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An outstanding challenge in the clinical care of cancer is moving from a one-size-fits-all
approach that relies on population-level statistics towards personalized therapeutic
design. Mathematical modeling is a powerful tool in treatment personalization, as it
allows for the incorporation of patient-specific data so that treatment can be tailor-
designed to the individual. Herein, we work with a mathematical model of murine cancer
immunotherapy that has been previously-validated against the average of an experimental
dataset. We ask the question: what happens if we try to use this same model to perform
personalized fits, and therefore make individualized treatment recommendations?
Typically, this would be done by choosing a single fitting methodology, and a single
cost function, identifying the individualized best-fit parameters, and extrapolating from
there to make personalized treatment recommendations. Our analyses show the
potentially problematic nature of this approach, as predicted personalized treatment
response proved to be sensitive to the fitting methodology utilized. We also demonstrate
how a small amount of the right additional experimental measurements could go a long
way to improve consistency in personalized fits. Finally, we show how quantifying the
robustness of the average response could also help improve confidence in personalized
treatment recommendations.

Keywords: cancer, mathematical modeling, personalized therapy, immunotherapy, nonlinear mixed
effects modeling
1 INTRODUCTION

The conventional approach for developing a cancer treatment protocol relies on measuring average
efficacy and toxicity from population-level statistics in randomized clinical trials (1–3). However, it
is increasingly recognized that heterogeneity, both between patients and within a patient, is a
defining feature of cancer (4, 5). This inevitably results in a portion of cancer patients being over-
treated and suffering toxicity consequences from the standard-of-care dose, and another portion
being under-treated and not benefiting from the expected efficacy of the treatment (6).

For these reasons, in the last decade there has been much interest in moving away from this ‘one-
size-fits-all’ approach to cancer treatment and towards personalized therapeutic design (also called
predictive or precision medicine) (1, 2, 7). Collecting patient-specific data has the potential to
improve treatment response to chemotherapy (6, 8–11), radiotherapy (12–14), and targeted
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molecular therapy (11, 15–17). However, it has been proposed
that personalization may hold the most promise when it comes
to immunotherapy (18). Immunotherapy is an umbrella term for
methods that increase the potency of the immune response
against cancer. Unlike other treatment modalities that directly
attack the tumor, immunotherapy depends on the interplay
between two complex systems (the tumor and the immune
system), and therefore may exhibit more variability across
individuals (18).

Mathematical modeling has become a valuable tool for
understanding tumor-drug interactions. However, just as
clinical care is guided by standardized recommendations, most
mathematical models are validated based on population-level
statistics from preclinical or clinical studies (19). To truly realize
the potential of mathematical models in the clinic, these models
must be individually parameterized using measurable, patient-
specific data. Only then can modeling be harnessed to answer
some of the most pressing questions in precision medicine,
including selecting the right drug for the right patient,
identifying the optimal drug combination for a patient, and
prescribing a treatment schedule that maximizes efficacy while
minimizing toxicity.

Efforts to personalize mathematical models have been
undertaken to understand glioblastoma treatment response
(20, 21), to identify optimal chemotherapeutic and granulocyte
colony-stimulating factor combined schedules in metastatic
breast cancer (22), to identify optimal maintenance therapy
chemotherapeutic dosing for childhood acute lymphoblastic
leukemia (9), and to identify optimized doses and dosing
schedules of the chemotherapeutic everolimus with the
targeted agent sorafenib for solid tumors (23). Interesting work
has also been done in the realm of radiotherapy, where
individualized head and neck cancer evolution has been
modeled through a dynamic carrying capacity informed by
patient response to their last radiation dose (24).

Beyond these examples, most model personalization efforts
have focused on prostate cancer, as prostate-specific antigen is a
clinically measurable marker of prostate cancer burden (25) that
can be used in the parameterization of personalized mathematical
models. The work of Hirata and colleagues has focused on the
personalization of intermittent androgen suppression therapy
using retrospective clinical trial data (26, 27). Other interesting
work using clinical trial data has been done by Agur and
colleagues, focusing on individualizing a prostate cancer vaccine
using retrospective phase 2 clinical trial data (25, 28), as well as
androgen deprivation therapy using data from an advanced stage
prostate cancer registry (29). Especially exciting work on
personalizing prostate cancer has been undertaken by Gatenby
and colleagues, who used a mathematical model to discover
patient-specific adaptive protocols for the administration of the
chemotherapeutic agent abiraterone acetate (30). Among the 11
patients in a pilot clinical trial treated with the personalized
adaptive therapy, they observed the median time to progression
increased to at least 27 months as compared to 16.5 months
observed with standard dosing, while also using a cumulative drug
amount that was 47% less than the standard dosing (17).
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Despite these examples, classically mathematical models are
not personalized, but are validated against the average of
experimental data. In particular, modelers choose a single
fitting methodology, a single cost function to minimize, and
find the best-fit parameters to the average of the data. Using the
best-fit parameters and the mathematical model, treatment
optimization can be performed. Recognizing the limitations of
this approach in describing variable treatment response across
populations, modelers have begun employing virtual population
cohorts (31–33). There is much value in this population-level
approach to study variability, but it is not equivalent to looking at
individualized treatment response.

