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ABSTRACT

More and more biologists and bioinformaticians turn to machine learning to analyze large
amounts of data. In this context, it is crucial to understand which is the most suitable data
analysis pipeline for achieving reliable results. This process may be challenging, due to a
variety of factors, the most crucial ones being the data type and the general goal of the
analysis (e.g., explorative or predictive). Life science data sets require further consideration as
they often contain measures with a low signal-to-noise ratio, high-dimensional observations,
and relatively few samples. In this complex setting, regularization, which can be defined as the
introduction of additional information to solve an ill-posed problem, is the tool of choice to
obtain robust models. Different regularization practices may be used depending both on
characteristics of the data and of the question asked, and different choices may lead to
different results. In this article, we provide a comprehensive description of the impact and
importance of regularization techniques in life science studies. In particular, we provide an
intuition of what regularization is and of the different ways it can be implemented and
exploited. We propose four general life sciences problems in which regularization is funda-
mental and should be exploited for robustness. For each of these large families of problems,
we enumerate different techniques as well as examples and case studies. Lastly, we provide a
unified view of how to approach each data type with various regularization techniques.
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1. MOTIVATION

In the era of personalized medicine, biospecimen collection and biological data management are still a

challenging and expensive task (Toga and Dinov, 2015). Only few large-scale research enterprises, such as

ENCODE (encodeproject.org), ADNI (adni.loni.usc.edu), or TCGA (cancergenome.nih.gov), have sufficient

financial and human resources to manage, share, and distribute access of heterogeneous types of biological

data. To date, many biomedical studies still rely on a small number of collected samples (McNeish and

Stapleton, 2016). A number that is even lower in cases of rare diseases (Garg et al., 2016) or in high-

throughput molecular data (e.g., genomics and proteomics) where the number of variables measured can be in

the order of hundreds of thousands (Yu et al., 2013).

Asking biological or clinical questions from these data using machine learning techniques requires

particular consideration of many factors, such as random fluctuations in the measurements introduced by

the acquisition devices, a small number of samples, or, observed variables may not be representative of the

target phenomenon. From a modeling standpoint, every combination of the factors above can be seen as

noise affecting the data. Precautions in the model formulation process must be taken to achieve solutions

that are robust to the noise effect. To this end, we can couple machine learning methods with regular-

ization, a set of techniques that can be introduced independently from the learning machine (Okser et al.,

2014). Regularization is of fundamental use not only to achieve robustness in the presence of noise but also

to impose consistence with prior knowledge. We show in Section 2 that there are different methods to attain

either goal, and that they can be combined.

In this review, we describe how regularization can be used, together with machine learning methods, to

successfully address complex life science questions. Unlike previous review articles on this matter (Ma and

Huang, 2008; Sohail and Arif, 2020), we provide a vast range of methods incorporating the advances made

in the last 10 years of research, and focus on regularization per se and how it has been successfully

exploited to answer questions on various types of data, including omic-data, imaging data, clinical out-

comes, and much more. We provide the reader with a wide and full understanding of possible concerns and

situations. More specifically, we identify four families of life science questions that occur regularly and

which regularization techniques are suitable to be used. Although these do not cover the entirety of all

possible questions that can be answered with machine learning techniques, they present some of the most

common uses of regularized machine learning in the life sciences.

Such questions are the following: (Q1) How to find the relationships between input and output from

noisy data, (Q2) which variables are the most relevant, (Q3) are there hidden patterns in the data, and (Q4)

are there relevant relationships between variables?

1.1. Outline

In the remainder of the article, we provide background on supervised and unsupervised machine learning

(Section 2), focusing on the specific ways of introducing regularization within the different methods. In

Section 3, we describe the four main representative questions, and we answer each of them separately in

Sections 4–7. We conclude the article with a discussion (Section 8) on the most proper method to use

depending on the type of data, providing a list of use cases as per each data type and method.

2. LEARNING MACHINES AND REGULARIZATION

Life science problems can be tackled with a vast amount of statistical and machine learning methods.

Here, we do not want to discuss how to address all the possible problems, but restrict ourselves to those that

can be approached with specific regularized methods both in the supervised and unsupervised setting.

2.1. Supervised learning

Supervised learning defines a subset of machine learning methods that allows to study relationships

between input and output pairs. In this setting, we denote data as D = fxi‚ yign
i = 1 = (X‚ y), where xi 2 X for

i = 1‚ . . . ‚ n are collections of samples, each sample being a d-dimensional vector of observations on d

variables, and yi 2 Y are the related outcomes. The nature of the output space Y defines the problem as

classification if the output is categorical, for example, Y = fa‚ bg (with a 6¼ b) or regression if Y � R.
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Supervised learning methods aim at finding a function of the inputs that approximates the output y = f (x) in

such a way to be able to predict future data. Note that in the rest of the article we mainly refer to the

problem of binary classification, but the multiclass case can be easily substituted (Yuan et al., 2016).

