10.5281/zenodo.5477429

MLspike29 https://github.com/MLspike N/A

OASIS32 https://github.com/j-friedrich/OASIS N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Chung Tin (chungtin@

cityu.edu.hk).

Materials availability
This study did not generate new materials.

Data and code availability
d This paper analyzes existing, publicly available data as of the date of publication. DOI of the source of benchmark database is

listed in the key resources table. In vivo calcium imaging data from mice V1 reported in this paper will be shared by the lead

contact upon request.

d All original code has been deposited at https://github.com/tinlab/ens2 and the linked repositories therein, and is publicly avail-

able as of the date of publication. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ai148 mice (Jackson Lab strain #030328) were crossed with CamKII-cre mice to express GCaMP6s in excitatory neurons. Postnatal

day (P) 25 mice (both male and female) were used in our experiments. All procedures were conducted under protocols approved by

theMassachusetts Institute of Technology’s Animal Care andUseCommittee and conformed toUSNational Institutes of Health (NIH)

guidelines.

METHOD DETAILS

Benchmark database
In this study, we used the publicly available datasets containing both calcium imaging signals and simultaneously recorded electro-

physiological signals from excitatory neurons13–17,35,38,66–68 and inhibitory neurons.38,67,69 For benchmarking and algorithm develop-

ment purposes, theywere recently compiled by38 into an extensive databasewith 27 datasets. Specifically, we adopted dataset #2 to

#27 following38 for a fair comparison, and they are labeled as dataset 1 to 26 in this study as shown in Table S1. Specifically, dataset 1

to 20 cover imaging of excitatory neurons from eight different kinds of calcium indicators, a wide range of frame rates (7.7Hz–500Hz),

and various peak firing rates (1.18Hz–12.67Hz, averaged on each dataset). Over 20 h of paired ground truth data (calcium signals and

spike-events) were recorded from a total of 229 neurons of either mouse or zebrafish brains. On the other hand, dataset 21 to 26

contain inhibitory neurons withmuch higher peak firing rates (up to 57.31Hz). There is a total of over 15 h of paired data from 16 in vivo

and 41 in vitro inhibitory neurons.
Cell Reports Methods 3, 100462, May 22, 2023 e1

mailto:chungtin@cityu.edu.hk
mailto:chungtin@cityu.edu.hk
https://github.com/tinlab/ens2
https://doi.org/10.1038/s41593-021-00895-5
https://github.com/TinLab/ENS2
https://doi.org/10.5281/zenodo.7787553
https://github.com/HelmchenLabSoftware/Cascade
https://doi.org/10.5281/zenodo.5477429
https://github.com/MLspike
https://github.com/j-friedrich/OASIS


Article
ll

OPEN ACCESS
In each dataset, calcium signals are provided as the percentage changes of fluorescence amplitude against baseline (DF/F0), while

individual time stamps label spike-events. We also computed the noise-levels as defined in Rupprecht et al.38 and listed them in

Table S1. In brief, the noise-levels n are computed by,

n =
MedianfjDFFt + 1 � DFFtjgffiffiffiffi

fs
p

where DFFt represents the fluorescence amplitude DF/F0 at any given time t; and fs is the sampling rate of the given calcium

recording. This formula computes the median fluctuation value from a whole recording and scales it with
ffiffiffiffi
fs

p
, so that it is quantita-

tively comparable across datasets.38 Furthermore, we presented the increase inDF/F0 induced by one action potential (calcium tran-

sient amplitude) for each dataset. The transient amplitude is computed using the averaged calcium kernel, which was extracted from

paired ground truth data using the deconvolution functionwith regularized filter (‘‘deconvreg’’) inMATLAB.We computed the approx-

imate instantaneous firing rates of a neuron using a 5 s slidingwindowwith steps of 1/60 s (or 1 data point). The 95%quantile values of

these computed firing rateswere defined as the peak firing rate of this neuron. The values are shown asmean ±1 standard deviation in

Table S1.

Data preparation: Re-sampling data
To develop and validate the spike inference algorithms, we first re-sampled the input data (both training set and testing set) of

different frame rates to the same sampling rates. In this work, we referred to the original frequencies where calcium signals

were captured as frame rates, and the re-sampled frequencies as sampling rates. Given that most of the datasets were captured

with frame rates not higher than 60Hz (Table S1), we re-sampled all calcium signals to 60Hz. All the inference systems were then

benchmarked under this same sampling rate. We also tested our system under 7.5Hz as suggested by CASCADE.38 The re-sam-

pling is performed with the ‘‘resample’’ function of SciPy. The impact of sampling rates on inference results is discussed in

this work.