In this work, we explore the consequences of performing
individualized fits using a minimal mathematical model
previously-validated against the average of an experimental
dataset. In Materials and Methods, we describe the preclinical
data collected by Huang et al. (34) on a mouse model of
melanoma treated with two forms of immunotherapy, and our
previously-developed mathematical model that has been
validated against population-level data from this trial (35).
Individual mouse volumetric time-course data is fit to our
dynamical systems model using two different approaches
detailed in Materials and Methods: the first fits each mouse
independent of the other mice in the population, whereas the
second constrains the fits to each mouse using population-level
statistics. In Results, we demonstrate that the treatment response
identified for an individual mouse is sensitive to the fitting
methodology utilized. We explore the causes of these predictive
discrepancies and how robustness of the optimal-for-the-average
treatment protocol influences these discrepancies. We conclude
with actionable suggestions for how to increase our confidence in
mathematical predictions made from personalized fits.
2 MATERIALS AND METHODS

2.1 Data Set
The data in this study considers the impact of two
immunotherapeutic protocols on a murine model of melanoma
(34). The first protocol uses oncolytic viruses (OVs) that are
genetically engineered to lyse and kill cancer cells. In (34) the
OVs are immuno-enhanced by inserting transgenes that cause
the virus to release 4-1BB ligand (4-1BBL) and interleukin (IL)-
12, both of which result in the stimulation of the tumor-targeting
T cell population (34). The preclinical work of Huang et al. has
shown that oncolytic viruses carrying 4-1BBL and IL-12 (which
we will call Ad/4-1BBL/IL-12) can cause tumor debulking via
virus-induced tumor cell lysis, and immune system stimulation
from the local release of the immunostimulants (34).

The second protocol utilized by Huang et al. are dendritic cell
(DC) injections. DCs are antigen-presenting cells that, when
exposed to tumor antigens ex vivo and intratumorally injected,
can stimulate a strong adaptive immune response against cancer
cells (34). Huang et al. showed that combination of Ad/4-1BBL/
IL-12 with DC injections results in a stronger antitumor response
than either treatment individually (34). Volumetric trajectories
April 2022 | Volume 12 | Article 793908

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Luo et al. Fitting Models to Individuals: Caution
of individual mice treated with three doses of Ad/4-1BBL/IL-12
on days 0, 2 and 4, and three doses of DCs on days 1, 3, 5, along
with the average trajectory, are shown in Figure 1.

2.2 Mathematical Model
Our model contains the following five ordinary differential equations:

dU
dt

= rU − b
UV
N

− k0 + ckillIð Þ UT
N

,U 0ð Þ = U0, (1)

dI
dt

= b
UV
N

− dI I − k0 + ckillIð Þ IT
N

, I 0ð Þ = 0, (2)

dV
dt

= uV tð Þ + adI I − dVV ,V 0ð Þ = 0 (3)

dT
dt

= cTI + cDD − dTT ,T 0ð Þ = 0, (4)

dD
dt

= uD tð Þ − dDD,D 0ð Þ = 0 (5)

where U is the volume of uninfected tumor cells, I is the volume
of OV-infected tumor cells, V is the volume of free OVs, T is the
volume of tumor-targeting T cells, D is the volume of injected
dendritic cells, and N is the total volume of cells (tumor cells and
T cells) at the tumor site. When all parameters and time-varying
terms are positive, this models captures the effects of tumor
growth and response to treatment with Ad/4-1BBL/IL-12 and
DCs (35). By allowing various parameters and time-varying
terms to be identically zero, other treatment protocols tested in
Huang et al. (34) can also be described.

This model was built in a hierarchical fashion, details of
which have been described extensively elsewhere (32, 35–37).
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Here, we briefly summarize the full model. Uninfected tumor
cells grow exponentially at a rate r, and upon being infected by an
OV convert to infected cancer cells at a density-dependent rate
bUV/N. These infected cells get lysed by the virus or other
mechanisms at a rate of dI, thus acting as a source term for the
virus by releasing an average of a free virions into the tissue
space. Viruses decay at a rate of dv.

The activation/recruitment of tumor-targeting T cells can
happen in two ways: 1) stimulation of cytotoxic T cells due to 4-
1BBL or IL-12 (modeled through I, at a rate of cT, as infected cells
are the ones to release 4-1BBL and IL-12), and 2) production/
recruitment due to the externally-primed dendritic cells at a rate
of cD. These tumor-targeting T cells indiscriminately kill
uninfected and infected tumor cells, with the rate of killing
that depends on IL-12 and 4-1BBL production (again, modeled
through I in the term (k0 + ckillI)), and they can also experience
natural death at a rate of dT. The time-dependent terms, uv(t) and
uD(t), represent the source of the drug and are determined by the
delivery and dosing schedule of interest.

2.3 Fitting Methodologies
For both fitting methodologies, the full set of model parameters
{r,b,a,dv,ĸ0,dT,cD,dI,cĸill,cT,dD,U0}, which includes the initial
uninfected tumor volume, is fit to each individual mouse.

2.3.1 Independently Fitting Individuals
Our first attempt at individualized fitting is to find the parameter
set that minimizes the square of the ℓ2-norm between the model
and the individual mouse data:

z =o
n

t=0
Vmodel tð Þ − Vdata tð Þð Þ2 (6)

where Vmodel(t) = U(t) + I(t) is the volumetric output predicted
by our model in eqns. (1)-(5), Vdata(t) represents the volumetric
FIGURE 1 | Individual volumetric trajectories are shown for eight mice treated with Ad/4-1BBL/IL-12 (on days 0, 2, 4) + DCs (on days 1, 3, 5). The average, with
standard error bars, is also shown in black (34).
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data for an individual mouse, and n is the last time point at which
the volume is measured in the experiments.

To independently fit an individual mouse, 12-dimensional
space is first quasi-randomly sampled (with each point sampled
in the range [0,1]) using high-dimensional Sobol’ Low
Discrepancy Sequences (LDS). LDS are designed to give rise to
quasi-random numbers that sample points in space as uniformly
as possible, while also (typically) having faster convergence rates
than standard Monte Carlo sampling methods (38). Each
randomly sampled point is then scaled to be in a biologically
plausible range for the corresponding parameter value. For those
parameters that were previously-fit to the average of the
experimental data (r,b,cD,cT,cĸill), the range was set using
the lower and upper-bound of the 95%-credible interval for the
parameter, as determined in (35). For parameters not fit to the
average in prior work, the minimum and maximum values were
set to 50% and 200% of the value the parameter was fixed to for
the average, respectively. See Supplementary Table 1 for details.