Typically both regression and classification tasks can translate into the optimization of the following

problem:

arg min
f2F

1

n

Xn

i = 1

L(f (xi)‚ yi)‚ (1)

where F is the space of possible functions (e.g., linear functions such as f (xi) = wxi + b, where w is a vector

of weights) and L(f (x)‚ y) is the loss function that measures the adherence of the model to training data.

Several loss functions for regression and classification problems have been proposed. Table 1 defines the

most commonly adopted. Choosing the appropriate loss function for the problem at hand is crucial and

there is no trivial solution for this problem. Different choices for L(f (x)‚ y) identify different learning

machines (Bishop, 2006; Hastie et al., 2009).

2.2. Unsupervised learning

Unsupervised learning defines a subset of machine learning methods that allows to study internal patterns

among possibly heterogeneous observations. In this setting, data are D = fxign
i = 1 = X, where each xi 2 X is

a d dimensional vector of observations on d variables. The most common example of unsupervised learning

is clustering, which aims at grouping the samples such that the variability within a group is less than the

variability between groups. This can help in the analysis of possibly multiclass phenomena, where the

classes are unknown. Another unsupervised method is dictionary learning, which is a matrix decomposition

method that tries to decompose the original data matrix X in two, the dictionary that explains patterns of the

d variables, and the coefficients that allow to reconstruct the original data matrix.

We also discuss the problem of network inference, which is the problem of inferring relationships among

variables through observations. Such method addresses the problem of understanding how the variables in

play can describe the system by interacting with each other.

All the methods mentioned above entail the minimization of a loss, depending on the problem at hand the

loss may change, we can generally write it as in Equation (1):

arg min
f2F

1

n

Xn

i = 1

L(f (xi)): (2)

Here, L(f (xi)) is a loss function that includes only the data matrix X. Given the wide set of unsupervised

methods, we do not provide examples of loss functions, specific choices for dictionary learning and

network inference are presented in Sections 6 and 7, respectively. Note that we are restricting ourselves to

unsupervised scenarios where we can perform regularization.

2.3. The problem of overfitting

Learning algorithms are often prone to overfitting, which can be described as the phenomenon where the

learned model is more accurate on known data (training) than on unseen data (test). Such a model will

Table 1. Definition of the Loss Function L(f (x)‚ y)

for Regression and Classification Problems

Regression Square (y - f (x))2

Absolute jy - f (x)j
e-insensitive min(jy - f (x)j - e‚ 0)

Classification Zero-one 1 - I(y = f (x))

Square (1 - y f (x))2

Logistic log (1 + e - yf (x))

Hinge j1 - y f (x)j +
Note that I denotes the indicator function.
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explain too precisely the known data fitting noise as well as signal, and therefore losing the ability to

generalize on future examples. Overfitting is more prone to happen when learning is performed on a low

number of samples, or the complexity of the model is high. Indeed, in the first case, we might lose the

ability to discern which information is noise and which is relevant; in the second case, a high complex

model is prone to fitting noise in the training data. Regularization and model selection techniques are the

go-to tools to prevent overfitting and obtain robust models. These two complementary sets of techniques,

respectively, penalize overly complex models or test the model ability to generalize by evaluating its

performance on a set of data not used for training (i.e., validation set, a part of the training set left aside for

explicit evaluation of generalization properties).

2.4. Regularization

Given Problems (1) and (2), there are many possible ways of performing regularization to be robust to

noise (i.e., prevent overfitting) or impose prior knowledge. They differ in the way they act on retrieving the

optimized solution: they can act on the model, on the optimization technique, or on the data.

2.4.1. Addition of a penalty. This type of regularization acts on the model and is based on the

addition of a penalty term to Problem (1), as follows:

arg min
f2F

1

n

Xn

i = 1

L(f (xi)‚ yi) + k R(f ): (3)

The term R(f ) is known as the regularization penalty and, depending on how it is defined, can impose

stability on the expected function or prior knowledge on the problem (Tikhonov, 1963). With different

choices for R(f ), different effects on the solution may be achieved. We briefly discuss the effect of some

choices, such as Tikhonov, Lasso, Group Lasso, Elastic-Net, and more in Sections 4 and 5.

The scalar k is the regularization parameter that controls the trade-off between the loss and the pen-

alty terms. The addition of a penalty is related to the idea of adding a prior in Bayesian learning. Indeed,

both techniques use prior knowledge or assumptions about data to guide the inference (Murphy, 2012,

chapter 7).