Data preparation: Pre-processing of inputs
We used the original DF/F0 calcium inputs for our system (where only re-sampling is performed). The training target (expected out-

puts from the systems) are prepared as below. For a pre-defined sampling rate (e.g. 60Hz), raw time stamps of ground truth spike

(spike-events) are re-allocated into their corresponding time bins. We can then compute the sequence of spike counts by counting

the total firing events in each time bin. The sequences are then smoothed with Gaussian filters to facilitate gradient descent. The

smoothing window size t for the Gaussian kernels was set to 25ms, which produces the optimal spike-event predictions with

high temporal resolution in general. The selection of smoothingwindow size for deep learning based systems is also carefully studied.

The convolved spike counts are denoted as ‘‘spike-rate’’ in this work.

Data preparation: Data segmentation
To train the neural networks properly, paired sequences of calcium signals and spike-rates were segmented with a moving step of 1

data point (Figure 1A). The length of each segment was set to 96 data points. In the case of sampling rate of 60Hz, a total of�4million

segments of paired data were obtained for training.

Evaluation of spike inference algorithms
How to reliably assess the performance of the spike inference tasks remains an open topic, where a single evaluation metric

could be biased in certain aspects.35,36,38,39 In this regard, recent studies proposed to employ multiple metrics to supplement

each other.29,35–39 In this work, we used four metrics to examine spike-rates prediction and two others for spike-events

prediction.

Firstly, Pearson correlation coefficient (Corr) is used as the primary metric for comparing similarities of spike rates as follow:

CorrGT ;PD =
E½ðGT � mGT ÞðPD � mPDÞ�

sGTsPD

(Equation 4)

where GT and PD stand for ground truth and prediction, respectively. Secondly, we use the van Rossum distance (vRD)50 for the

evaluation of spike rates prediction:

vRDGT;PD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

R ½GTðtÞ � PDðtÞ�2dtR ½GTðtÞ�2dt

s
(Equation 5)

where the time constant t is the normalizing factor (smoothing window size) for smoothing spike-events into spike-rates (e.g., t =

0:025s for our proposed system). Moreover, Error and Bias proposed in38 are also used to evaluate spike-rates:

Error =

R jPD � GTjdtR
GTdt

(Equation 6)
e2 Cell Reports Methods 3, 100462, May 22, 2023
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Bias =

R ðPD � GTÞdtR
GTdt

(Equation 7)

On the other hand, for measuring spike-event prediction, we adopt the Victor-Purpura distance (VPD).70 It is defined as theminimal

cost to transform the PD spike-events to theGT spike-events. The cost for either inserting or deleting a spike equals 1, while shifting a

spike by Dt costs qjDtj. We use the default value q = 1 in this work. To make comparison across different datasets, we present the

VPD as the minimal total cost divided by the total number of GT spikes.

Lastly, we compute the error rate (ER) as below,29,37,55 which measures the F1 score of the predicted spike-events:

ERGT;PD = 1 � F1 = 1 � 2
sensitivity3precision

sensitivity +precision
(Equation 8)
sensitivity =
true positive

true positive+ false negative
(Equation 9)
precision =
true positive

true positive+ false positive
(Equation 10)

The GT spike-events and PD spike-events are matched based on their VPD. Here, a spike is said to be correctly predicted if it co-

exists with its real counterpart within a time window of 50ms (defined as the ER window size). This time window is one order smaller

than that used in previous study,29 suggesting amuchmore stringent assessment ofmodel performance in this study.We also exam-

ined the effect of ER window sizes in this work.

Comparison to other state-of-arts models
Our ENS2 system was compared against the state-of-the-art algorithms, including the data-driven method, CASCADE38 and the

model-based methods, MLspike29 and OASIS.32 All of these followed the leave-one-dataset-out protocol.

For the CASCADE algorithm, we followed the training protocol as described.38 For each dataset, the ‘‘noise matching inputs’’

were obtained from CASCADE to reproduce results with the algorithm (e.g. artificial noise is added to the 19 training datasets to

match the noise-level of the testing excitatory neurons, and vice versa for inhibitory neurons). Five identical models were trained

separately for 10 epochs. The averaged outputs of these five models were regarded as the final spike-rate predictions. When

testing under 60Hz sampling rate, the smoothing kernel size was reduced from 0.2s to 0.025s. Spike-event predictions are esti-

mated using a Monte-Carlo importance sampling based algorithm in CASCADE.38 All hyper-parameters are kept intact as in the

CASCADE algorithms.