After the best-fit parameter set has been selected among the
106 randomly sampled sets chosen by LDS, the optimal is refined
using simulated annealing (39). Having observed that the
landscape of the objective function near the optimal parameter
set does not contain local minima, we randomly perturb the
LDS-chosen parameter set, and accept any realistic parameter
changes that decrease the value of the objective function -
making the method equivalent to gradient descent. We
consider a parameter set realistic at this stage if all parameter
values are non-negative. This random perturbation process is
repeated until no significant change in z can be achieved, which
we defined as the relative change in z for the last five accepted
parameter sets being less than 10–5. We call this final parameter
set the optimal parameter set. More details can be found in
Supplementary Algorithm 1.

It is important to note that, by approaching fitting in this way,
the parameters for Mouse i depend only the volumetric data for
Mouse i; that is, the volumetric data for the other mice are not
accounted for.

2.3.2 Fitting Individuals with Population-Level
Constraints
Nonlinear mixed effects (NLME) models incorporate fixed and
random effects to generate models to analyze data that are non-
independent, multilevel/hierarchical, longitudinal, or correlated
(40). Fixed effects refer to parameters that can generalize across
an entire population. Random effects refer to parameters that differ
between individuals that are randomly sampled from a population.
To employNLME for ourmathematicalmodel, for eachmouse iwe
define the structural model T(tij,yi)=U(tj)+I(tj). We assume that
each parameter yi,k in the parameter set yi is lognormally
distributed with mean y i,k and standard deviation wi,k:

Nlog yi,k

� �
∼      log y i,k,w

2
i,k

� �� �
(7)

We also assume that the error is a scalar value proportional to
our structural model. Our resultant mixed effects model is:

yij = T ti,j,yi

� �
+ bT ti,j,yi

� �
ei,j, i = 1,…,M, j = 0,…, ni − 1, (8)
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where yij is the predicted tumor volume at each day j for each
individual i (that is, at time tij),M = 8 is the number of mice, ni =
31 is the number of observations per mouse, and eij is the
random noise term, which we assume to follow a standard
normal distribution.

Typically, NLME models attempt to maximize the likelihood
of the parameter set given the available data. There does not exist
a general closed-form solution to this maximization problem
(41), so numerical optimization is often needed to find a
maximum likelihood estimate. In this work, we employ
Monolix (42), which uses a Markov Chain Monte Carlo
method to find values of the model parameters that optimize
the likelihood function. To implement NLME in Monolix, we
first processed and arranged our experimental data consisting of
tumor volume and dosing schedule in a Monolix-specified
spreadsheet. The data is then censored to avoid overfitting very
small tumor volumes, as detailed in (43). To understand why this
overfitting occurs in uncensored data, consider the scenario
where the model predicts a volume 10–4 mm3 at a time point
whereas the experimental measurement is 0 mm3. The parameter
set corresponding to this prediction is assigned a lower
likelihood, despite the fact that 10–4 is a perfectly reasonable
model prediction of an experimental measurement of 0. To avoid
penalizing insignificant prediction errors at very small tumor
volumes, the data has been censored so that when the negative
log likelihood is computed, instead of calculating the likelihood
the model gives exactly the value of 0, it computes the likelihood
the model predicts a value between 0 and 1. While this censoring
was necessary to prevent NLME from over-fitting data points of
volume zero at the expense of the fits to the nonzero data points,
such censoring was not required for the independent fitting
approach, as there we are just minimizing the sum of the square
error. That is, in the independent fitting approach, when the
model predicts a very small volume and the experimental
measurement is 0, the contribution to the sum of the square
error is negligible and thus censoring is not needed.

In order to solve this NLME model in Monolix, initial guesses
are needed for the mean and standard deviation of our
lognormally-distributed parameters. Based on previous fits to
the average of the data in (37), we used the following set of initial
guesses for the mean of each parameter:

r, b ,a , dv , k0, dT , cD, dI,ckill , cT , dD,U0

� �
= 0:32, 1, 3, 2:3, 2, 0:35, 5:5, 1, 0:51, 1:2, 0:35, 55:6½ �;

and after numerical exploration, we ended up choosing the initial
standard deviations as:

wr ,wb ,wa ,wdV ,wk0 ,wdT ,wcD ,wdI ,wCkill
,wCT

,wdD ,wk0

� �
= 0:25, 0:5, 1, 0:1, 1, 0:1, 0:25, 0:1, 0:5, 0:5, 0:1, 5½ �

2.4 Practical Identifiability via the Profile
Likelihood Method
It is well-established that estimating a unique parameter set for a
mathematical model can be challenging due to the limited
April 2022 | Volume 12 | Article 793908
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availability of often noisy experimental data (44). A non-
identifiable model is one in which multiple parameter sets give
“good” fits to the experimental data. Here, we will study the
practical identifiability of our system in eqns. (1) - (5) using the
profile likelihood approach (45, 46).