2.4.2. Ensemble techniques. Another way of avoiding overfitting is to combine a finite set of al-

ternative models to allow for higher flexibility and thus better performance. Typical ensemble techniques

are bagging and boosting. The first two act on the data and involve multiple models trained on random

subsets of the input samples. They yield the final prediction by merging the predictions of the models that

equally concur to the final solution. When using this approach as a regularization strategy, one must be

careful to select the right number of models to learn, as well as their complexity or overfitting might still

occur. Boosting is an ensemble method that acts on the optimization process by performing predictions by

sequentially fitting several base learners that cast a weighted vote (Freund, 1995). At each boosting

iteration, the model is forced to learn the relationships between input and output that were previously

missed as the weights corresponding to poorly predicted samples increase. From a theoretical standpoint, it

is possible to boost any learning machine, nevertheless boosting methods are truly beneficial only when

based on weak learners, such as stumps or linear regression (Hastie et al., 2009)—stumps are one node

decision trees (Iba and Langley, 1992). Examples of these techniques are Random forest and Gradient

boosting, which we discuss in Section 4.

2.4.3. Dropout and data augmentation. These two regularization techniques are mostly used for

neural networks (NNs). The first one, Dropout (Srivastava et al., 2014), is a technique that acts on the

model by temporarily deactivating a defined number of randomly chosen units of the network at training

phase. This reduces the degrees of freedom of the model and it implicitly allows to achieve an ensemble of

several smaller networks whose predictions are combined. Data augmentation acts on data as it is a

preprocessing technique. It is typically used when dealing with NNs and images and it consists in ex-

panding an input data set by applying transformations as scaling or translation on the available samples.

Hernández-Garcı́a and König (2018) show evidence of how this method can be understood to achieve

regularization as it avoids overfitting such as more explicit regularization techniques.
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2.4.4. Early stopping. This is a popular regularization strategy (Prechelt, 1998) that consists in

interrupting the fitting process as soon as the error on an external validation set increases (Angermueller

et al., 2016). This type of regularization acts on the optimization procedure and it is typically used on

iterative methods such as gradient descent. It is based on the idea that given a set of data on which we train

the model (training) and a set on which we validate it (validation), the optimization procedure minimizes

the error both for the training and the validation up to a point after which the validation error starts

increasing as the model overfits the training data.

2.5. Model selection

Each of the aforementioned regularization techniques has an intrinsic parameter that needs to be tuned.

For the penalized methods we have k, for ensemble learning we have m, the number of models for early

stopping we have the patience, that is: the number of iterations we allow our model not to improve its

training loss, for dropout the number of units to deactivate, and finally, for data augmentation, the number

of data samples to add. The choice of the best parameters is crucial to achieve accurate prediction along

with good generalization properties (Hastie et al., 2009).

This problem is typically referred to as model selection. It must be distinguished from model evaluation,

which aims at estimating the generalization error of the chosen model on new data.

Model selection is usually performed by estimating, for a given value of a parameter, the prediction

error. The simplest and most widely used method for estimating the prediction error of the model is to

perform K-fold cross-validation. Given an integer K, we split the data in K parts of approximately the same

size. For each of these parts in turn, we compute on the k-th part the error of the model fitted to the K - 1

other parts. Finally, the mean prediction error on the K parts is computed.

This procedure is repeated for a certain range of parameters values, the best parameter is selected as the one

that returns the lowest prediction error in average. Many other cross-validation routines are proposed in literature,

we refer to Molinaro et al. (2005) for a detailed description of the most important cross-validation strategies.

In contrast with cross-validation, multiple methods have been developed to perform an analytical esti-

mation of the prediction error of a model. Some of the most widely used of these methods are the Akaike

Information Criterion (AIC) and the Bayesian Information Criterion (BIC) (Vrieze, 2012). Both methods are

based on the idea of minimizing the loss function (or maximizing the likelihood) while penalizing such

quantity depending on the degrees of freedom of the problem. As an example, consider the well-known

clustering method K-means, which divides the data points in K clusters. For K equal to the number of

samples, we would reach a perfect fit in terms of value of the loss function, but this would overfit on the

samples. Thus, using methods such as AIC or BIC, we add to the error a penalty proportional to the value K,

to obtain a balance between the error and the number of degrees of freedom of the problem.

3. FROM BIOLOGICAL QUESTIONS TO LEARNING TASKS

In applied life science, it is crucial to choose the right approach to not incur bias and obtain robust results.

We identified four recurring biological questions that, even though they do not completely cover the

complex variety of problems related to life science data, are the most amenable to regularized learning

techniques. We provide in Figure 1a a schematic explanation of how to reach a particular question starting

from the data and the problem at hand.

Q1: How to find relationships between input and output from noisy data? Starting from a collection

of input measures that are likely to be related to a certain output (e.g., some pathological phenotype), a typical

final goal is to develop a model that represents the relationship between input and target. Many possible

examples of this type of problem exist, for instance, in molecular (Okser et al., 2014; Angermueller et al.,

2016) or radiomics/imaging studies (Min et al., 2016). Biological questions of this class are usually ap-

proached with supervised learning models. In the context of life science studies, where the available data are

often scarce and noisy, models can suffer from overfitting. Therefore, the use of appropriate regularization

strategies is recommended. We provide a list of suitable methods to address this problem in Section 4.