For the MLspike algorithm,29 original DF/F0 calcium inputs are used. For datasets with OGB synthetic dyes, we set saturation

g = 0:091. For datasets with GECIs, we used the full physiological model version ofMLspike with parametersmodeling saturation,

Hill exponent, c0, and rise time as described in Figure S6A of Deneux et al.29 For the remaining datasets, we used the polynomial

nonlinearity modeling in MLspike with coefficient ½p2;p3� = ½1:0; 0:0�. The values of the model parameters, A (transient amplitude),

t (calcium decay time constant), and s (noise amplitude) were obtained using its built-in auto-calibration algorithm, since manual

calibration on fresh recordings without ground truth is also challenging in actual application (see discussion). In case that the auto-

calibration failed, we supplied the parameters of A and tmanually (following the methods shown in Figure S6A of Deneux et al.29).

We have tested that MLspike performed worse when the two parameters were set manually. For a fair comparison, in addition to

the spike-event outputs from MLspike, we also obtain its native spikest_prob output for evaluating its performance in spike-rate

inference.

For the OASIS algorithm,32 we used the L1-regularized version by calling the deconvolve function. Original DF/F0 calcium traces

were fed as inputs. We set optimize g = 5 to auto-calibrate the parameter g. We also repeated the benchmark with L0-regulari-

zation and/or by setting other g values, and the overall performance were similar. The hard thresholds for obtaining discrete spike-

event outputs were computed as 55% (slightly over one-half as described in OASIS) of the real calcium transient amplitude of

each neuron, following the suggestion in OASIS.32 Note that without ground truth paired data, the hard thresholds will need to

be estimated iteratively.

In vivo experiments: Animal preparation and surgery
Ai148 mice (Jackson Lab strain #030328) were crossed with CamKII-cre mice to express GCaMP6s in excitatory neurons. Animal

surgery was described previously.12 In brief, postnatal day (P) 25 mice were anesthetized with 3% isoflurane and confined by
Cell Reports Methods 3, 100462, May 22, 2023 e3



Article
ll

OPEN ACCESS
stereotaxic frame. Scalp was sterilized and removed for the cranial window surgery. Skull above the left binocular visual cortex (Fig-

ure 5A3) was replaced by a 3mm/5mm stacked circular glass coverslip to ensure transparency for imaging. A tailor-made head-plate

was fixed on the skull with Metabond adhesive cement.

In vivo experiments: Two-photon calcium imaging
The imaging processwas performed by two-photon systemwith awake and head-fixedmice. Themicewere allowed to recover for at

least 3 days after the craniotomy, followed by a habituation on head-fixation. Prairie Ultima with a Spectra Physics Mai-Tai Deep See

laser two-photon system (Prairie Technologies) was used for imaging. 203 Olympus objective lens was used for functional imaging.

The calcium signals of neurons from layer 2/3 were visualized at 920nm laser wavelength with acquisition frame rate around 7.6Hz

(averaging from 4 consecutive frames around 30Hz).

In vivo experiments: Visual stimulation protocols
The visual stimulus was delivered from Psychtoolbox-3. A computer was connected to a 10-inch 1080p LCD monitor for display.

Drifting gratings were used to stimulate the visual cortex (Figure 5A2-3). Each trial of display lasts for 10 s and repeated for 20 trials

per stimulus, resulting in imaging session of 200 s. At the beginning of each trial, 6 s of gray screen is presented to the animals (defined

as the resting period), followed by 4 s of grating stimuli (ON period). 8 directions were presented from 0 to 315� to the horizontal, while

each direction was displayed for 0.5 s and started with another direction of 45� increment (Figure 5A3).

In vivo experiments: Data processing and analysis
The recorded images stacks were processed in Fiji (ImageJ version 1.53c) before data extraction. The slices from contralateral

(contra) and ipsilateral (ipsi) recordings (with respect to the visual stimuli) were combined and stacked by maximum intensity

Z-projection to concatenate into a single movie. The motion artifact was minimal with plugin ‘Template Matching’ by recognizing

and aligning blood vessels over large region within slices. The Z-projected slice was kept for alignment only. The aligned movies

were imported to Suite2P52 (version 0.10.1, https://github.com/MouseLand/suite2p) for neuron segmentation. The following param-

eters were changed from the default: tau of 0.75, denoise of 1, diameter of 9, anatomical only of 1, maximum iterations of 1, frames

per second of 7.5 and 191 minimum neuropil pixels. The regions of interest (ROIs) and corresponding cells’ activities were detected

and saved in.mat file for further processing in MATLAB.