A single parameter is profiled by fixing it across a range of
values, and subsequently fitting all other model parameters to the
data (44). To execute the profile likelihood method, let p be the
vector that contains all parameters of the model, q be one
parameter of interest contained in the vector p. The profile
likelihood PL for the parameter q is defined in (47) as:

PL qð Þ = min
p∈ pjpk=qf g o

n

t=0

Vdata tð Þ − Vmodel t; pð Þ
s tð Þ

� �2� �
(9)

whereVmodel(t;p) =U(t) + I(t) is the volumetric output predicted by
our model for parameter set p, and Vdata represents the average
volume across all mice at that time point with corresponding
standard deviation s(t). For normally distributed observational
noise this corresponds to the maximum likelihood estimate of q:

PL(q) = min
p∈ pjpk=qf g

−2LL(p;Vdata(0), :::,Vdata(n))ð Þ (10)

where LL(p;Vdata(0),...,Vdata(n)) is the log of the likelihood
function. The likelihood function represents the likeliness of
the measured data Vdata given a model with parameters p (48).
This likelihood is higher for a parameter set that is more likely
given the available data, and it is smaller for parameter sets that
are less likely given the data. The profile likelihood curve for any
parameter of interest q is found using the following process:

1. Determine a range for the parameter values of q.
2. Fix q = q* at a value in the range.
3. Find the value of the non-fixed parameters that minimize the

objective function in eqn. (9). The quasi-random Monte
Carlo method with gradient descent was used for the
fitting, as detailed previously.

4. Evaluate the objective function at those optimum values for
the fixed value of q*.

5. Repeat the process described in steps 2-4 for a discrete set of
values in the range of the parameter q. This yields the profile
likelihood function for the parameter q.

This process results in a population-level (not individual)
profile likelihood curve for each parameter. Once PL(q) is
determined, the confidence interval for q at a level of
significance a can be computed using:

PL qð Þ − 2LL p∗kð Þ ≤ Da (11)

where Δa denotes the a quantile of the c2 distribution with df
degrees of freedom (which represents the number of fit model
parameters when calculating PL(q)) (44). We use a = 0.95 for a
95% confidence interval. The intersection points between the
threshold 2LL(p∗k) + Da and PL(q) result in the bounds of the
confidence interval. A parameter is said to be practically
identifiable if the shape of the profile likelihood plot is close to
Frontiers in Oncology | www.frontiersin.org 5
quadratic on a finite confidence interval (49). Otherwise, a
parameter is said to be practically unidentifiable.
3 RESULTS

3.1 Personalized Fits
The individual mouse data in response to treatment with Ad/4-
1BBL/IL-12 + DCs (34) is fit using the two methodologies
discussed previously: 1) quasi-Monte-Carlo method with
gradient descent in which each mouse is fit independently
(which we will call the “QMC” method for short), and 2)
nonlinear mixed effects modeling in which population-level
statistics constrain individual fits. In Figure 2, we can see the
best-fit for each mouse using the two fitting approaches.

We do observe some shortcomings in the fits, particularly at
earlier time points. These are most-pronounced in Mouse 1 and 4,
where the model cannot capture the early-time decrease in tumor
volume. This highlights that a model validated against the average
of a dataset may not be fully sufficient at describing individual
trajectories. That said, we overall find that the model is able to
capture the trends in the volumetric data despite the heterogeneity
across individual mice. While a more detailed model could
potentially pick up some early-time trends our model did not
capture, this would come at the expense of introducing more
(likely non-identifiable) parameters.

For each mouse, the QMC algorithm results in a fit that more
accurately captures the dynamics in the experimental data. The
differences between the two fitting methodologies explain why
this is occurring. NLME assumes each parameter is sampled
from a lognormal distribution whose mean and variance are
determined by the full population of mice. The estimated
lognormal distributions for each model parameter are shown
in Figure S1. On the other hand, the QMC algorithm fits each
mouse independently, and despite the initial bounds set on the
parameters when sampling parameter space, gradient descent
relaxes these constraints and the end result is that non-negativity
is the only constraint imposed. This allows the QMC algorithm
to explore a larger region of parameter space, resulting in better
fits. The potential downside, as we will show, is that the QMC
algorithm can select parameter values that deviate more
significantly from the average value. This variability may
represent the true variability across individual mice, or may be
a consequence of doing independent fits.

In Figure 3 and Figure S2we show the best-fit parameter value
for each mouse and fitting methodology relative to the best-fit
parameter value for the average mouse. For example, the best-fit
value of the tumor growth rate r to the average of the control data
has been shown to be r = 0.3198 (35). Since Mouse 1 has a relative
value of 1.0916 when fitting is done using QMC, the value of r
predicted for that Mouse is 9.16% larger than the value for the
average mouse, meaning QMC predicts r = 0.3491 for Mouse 1.
On the other hand, the relative value is 0.7512 when fitting is done
using NLME, meaning the predicted value is r = 0.2402, which is
24.88% less than the value for the average mouse.
April 2022 | Volume 12 | Article 793908
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A study of the values a parameter can take on across
methodologies reveals that while most values are of the same
order of magnitude, differences can exist across methodologies.
As expected due to the constraining lognormal distribution,
NLME-associated parameters exhibit smaller variations from
the best-fit parameter for the average mouse than QMC-
associated parameters. Generally speaking, the variation seen
Frontiers in Oncology | www.frontiersin.org 6
could be explained by a heterogeneous response to the treatment
protocol across mice. For instance, a very small value of cD in
Mouse 3 indicates the DCs are not successfully stimulating the
production of tumor-targeting T cells. As another example, a
very small value of k0 in Mouse 2 indicates that in the absence of
immunostimulation, the T cells are unable to target and destroy
cancer cells. There is one scenario that emerges in both Mouse 2
FIGURE 2 | Best-fit for each mouse treated with Ad/41BBL/IL-12 and DCs in the order VDVDVD at a dose of 2.5 × 109 OVs and 106 DCs (34). The QMC fits (in
which each mouse is treated independently of the others) are shown in blue, and the NLME fits are shown in red. The experimental data (black if uncensored for
NLME fitting, grey if censored) is also provided on each plot.
April 2022 | Volume 12 | Article 793908
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and 3, however, that cannot be explained by a heterogeneous
treatment response. In particular, the QMC approach predicts
that these mice have dv = 0, indicative that the virus will not
decay over the 30-day experimental time period. As this scenario
is highly unlikely, we also refit these mice using the QMC
approach, assuming a (somewhat arbitrary) lower bound on
the viral decay rate of dv = 0.46 day–1, which assumes the decay
rate can never be smaller than a quarter of the average value of dv
= 2.3 day–1 (37). Refitting both mice with the QMC algorithm
and this additional constraint resulted in the best-fit value of dv
being this strict lower bound. All treatment predictions
presented in this manuscript were identical whether Mouse 2
or 3 was analyzed using the parameter set with dv = 0 or the
parameter set where dv was a quarter the maximum value.