Q2: Which variables are the most relevant? A complementary question revolves around the inter-

pretability of the predictive model. In particular, when dealing with high-dimensional biological data, the

main goal can be to identify a relevant subset of meaningful variables for the observed phenomenon
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(Tang et al., 2017; Climente-González et al., 2019). This may improve prediction power as well as

promote model interpretability, that is, the ability of understanding and interpreting the parameters of the

inferred model to extract new biological knowledge from the analyzed data. Thanks to their flexibility,

sparse regularization methods have been effectively used in biological contexts, dealing with high-

throughput data (Mascelli et al., 2013; Silver et al., 2013; Giraud, 2014). From a methodological

standpoint, this topic is introduced in Section 5.

Q3: Are there hidden patterns in the data? Often, we observe a phenomenon that does not necessary

have a related outcome. We observe components of the phenomenon and we want to understand whether

there are underlying hidden repeated patterns. One very common way of looking for patterns in the

observations is to cluster them, by aggregating the observations that are most similar to each other under

the definition of some measures. Nonetheless, clustering is an approach typically performed on the

samples, and thus, it does not provide further insights on the feature values. Often we recur to matrix

factorization that simultaneously provides a new data-driven representation of the data while also giving

intuition of the underlying patterns (Alexandrov et al., 2013). From a methodological standpoint, this

topic is introduced in Section 6.

Q4: Are there relevant relationships between variables? Another common problem that arises in data

analysis is how the measured variables are related to each other, or in other words how they interact. The

study of these interactions can present different patterns across samples. Indeed, searching for complex

patterns in the data may offer insights on the behavior of variables in diverse contexts, such as diverse

biological conditions in biomedical studies. Interactions are usually modeled as a network (or graph), that

is, a set of variables (nodes) connected with each other based on a particular type of relationship (links).

The graphical modeling of the variables offers a compact and efficient representation that helps to

identify the variability patterns in the data (Monti et al., 2014). An overview of this class of methods is

provided in Section 7.

In all these questions, regularization plays a key role for robustness to impose prior knowledge on the

solution. The regularization schemes presented in the previous section can be used in different ways to

address all these questions, sometimes combined and sometimes alone.

FIG. 1. Flux diagram explaining how to reach a specific question. In practice we first need to distinguish if we have

labeled data or not, in the first case, we are in a supervised learning setting, while in the second we are in an

unsupervised setting. In the supervised setting, we want to predict the labels, and we can simply do this in the best

possible way or we may ask which are the best variables to predict. In the unsupervised setting, we can look for patterns

in the samples or for relationships among the features.
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4. HOW TO FIND RELATIONSHIPS BETWEEN INPUT
AND OUTPUT FROM NOISY DATA? (A1)

This problem lies in the macrocategory of supervised problems and it is one of the most largely

discussed. We provide a variety of well-known techniques that differ both in the way they approach

regularization and the type of data they can handle.

4.1. Tikhonov regularization

This regularization strategy is based on the addition of an ‘2-norm penalty that can be used when the

function f (x) is linear in x (Tikhonov, 1963).

R ‘2
(w) =

Xd

j = 1

(wj)
2 = kwk2

2: (4)

This penalty shrinks the coefficients toward zero, but it does not achieve a parsimonious representa-

tion, as it tends to keep all the variables in the model. This penalty is typically applied to the square loss,

thus taking the name of Ridge regression (Hoerl and Kennard, 1970), but it is known under several

different names, among which we recall, weight decay (Krogh and Hertz, 1992) and Regularization

Network (Evgeniou et al., 2000). It is easy to show that Ridge regression is equivalent to a Bayesian

approach to linear regression where we impose a normal prior on the regression coefficients (Murphy,

2012, chapter 7).

4.1.1. Applications

This model is successfully applied in a variety of biological studies mainly involving regression prob-

lems. For instance, in Kratsch and McHardy (2014), the authors propose a Ridge regression-based method

to estimate the trees of mutations within a species from the ancestors of the species to the present, while in

Bøvelstad et al. (2007) this technique is used to predict the survival of patients from gene expression data.

Tikhonov regularization can also be combined with other types of regularization as in Fiorini et al. (2017)

where they exploit the addition of a nuclear norm penalty to perform temporal prediction of possible

responses of patients affected from multiple sclerosis.

4.2. Random forests

Random forests (RFs) are ensembles of decision trees, each grown on a subset of samples randomly

chosen with replacement from training data. Decision trees are interpretable models where each node can

be seen as a particular question on a single feature that leads to partition the training data into subsets. The

feature that yields the best split in terms of a preselected metric is chosen to create a new node—we refer to

Qi (2012) for possible choices of such metric that are suitable for different biological problems. Each path

from root to leaf is called classification rule.