The ROIs of cell were identified with Suite2P-generated file, iscell, and the non-cell components were removed. Z score and the

relative change in fluorescent (DF/F0, where F0 was the fluorescence baseline of that ROI) was calculated. A two-step approach was

used to further select the visually responsive neuron, which showed significant activities to specific direction(s). First, the DF/F0 of

each direction was averaged within trial and compared to the baseline level averaged over two consecutive seconds (e.g in

Figures 5B and 5C, from the start of fourth sec. to end of fifth sec.) using two-sided t-test at 5% significance level. Afterward, among

the neurons with significant difference at any direction, those with Z score >3 for at least 3 consecutive frames of ON period were

identified. These neurons were regarded as visually responsive. Only these visually responsive neurons were tested with the spike

inference algorithm. Before inputting into the ENS2 system, the DF/F0 signals were processed following the same data preparation

procedures described above (i.e. re-sampled to 60Hz and segmented into 96-sized fragments).

In vivo experiments: Calculation of tuning curves and selectivity indexes
For each trial in the recording of responsive neurons, mean responses within each 0.5s stimulus window are taken (e.g. mean DF/F0
for calcium traces and mean firing rate for spike-events predictions), producing 8 different mean response values. We also compute

the background responses using the averaged activities within the 6s resting period. Then, the resultant 8 mean response values are

subtracted from their corresponding background responses in each trial. The final tuning curves are obtained by averaging these

mean responses across 20 trials.

We adopted the OSI (orientation selectivity index) and DSI (direction selectivity index) as defined in a previous study54 to quantify

the tuning curves and neuronal selectivity further,

OSI =

����
P

kRðqkÞe2iqkP
kRðqkÞ

���� (Equation 11)
DSI =

����
P

kRðqkÞeiqkP
kRðqkÞ

���� (Equation 12)

where RðqkÞ is the response to stimulus orientation at angle qk , and k = 8 is the total number of stimulus angles. Before computing

OSI/DSI, if any value in a tuning curve is below zero, we upshift the whole tuning curve to keep it non-negative for calculation of OSI

and DSI. The OSI/DSI of the neuron population were quantified with bar plots showing their medians and 95% confidence intervals,

and statistically compared (Figure 5E).
e4 Cell Reports Methods 3, 100462, May 22, 2023
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Training and validation of Noise-Augmented ENS2

The Noise-Augmented ENS2 is trained using the benchmark database. During training, randomwhite-noise is added to each sample

in a batch, resulting in noise-level of up to 15. The noise-levels ranging from 0 to 15 (0 means raw input) are randomly selected and

assigned to each sample for each batch. No noise is added if the noise-level of the original recording is higher than the assigned one

(e.g. 0). Other training criteria remain the same as the original ENS2 in benchmark.

The white/pink/red noises used for the Noise-Augmented ENS2 are generated with an open-source toolkits71 under GNU LGPL

license. Time series of noises are freshly generated for each recording, according to the duration and sampling rates, and then imposed

on the latter. We control the variances of generated noise series to obtain noisy recordings with designated noise-levels (e.g. 4).

QUANTIFICATION AND STATISTICAL ANALYSIS

During our benchmarks, we recorded the metrics as described in the section of ‘‘Evaluation of spike inference algorithms’’ for each

neuron in the testing dataset. To compare among different system configurations andmodels, we show their medians with 95% con-

fidence intervals (Figures 2A–2D, 3A–3D, 4F–4H, 5E, 6N–6Q, 7G, S1A–S1F, S2A–S2D, S3, and S5) among all neurons from all testing

datasets. We performed Shapiro-Wilk test before subsequent statistical analyses, and all did not pass normality tests. We then used

Friedman test with Dunn’s multiple comparison for statistical analyses when the number of paired groups are larger than two

(Figures 2A–2D, 3A–3D, 4G, 5E, S2A–S2D, and S3), and two-sided Wilcoxon signed-rank test otherwise (Figures 4F, 4H, 6J–6M,

S2J, S2K, and S5). When testing on the benchmark dataset (Figures 2A–2D, 3A–3D, 4F–4H, 6N–6Q, 7G, S1A–S1F, S2A–S2D, S3,

and S5), the performance resulted from two competing models on the same testing neuron is regarded as a paired sample. For

the visual stimulating experiment (Figure 5E), the selectivity indexes obtained from DF/F0, spike-rate, or spike-event on a same

neuron are regarded as a paired sample. We reported the significance with p values (*p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001, ns: not significant).
Cell Reports Methods 3, 100462, May 22, 2023 e5
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