Looking across methodologies, parameter disparities are the
most pronounced in cT, the rate of cytotoxic T cell stimulation from
4-1BBL and IL-12. The QMC-predicted parameters cover a much
larger range of values relative to the average mouse. According to
the QMC fits, cT can range anywhere from 92.15% below the value
in the average mouse to 4.69 times higher than the value in the
average mouse. Compare this to the NLME-predicted values of cT,
which can range from90.29%below the value in the averagemouse
to 31.87%below the value for the averagemouse.What is clear from
looking at the best-fit parameter values acrossmethodologies is that
it is not differences in a single or small set of parameter values that
explain the difference in fits. The nonlinearities in themodel simply
donot allow the effects of one parameter to be easily teased out from
the effects of the other parameters.

3.2 Personalized Treatment Response
at Experimental Dose
Here we seek to determine if the two sets of best-fit parameters
for a single individual yield similar personalized predictions
about tumor response to a range of treatment protocols. The
Frontiers in Oncology | www.frontiersin.org 7
treatment protocols we consider are modeled after the
experimental work in (34). Each day consists of only a single
treatment, which can be either an injection of Ad/4-1BBL/IL-12
at 2.5 × 109 viruses per dose, or a dose of 106 DCs. Treatment will
be given for six consecutive days, with three days of treatment
being Ad/4-1BBL/IL-12, and three days being DCs. If only one
dose can be given per day, there are exactly 20 treatment
protocols to consider. The 20 protocols are shown on the
vertical axis in Figure 4, where V represents a dose of Ad/4-
1BBL/IL-12, and D represents a dose of dendritic cells.

To quantify predicted tumor response, we will simulate mouse
dynamics using the determined best-fit parameters for each of the
20 6-day protocols. Unless otherwise stated, we will use the
predicted tumor volume after 30 days, V(30), to quantify
treatment response. For each fitting methodology, mouse, and
protocol we display the log (V(30)) in a heatmap (as in Figure 4).
For all V(30)≤1 mm3, we display the logarithm as 0, as showing
negative values would hinder cross-methodology comparison and
overemphasize insignificant differences in treatment response. We
consider any tumor with V(30)<1 mm3 to be effectively treated by
the associated protocol. Any nonzero values correspond to the
value of log(V(30)) when V(30)>1 mm3, and we assume these
tumors have not been successfully treated. The resulting heatmap
at the experimental dose of 2.5 × 109 viruses per dose, and 106 DCs
per dose is shown in Figure 4.

Ideally, we would find that treatment response to a protocol
for a given mouse is independent of the fitting methodology
utilized, at least in the binary sense of treatment success or
failure. However, that does not generally appear to be the case for
our data, model and fitting methodologies, as we elaborate
on here.

• Cumulative statistics on consistencies across methodologies.
As shown in Figure 4, the two fitting methodologies give the
FIGURE 3 | Best-fit values of tumor growth rate parameter r, virus infectivity parameter b, viral decay rate dv, infected cell lysis rate dI, T cell stimulation term by
immunostimulants cT, and T cell stimulation term by DCs cD. The best-fit values are shown for each mouse and are presented relative to the best-fit value of the
parameter in the average mouse (35). Therefore, a value of 1 (shown in the dashed black line) means the parameter value is equal to that in the average mouse, less
than 1 is a smaller value, and greater than 1 is a larger value. Values for other model parameters are shown in Figure S2.
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same qualitative predictions for 73.75% (118/160) of the
treatment protocols. Of the 118 agreements, 57 consistently
predict treatment success whereas 61 consistently predict
treatment failure. It is of note that these numbers only
change slightly if we use V(80) as our measurement for
determining treatment success or failure (81.875% agreement
with 78/131 consistently predicting eradication and 53/131
consistently predicting failure - see Figure S3). Mouse 2, 3
and 6 have perfect agreement across fitting methodologies, and
Mouse 7 has 95% agreement across methodologies. For these
mice, treatment response is generally not dependent on dosing
order. For instance, Mouse 2 and 3 are successfully treated by
all twenty protocols considered, whereas Mouse 6 cannot be
successfully treated by any protocol. In fact, V(30) for Mouse 6
is highly conserved across dosing order, suggesting that the
ordering itself is havingminimal impact on treatment response.
While performing a bifurcation analysis in 11D parameter
space is not feasible, what is clear is that for the mice with
significant agreement across methodologies, the best-fit
parameters must be sufficiently far from the bifurcation
surface, as shown in the schematic diagram in Figure 5. As a
result, predicted treatment response is not sensitive to changes
in the parameter values that result from using a different fitting
methodology. While not equivalent, they also do not appear to
be sensitive to dosing order.