Decision trees alone tend to not perform well, which led to the introduction of RFs in 2001 (Breiman,

2001). The final prediction is made by aggregating the prediction of m trees, either by a majority vote in the

case of classification problems, or by averaging predictions in the case of regression problems. Several

techniques for applying regularization to RFs have been proposed. These techniques broadly fall under two

categories: (1) cost-complexity pruning, which consists in limiting tree depth, resulting in less complex

models (Kulkarni and Sinha, 2012); and (2) Gini index penalization, which weights the probabilities of

each class to favor large partitions (Liu et al., 2014a).

4.2.1. Applications. RFs can handle both numerical and categorical variables, multiple scales, and

nonlinearities. This makes them popular for the analysis of diverse types of biological data, such as gene

expression, sequencing, GWAS (Genome-Wide Association Study), or mass spectrometry data. A detailed

review specific to RF is provided in Qi (2012). Deng and Runger (2013) and Kursa (2014) use regularized

and robust RF for the selection of genes in classification tasks. RFs can be used also for regression, as in

Johann et al. (2019), where the authors aim at quantifying tumor purity or, for learning interactions between

noncoding RNA and messenger RNA (Soulé et al., 2020).
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4.3. Gradient boosting

Gradient boosting is an ensemble method that performs predictions by sequentially fitting several base

learners that cast a weighted vote (Freund, 1995). At each boosting iteration, a new model is created by

giving increasing weight to the errors made by previous models, so that each model is forced to learn the

relationships between input and output that were previously missed as the weights corresponding to poorly

predicted samples increase. From a theoretical standpoint, it is possible to boost any learning machine;

nevertheless, boosting methods are truly beneficial only when based on weak learners, such as stumps or

linear regression (Hastie et al., 2009). Gradient boosting (Friedman, 2001) is one of the most widely applied

boosting methods in biological problems.

Gradient boosting has several desirable properties (Mayr et al., 2014), such as its capability to learn

nonlinear input/output relationship, its ability to embed a feature importance measure, and its stability in

case of high-dimensional data (Buehlmann, 2006).

Boosting methods may suffer overfitting. The main regularization parameter to control is the number of

boosting iterations m, that is, the number of base learners, fitted on the training data. Careful consideration

should also be put on tuning the complexity of the base learners that are used.

4.3.1. Applications. Approaches based on gradient boosting classification are used to detect de novo

mutations showing an improved specificity and sensitivity with respect to state-of-the-art methods (Liu

et al., 2014b). When combined with stability selection (Meinshausen and Bühlmann, 2010), gradient

boosting has demonstrated to be a very resourceful method for variable selection, leading to an effective

control of the false discovery rate. This strategy was followed to associate overall survival with single-

nucleotide polymorphisms of patients affected by cutaneous melanoma (He et al., 2016) and to detect

differentially expressed amino acid pathways in autism spectrum disorder patients (Hofner et al., 2015).

4.4. Deep learning

Deep learning (DL) methods are a broad class of machine learning techniques that, starting from raw

data, aim at learning a suitable feature representation (Section 7) and a prediction function, at the same time

(LeCun et al., 2015). DL methods can be seen as an extension of classical NN, where the final prediction is

achieved by composing several layers of nonlinear transformations. DL architectures can be devised to

tackle binary/multicategory classification (Leung et al., 2014; Angermueller et al., 2016) as well as single/

multiple-output regression tasks (Chen et al., 2016).

Particular attention must be paid when fitting deep models as they can be prone to overfit the training set

(Angermueller et al., 2016). This is particularly true in health care contexts in which the available data set

dimension can be small. Regularization in DL methods can be achieved by penalizing the weights of the

network. The most common regularization strategy consists in adding an ‘2-norm penalty in the objective

function, as in Equation (4). In the DL community, this procedure is known as weight decay (Krogh and

Hertz, 1992). Although less common, the ‘1-norm can also be adopted as regularization penalty, as in

Leung et al. (2014).

4.4.1. Applications

DL can be regularized in many different ways. For example, weight decay is adopted in Chen et al.

(2015) to train a deep architecture on rat cell responses to given stimuli, with the final aim to predict human

cell responses in the same conditions. Moreover, weight decay is also adopted in Yuan et al. (2016) to train

DeepGene, that is, a simple fully connected network known as multilayer perceptron (LeCun et al., 2015),

which is designed to classify the tumor type from a set of somatic point mutations. Furthermore, weight

decay is used in Fakhry et al. (2016) to train a DL architecture for brain electron microscopy image

segmentation. Although less common, the ‘1-norm can also be adopted as regularization penalty, as in

Leung et al. (2014).