• Cumulative statistics on inconsistencies across methodologies.
The two fitting methodologies give different qualitative
predictions for 26.25% (42/160) of the treatment protocols (see
Figure 4). Mouse 1 and 4 are largely responsible for these
predictive discrepancies, with Mouse 1 having inconsistent
predictions for 75% of protocols, and Mouse 4 having
inconsistent predictions for 90% of protocols. Note that each
methodology must agree for the protocol VDVDVD, as this was
the experimental protocol that was used for parameter fitting. So,
95% is the maximum disagreement rate we can see across
methodologies for a given mouse. We observe that the QMC-
associated parameter set is much more likely to predict treatment
failure for these mice, whereas the NLME parameter set is more
Frontiers in Oncology | www.frontiersin.org 8
likely to predict treatment success. Contrary to themice for which
there is significant cross-methodology agreement, we see a high
dependency of treatment response to dosing order for Mouse 1
and 4. From the perspective of the high dimensional bifurcation
diagram, these parameters must fall sufficiently close to the
bifurcation surface so that parametric changes that result from
using different fitting methodologies can lead to wildly different
predictions about treatment response (see schematic in Figure 5).
FIGURE 4 | Heatmaps showing the log of the tumor volume measured at 30 days, at the OV and DC dose used in (34). If log(V (30))≤1, its value is shown as 0 on
the heatmap. Left shows predictions when parameters are fit using QMC, and right shows NLME predictions.
FIGURE 5 | Schematic representation of a bifurcation diagram in two-
dimensional parameter space. For certain nonlinear combinations of
parameters, a treatment can successfully eradicate a tumor (as occurs for
Mouse 8 treated with VVVDDD according to NLME parameters), result in
tumor stabilization (as occurs for Mouse 6 treated with VVVDDD according to
NLME parameters), or can fail to control the tumor (as occurs for Mouse 5
treated with VVVDDD according to NLME parameters). Note the bifurcation
diagram is dependent on both the dose of drug being given, and the ordering
of those drugs.
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In turn, this appears to make these mice significantly more
sensitive to dosing order.

Though the results in this paper are presented for one best-fit
parameter set per methodology, we have also explored how
parametric uncertainty influences treatment predictions. In
particular, for the QMC fitting method, for each mouse we
identified suboptimal parameter sets by performing Sobol
sampling in a 10% range about the optimal parameter set. Any
sampled parameter set that gives a goodness-of-fit within 10% of
the optimal is considered a suboptimal parameter set (see Figure
S4). For all such suboptimal parameter sets, treatment response
to the 20 protocols was determined. This allows us to study if
binary treatment response is insensitive to the precise best-fit
parameters used. In Figure S5 we show the probability a
treatment is effective for each mouse across all suboptimal
parameter sets. Overwhelmingly, treatment response predicted
for an individual mouse and protocol shows excellent agreement
across suboptimal parameter sets. Besides treatment response to
the protocols VDVVDD and VDVDVD for Mouse 7, predicted
treatment response across suboptimal parameter sets agrees over
a minimum of 95% of the suboptimal parameter sets. This is seen
in Figure S6 by the probabilities of an effective treatment being
either >0.95 or <0.05. As small parametric perturbations that
result in “good” fits to the data do not significantly influence
predicted treatment response, we conclude it is reasonable to
compare the prediction across methodologies using only the
best-fit parameters.

3.3 Exploring Predictive Discrepancies
Between Fitting Methodologies
The predictive discrepancies across fitting methodologies begs
the question of whether the parameters we are fitting are actually
practically identifiable given the available experimental data. To
explore this question, we generated profile likelihood curves for
fitting the average tumor growth data, following the
Frontiers in Oncology | www.frontiersin.org 9
methodology detailed in Section 2. As a first step, we fixed the
parameters whose values we could reasonably approximate from
experimental data: dI = 1, a = 3000, dv = 2.3, ĸ0 = 2, dT = 0.35,
and dD = 0.35 (37). This means we are using df = 5 in the
calculation of the threshold, as the generation of each profile
likelihood curve requires fitting four model parameters plus the
initial condition U(0).

The resulting profile likelihood curves in Figure 6 show that,
even under the assumption that six of the eleven non-initial
condition parameters are known, several of the fit model
parameters lack practical identifiability. The tumor growth rate r
and the infectivity parameter b are both practically identifiable,
ignoring slight numerical noise. The T cell activation parameters
cD and cT lack practical identifiability as they have profiles with a
shallow and one-sided minimum (44). The profile for ckill
demonstrates that the model can equally well-describe the data
over a large range of values for this enhanced cytotoxicity
parameter. The flat likelihood profile is indicative of (local)
structural unidentifiability, which also results in the parameter
being practically unidentifiable (44). It is worth noting that the
original work fitting to the average mouse was done in a
hierarchical fashion (35, 37), and this circumvented the
identifiability issues that emerge when doing simultaneous
parameter fitting.

As we are unable to exploit the benefits of hierarchical fitting
when performing personalized fits, this lack of practical
identifiabili ty poses significant issues for treatment
personalization. We have already seen the consequences of this
when we observed that despite both giving good fits to the data,
QMC and NLME make consistent qualitative predictions in only
73.75% of the treatment protocols tested across all individuals.
While the lack of practical identifiability helps explain why this can
happen, it does not explain the mechanisms that drive predictive
differences. To this end, we will now focus on the simulated
dynamics of Mouse 4 in more detail, as this was the mouse with
the most predictive discrepancies across methodologies.
FIGURE 6 | Profile likelihood curves. Top row: tumor growth rate r, infectivity rate b, T cell activation rate by DCs cD. Bottom row: T cell stimulation rate by
immunostimulants cT, and rate at which immunostimulants enhance cytotoxicity of T cells cĸill. The threshold (red dashed line) is calculated using df = 5 and a 95%
confidence interval.
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As shown in Figure 7, when we simulate the model ten days
beyond the data-collection window, we see that the QMC and
NLME parameters fall on different sides of the bifurcation
surface. In particular, in the QMC-associated simulation, at
around 34 days the tumor exhibits a local maximum in volume
and continues to shrink from there (Figure 7, left). This is in
comparison to the NLME-associated simulation, where the
tumor grows exponentially beyond the data-collection window.
To uncover the biological mechanism driving these extreme
differences, we look at the “hidden” variables in our model -
that is, variables for which we have no experimental data. As
shown in Figure 7, despite the similar fits to the volumetric data,
the two parameters sets predict drastically different dynamics for
the OVs and T cells. For the NLME-associated parameters, the
virus and T cell population die out, eventually resulting in
unbounded tumor growth. On the other hand, the virus and T
cell population remain endemic throughout the simulation when
using the QMC-associated parameters, driving the tumor
population towards extinction.