These methods iteratively update the weights of the network to decrease the training error. The use of

dropout alone can improve the generalization properties, as in Chen et al. (2016), where the authors propose

D-GEX, DL regression architecture trained to predict the expression of a number of target genes. Dropout

can also be used in combination with weight decay or other forms of regularization, as in Leung et al.

(2014), where the authors propose to use a deep network to achieve splicing pattern prediction. Dropout is
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combined with early stopping in Fiorini et al. (2019) where they use textual representation of medical

prescriptions to classify the patients, likely to worsen their diabetes in the future. DL methods are nowadays

becoming a standard for most biomedical imaging applications. In such context, regularization plays a key

role, as it allows to learn robust models for automatic image retrieval, segmentation, and disease prediction.

One of the main drawbacks of DL methods is that to learn a prediction function that does not simply overfit

the training set, the number of training data should be large (e.g., in the order of tens of thousands). In the

context of biomedical images, retrieving a large data set may be hard. To cope with this issue, we can use

data augmentation (Schlemper et al., 2017). An interesting property of DL architectures is that when

properly trained on a given collection of images, they can learn both specific and a specific feature. So, in

general, it is possible to reuse (or fine-tune) the weights learned by a network from some data set, to another

case. This strategy is known as transfer learning and, among others, it was successfully exploited by Li

et al. (2018) to classify subjects with autism spectrum disorder from medical images. As transfer learning

helps to prevent overfitting, it can be considered, to some extent, a regularization strategy.

For a complete review on the impact of DL on this subject, we refer to Lundervold and Lundervold

(2019). When model interpretability is as important as prediction performance, DL methods must be trained

with particular care. This relevant topic is addressed in Plumb et al. (2019), where the authors propose a

regularization term that encourages explainability of the trained model in the neighborhood of the training

points without significantly affecting the predicting performance. On the same line, Tong et al. (2018)

recently introduced the so-called Graph Spectral Regularization that, applied on neuron activations of an

arbitrary NN, can be used to enforce a meaningful graph structure. This method is successfully applied to

learn gene marker correlations in a single-cell RNA-sequencing data set. For a specific review clarifying

the role of DL in biology, we refer the reader to Ching et al. (2018), where the authors analyze the

application of DL to many tasks, among which are clinical outcome forecasting, biological processes,

treatment discovery, and neuroscience.

5. WHICH VARIABLES ARE THE MOST RELEVANT? (A2)

When dealing with health science problems, often we want to learn the best predictors for a certain

outcome. Typically, the regularized solution to this problem is to add sparsity-inducing penalties on the loss

of the specific machine learning method. A model is said to be sparse when it is defined upon a small

number of features (Hastie et al., 2015).

5.1. Lasso and Elastic-Net

There are many penalties that can be added to enforce sparsity. All these penalties are based on the Lasso

(Tibshirani, 1996) penalty or ‘1-norm:

R ‘1
(w) =

Xd

j = 1

jwjj = kwk1: (5)

Sparsity can also be achieved through other feature selection techniques besides regularization. Those

include filtering techniques, which score features according to their individual relationship with the out-

come (e.g., through correlations or statistical association testing) and only keep the highest-scoring ones, or

wrapper techniques, which assess subsets of variables according to their usefulness to a given learner. By

contrast, embedded methods such as the Lasso directly satisfy the sparsity constraint while optimizing the

model, which is more efficient. All three family approaches are reviewed in Guyon and Elisseeff (2003).

As for the ‘2 regularization, the Lasso has an equivalent under the Bayesian setting, and corresponds to

using a Laplace prior on the weights of the predictors (Murphy, 2012). When used for variable selection,

the Lasso has two major drawbacks. First, in the presence of groups of correlated variables, this method

tends to select only one variable per group. Second, the method cannot select more variables than the

sample size (De Mol et al., 2009b; Waldmann et al., 2013).

The Elastic-Net (Zou and Hastie, 2005; De Mol et al., 2009a) method can be formulated as a least-square

problem penalized by a convex combination of the Lasso (‘1) and the Ridge regression (‘2) penalties

[Eq. (6)].
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R ‘1‘2
(w) =

Xd

j = 1

((1 - a)jwjj + aw2
j ) = (1 - a)kwk1 + akwk2

2: (6)

The combined presence of the ‘1- and ‘2-norms promotes sparse solutions where groups of correlated

variables can be simultaneously selected. It is easy to see that fitting the Elastic-Net model for a = 1 or a = 0

is equivalent to Tikhonov or Lasso regularization, respectively.

5.1.1. Applications. A popular application of the Lasso is to perform shrinkage and variable selec-

tion in survival analysis for Cox proportional hazard regression and additive risk models. Such penalized

methods were extensively applied in literature to predict survival time from molecular data collected from

patients affected by different kinds of tumor (Ma and Huang, 2007; Tang et al., 2017). The Elastic-Net

method is successfully applied in several biomedical fields (Waldmann et al., 2013). For example, De Mol

et al. (2009b) exploited an incremental version of Elastic-Net to identify nested groups of correlated genes

and Hughey and Butte (2015) exploit it to distinguish between four lung cancer subtypes. In Csala et al.

(2017), the authors propose an iterative algorithm that exploits the variable selection capabilities of this

method to estimate explanatory variable weights to explain the variability in gene expressions by epige-

nomic data (i.e., methylation markers) collected from blood leukocytes of Marfan syndrome patients.

5.2. Lasso extensions

It is also possible to design regularizers that force the features that are assigned nonzero weights to

follow a given underlying structure (Micchelli et al., 2013). This structure can be defined by arranging

features in groups (typically for bioinformatic applications, biological pathways) or graphs (typically,

biological networks). In the case of groups, the regularizer constrains entire groups of features to be either

all selected or all discarded. When the groups are disjoint, this can be implemented by the Group Lasso

(Yuan and Lin, 2006). Suppose that the d features are grouped into L groups, with dl the number of features

in group l. Let us denote by Xl 2 Rn · dl the input data restricted to the features belonging to group l. The

Group Lasso uses the following penalty:

Rgl (w) =
XL

l = 1

ffiffiffiffi
dl

p
kwlk2‚ (7)

where the same weight wl is associated with all variables from group l. The Group Lasso was later extended

to the case where the groups can overlap ( Jacob et al., 2009) or be hierarchical ( Jenatton et al., 2011).

In the case of networks, the regularizer encourages features that are connected on the network to be

selected together. This can be implemented directly with the overlapping Group Lasso, by defining groups

as pairs of features connected by an edge ( Jacob et al., 2009). Another way to smooth regression weights

along the edges of a predefined network, while enforcing sparsity, is a variant of the generalized fused

Lasso (Tibshirani et al., 2005). The corresponding penalty is given by Equation (8)

Rgfl (w) =
X

p*q

jwp - wqj + gkwk1‚ (8)

where g is a regularization parameter. We use the notation p*q to denote that vertex p and vertex q form

an edge in the graph considered. However, this can get computationally intensive in the case of large

networks, and other methods based on graph Laplacians have been developed. Given a graph G of adjacency

matrix A 2 Rd · d, the Laplacian of G is defined as L : = D - A, where D is a d · d diagonal matrix with

diagonal entries Dii =
Pd

j = 1 Aij. The graph Laplacian is analogue to the Laplacian operator in multivariable

calculus, and similarly measures to what extent a graph differs at one vertex from its values at nearby vertices.

Given a function f : Rd1R, f TLf quantifies how smoothly f varies over the graph (Smola and Kondor, 2003).

Grace (Li and Li, 2010) uses a penalty based on the graph Laplacian L of the biological network, which

encourages the coefficients b to be smooth on the graph structure. This regularizer is given by Equation (9).

The aGrace variant (Li and Li, 2010) allows connected features to have effects of opposite directions.

Rgrace (w) = wTLw =
X

p‚ q

Apq(wp - wq)2: (9)
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These approaches are rather sensitive to the quality of the network they use, and might suffer from bias

due to graph misspecification (Yang et al., 2012b). GOSCAR (Yang et al., 2012b) was proposed to address

this issue, and replaces the term jwp - wqj in Equation (8) with a nonconvex penalty:

max jwpj‚ jwqj
� �

= 1
2
jwp + wqj + jwp - wqj
� �

.

5.2.1. Applications. Hierarchical Group Lasso was used in a classification setting to localize the

brain regions involved in the processing of visual stimuli from functional magnetic resonance imaging

(fMRI) ( Jenatton et al., 2012). In Xin et al. (2014), the authors successfully applied network Lasso to

Alzheimer’s disease diagnostics from brain images. A more detailed review of these approaches and their

applications to bioinformatic problems can be found in Azencott (2016), which also presents how these

regularizers can be used in the context of filter approaches to feature selection.

5.3. Evaluation

As for the other methods presented in this review, we need to perform model selection also when

utilizing the penalties described in this section. Nonetheless, when adopting sparse techniques, it is nec-

essary to evaluate if the model recovers the correct features. In bioinformatics, there usually is no ground

truth for this question, which can hence only be answered on synthetic data: if the feature selection process

is stable, it should retrieve the same features on overlapping subsets of the same data set.

The set of selected features can only be interpreted if it remains robust to slight variations in the data. Do

multiple repeats of the algorithm, for instance, on cross-validation training folds, yield the same sets of

features? A variety of measures have been developed to evaluate the stability of a feature selection

algorithm.