It is common knowledge that more data improves parameter
identifiability. Not all data is created equal, however. We could get
a lot more time-course data on total tumor volume over the 30-
day window, but that would not necessarily improve parameter
identifiability. Instead, we have identified that the addition of a
single data point, for the right variable, at the right time, could go a
long way in reconciling predictive discrepancies across fitting
methodologies. To make this concrete, suppose we had data
that, for Mouse 4, no tumor-targeting T cells are detected at 30
days. If we introduced a modified cost function that weighed both
the contribution of the tumor volume and this T cell
measurement, the parameter set identified by QMC would no
longer be optimal, as it predicts a T cell burden on the order of 108

(100×106). The optimal parameter set should be one for which
T!0, and once this occurs, there is no mechanism to control the
tumor in the long-term. As a result, the tumor must regrow, just as
predicted for the NLME-associated parameters. While this
thought experiment does not suggest all practical identifiability
issues would be reconciled by having this one data point, it does
indicate why the predictive discrepancies we see for Mouse 4 (and
also Mouse 1) would be at least partially resolved by the addition
Frontiers in Oncology | www.frontiersin.org 10
of a single data point on tumor-targeting T cell volume. This
highlights that although one must be quite cautious in using
mathematical models to make personalized predictions, models
can help us determine precisely what additional data is needed so
that we can have more trust in our mathematical predictions.

3.4 Personalized Treatment Response to
the Optimal for Average Protocol
Ideally, when an optimal prediction is made for the average of a
population, that optimal treatment protocol would also well-
control the tumors of individual patients in the population.
However, it is well known and supported by our earlier work
with virtual populations that this is not necessarily the case. In (32)
we showed that the experimental dose being considered herein is
fragile or non-robust. We define a dosing regime as robust if virtual
populations that deviate somewhat from the average population
have the same qualitative response to the optimal-for-the-average
protocol. Otherwise, a protocol is called fragile. The ability to
classify fragility/robustness relies on the generation of a virtual
population cohort that mimics a broad spectrum of individuals
with different disease dynamics (31–33). By determining
treatment response for each individual in the virtual cohort, we
arrive at a statistic describing the likelihood the considered
treatment is effective across heterogeneous individuals in the
virtual population. We previously classified the optimal-for-the-
average protocol of VVVDDD as fragile because this protocol
eradicates the average tumor (37), yet only 30% of individuals in
our virtual cohort were successfully eradicated by this treatment
(32). Importantly, fragility is a probabilistic population-level
descriptor, and not an individual descriptor. While it tells us
that populations that deviate somewhat from the average are less
likely to behave like the average, it tells us nothing about
individuals, particularly if the individuals have behavior that
deviates significantly from the average (which is often the case,
as shown in Figure 1). Though, it seems natural to hypothesize
that in such a fragile region we may have to be more careful about
applying a prediction for the average of a population to any one
individual in that population.

We will explore that hypothesis here by looking at statistics on
how individual mice respond to VVVDDD, the predicted optimal
FIGURE 7 | Left: QMC and NLME-associated fits to Mouse 4 treated with VDVDVD, with model predictions extended 10 days beyond the data-collection window.
Center and right: Predicted virus and T cell counts associated with each fitting methodology, respectively.
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treatment protocol for the average mouse. While this protocol was
effectively able to eradicate the average tumor in the population, its
success across individual mice varies significantly across fitting
methodologies. For the QMC-associated predictions, this protocol
eradicates tumors in 75% of the individual mice (second row of the
heatmaps in Figure 4, left). Compare this to the NLME-associated
predictions, in which this protocol eradicates tumors in only 25%
of the individual mice (second row of the heatmaps in Figure 4,
right). As shown in Figure S3, this prediction is unchanged if we
determine treatment success or failure at day 80 instead of day 30.

We can also compare response to the optimal-for-the-average
protocol across methodologies. We see a qualitative agreement
across methodologies (eradication or treatment failure) in only
50% of the mice (Mouse 2, 3, 5, 6). Mouse 7 is particularly
interesting, as there was 95% agreement across methodologies
when using V(30) to measure treatment success or failure, and
the optimal for the average of VVVDDD is the only protocol for
which treatment response differed (with QMC predicting tumor
eradication, and NLME predicting treatment failure). As a further
sign of caution, notice how for Mouse 1 and 4 (the cases with
significant predictive discrepancies across methodologies), and
Mouse 8 (intermediate case with 25% predictive discrepancies),
VVVDDD eradicates the tumor with the QMC-associated
parameters yet is the worst protocol that could be given (largest
log(V(30))) for the NLME-associated parameters. This is
particularly unsettling as it means the population-level optimal
treatment recommendation could be the worst protocol
recommendation for some individuals. This confirms our
hypothesis that a population-level prediction should be applied to
individuals very cautiously when in a fragile region of dosing space.

This raises the question: what if we were assessing individualized
response to a protocol in a robust region of dosing space, wherein
Frontiers in Oncology | www.frontiersin.org 11
treatment response across individuals in a virtual population is
statistically similar to the treatment response in the population
average? In (32), we previously classified the optimal-for-the-
average protocol of DDDVVV as robust in the high DC (50%
greater than experimental dose), low OV (50% lower than
experimental dose) region of dosing space. It was classified as
robust because this protocol eradicates the average tumor, and it
also eradicates 84% of the individuals in our virtual cohort (32). This
probabilistic population-level assessment of robustness naturally
leads to the hypothesis that in a robust region of dosing space, we
may have more success with the optimal-for-the-average treatment
in individual mice. We will explore that hypothesis here.

The robust population-level optimal of DDDVVV yields a
successful treatment response in all eight mice for the NLME-
associated parameters. This holds whether we use V(30), our
original measure for establishing treatment success (as shown in
Figure S6), or if we use V(80) as shown in Figure 8. This is
consistent with the robust nature of this region of dosing space,
as the NLME-associated parameters are less likely to wildly
deviate from the average mouse due to population-level
distributions constraining the value of these parameters. In
comparison, the QMC-associated predictions show that only
62.5% of the individual mice are successfully treated by the
optimal for the average in an 80-day window (Figure 8, top left).
That said, if we look at the data more closely, we can see that
Mouse 7 has essentially been eradicated even though 80 days was
not quite long enough to drive V(80)<1 mm3, our threshold for
eradication. Figure 8 also shows that the tumor volume for
Mouse 6 has stabilized. Thus, we see that the QMC-associated
predictions actually agree with the optimal-for-the-average
response in 75% of cases (or, 87.5% if you consider the
stabilization of Mouse 6 to be a “success” rather than a “failure”).
FIGURE 8 | Heatmaps showing the log of the tumor volume measured at 80 days, at the high DC (50% greater than experimental dose), low OV (50% lower than
experimental dose) region of dosing space. Left shows predictions if parameters are fit using QMC, and right shows NLME predictions. Inserts show time course of
predicted treatment response for Mouse 6 and 7 to the optimal-for-the-average protocol of DDDVVV.
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In closing, we have confirmation of our hypothesis that there
is a significant benefit to working with a robust optimal-for-the-
average protocol, even in the absence of all model parameters
being practically identifiable. In the presence of robustness, we
predict that one could generally apply the optimal-for-the-
average protocol and expect a qualitatively similar response in
most individuals. While this does not mean each individual is
treated with their personalized optimal protocol, this has
important consequences for determining when a population-
level prediction will be effective in an individual.
4 DISCUSSION

In this work, we demonstrated that computational challenges can
arise when using individualized model fits to make treatment
recommendations. In particular, we showed that treatment
response can be sensitive to the fitting methodology utilized
when lacking sufficient patient-specific data. We found that for
our model and preclinical dataset, predictive discrepancies can be
at least somewhat explained by the lack of practical identifiability
of model parameters. This can result in the dangerous scenario
where an effective treatment recommendation according to one
fitting methodology is predicted to be the worst treatment option
according to a different fitting methodology. This raises concerns
regarding the utility of mathematical models in personalized
oncology when individual data is limited.

While it is well-established that more data improves parameter
identifiability, here we highlight how we can identify precisely what
data would improve the reliability of model predictions. In
particular, we see how having a single additional measurement on
the viral load or T cell count at the end of the data collection
window would go a long way to reducing the predictive
discrepancies across fitting methodologies (Figure 7). While the
full benefits of this observation are not realized in a retrospective
study, they could be realized in a scenario where data collection and
modeling are occurring simultaneously. In this scenario, an
experimentalist could collect data on a small number of
individuals (like the eight mice shown in Figure 1). A
mathematical model validated against this data can be used to
identify any predictive challenges that emerge within this dataset,
and what data would be needed to overcome these predictive
challenges. This would inform the experimentalist of what data to
collect in the next cohort of individuals in order to have more
confidence in personalized treatment predictions.

When additional data is not available, an alternative option
to personalization is simply treating with the population-level
optimal. Here we showed the dangers of applying the optimal-
for-the-average for a fragile protocol, and we demonstrated that
such a one-size-fits all approach is much safer to employ for a
robust optimal protocol. Therefore, even when data is lacking to
make personalized predictions, establishing the robustness of
treatment response can be a powerful tool in predictive oncology.

It is of note that this study uses just one mathematical model,
with one set of assumptions, to reach our cautionary conclusion
regarding the fitting methodology utilized and the resulting
biological predictions. And this model is quite a simple one,
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ignoring many aspects of the immune system, and spatial
aspects of immune infiltration (as done in (50), among many
other references). The model used herein was chosen because it
has been previously validated against the average of the available
experimental data. A more complex model would be problematic
here, as there is simply not the associated experimental data to
validate such a model. While this study certainly does not
guarantee that similar issues will arise when working with other
models and datasets, it highlights the need for caution when using
personalized fits to draw meaningful biological conclusions.

As we enter the era of healthcare where personalized medicine
becomes a more common approach to treating cancer patients,
harnessing the power of mathematical models will only become
more essential. Understanding the identifiability of model
parameters, what data is needed to achieve identifiability and/or
predictive confidence, and whether treatment response is robust
or fragile are all important considerations that can greatly
improve the reliability of personalized predictions made from
mathematical models.
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Predicting Outcomes of Prostate Cancer Immunotherapy by Personalized
MathematicalModels.PloSOne(2010)5:e15482.doi:10.1371/journal.pone.0015482

26. Hirata Y, Morino K, Akakura K, Higano CS, Bruchovsky N, Gambol T, et al.
Intermittent Androgen Suppression: Estimating Parameters for Individual
Patients Based on Initial Psa Data in Response to Androgen Deprivation
Therapy. PloS One (2015) 10:e0130372. doi: 10.1371/journal.pone.0130372

27. Hirata Y, Morino K, Akakura K, Higano CS, Aihara K. Personalizing
Androgen Suppression for Prostate Cancer Using Mathematical Modeling.
Sci Rep (2018) 8:2563. doi: 10.1038/s41598-018-20788-1

28. Kogan Y, Halevi–Tobias K, Elishmereni M, Vuk-Pavlović S, Agur Z.
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