While predictivity is typically assessed by cross-validation (Guyon et al., 2002). It is important to highlight

that variable/feature selection should not be considered a preprocessing step. In fact, using the same data set

to select the most important features and to evaluate the model performance leads to an overoptimistic

predictive capability. This phenomenon is known as selection bias (Ambroise and McLachlan, 2002).

6. ARE THERE HIDDEN PATTERNS IN THE DATA? (A3)

Pattern recognition is a very general machine learning problem that comprehends tasks as clustering of

samples or retrieval of basic signals within the features. Nonetheless, in life science settings, while it is

useful to obtain information on samples (typically patients), it may also be useful to retrieve patterns from

the features. Using clustering methods in these settings will be harder as they typically assume samples that

belong to the same cluster to be i.i.d. Features, on the other hand, may have complex dependency patterns

difficult to interpret with standard clustering algorithms. In signal analysis, the possibility to detect latent

patterns present in sampled signals has been studied in deep for the possibility to obtain a better repre-

sentation of data. The most common ways to decompose a signal are principal component analysis (PCA)

(Wold et al., 1987) and its derivatives. Nonetheless, they typically assume strong prior on the patterns, for

example, in PCA all the patterns have to be orthogonal to each other. In some contexts, this assumption can

prevent the analysis to detect factors that do not satisfy the requirements imposed.

6.1. Dictionary learning

We therefore discuss a technique called matrix factorization, which, given an input matrix X of n signals in d

dimensions, aims at decomposing it into two (or more) submatrices, one representing the patterns of feature

dictionary and the other coefficients. The original samples are obtained as a linear combination of the atoms

weighted by the coefficients; if the combination has few nonzero coefficients, we have a sparse coding

(Olshausen and Field, 1997). The dictionary learning problem, without regularization can be written as follows:

min
C2C‚ D2D

kX - CDk2
F‚ (10)

where C 2 Rn · k is the matrix of coefficients, D 2 Rk · d is the dictionary matrix, and the two convex sets D
and C can be used to constrain the solution to specific sets. The number k is the number of atoms of the

problem and it is a parameter that needs to be found through cross-validation techniques.
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We can assume that the dictionary is known a priori, mimicking signal decomposition techniques such as

Fourier transform or wavelet transform. In this case, the problem is called sparse coding and it is a convex

problem. In general, we do not know the underling patterns and we therefore need to learn the dictionary

too.

This type of techniques allows to perform a variety of different tasks such as clustering, dictionary

learning, sparse coding, data integration, matrix completion, and others. These methods can be regularized

through the addition of a penalty both on the patterns and on the coefficients

min
C2C‚ D2D

kX - DCk2
F + R1(C) + R2(D)‚ (11)

where R1 and R2 are penalties chosen by the user to impose regularization. Common choices are R‘1
and

R‘2
. It is often associated with bagging techniques to prevent overfitting on the data and the initialization, as

in the case of learning both the dictionary and the coefficients, is a nonconvex problem.

6.1.1. Applications. Dictionary learning is widely used to analyze biological data, in particular it is

mostly exploited for the analysis of biomedical images. It was exploited for the reconstruction of magnetic

resonance images from undersampled data (Ravishankar and Bresler, 2010), and also for the detection of

microaneurysm in retinal images (Zhou et al., 2017). Dictionary learning can be also used for other types of

data, as in Nowak et al. (2011) and Masecchia et al. (2013), where they use a fused Lasso dictionary

learning approach to perform subtyping of cancer patients analyzing copy number variation (CNV) data.

6.2. Non-negative matrix factorization and discriminative dictionary learning

The dictionary learning problem allows to be specialized in many forms. One of the most popular

specializations is the so-called Non-negative matrix factorization, which has the same exact form of

Problem (11), but the sets in which we are optimizing the coefficient and the dictionary are restricted to the

positive space with D = C =R + . This approach was first proposed in Lee and Seung (2001) and it is widely

used in biological applications as the main assumption is that natural signals cannot typically derive from

negative patterns, where we define signal as the measurable expression of the system under analysis.

Imposing a non-negativity constraint forces the algorithm to detect only positive patterns as well as positive

weights thus reducing cancellation effects (Lee and Seung, 2001).

The second problem is discriminative dictionary learning where the coefficients are used as a new

representation for the original signal in a new problem such as classification or regression. The possibility

to learn the dictionary, the coefficients, and the classification parameters at the same time was first proposed

by Huang and Aviyente (2007). In this specialization, the functional becomes

min
C2C‚ D2D‚ w2Rk

kX - CDk2
F + L(y‚ w‚ C) + R1(C) + R2(D) + R3(w)‚ (12)

where L is a classification/regression loss as the ones in Table 1 and R1‚ R2 and R3 are penalties as for

Equation (11).

6.2.1. Applications. In Piaggio et al. (2019), they exploit penalized non-negative matrix factorization

to find patterns of somatic mutations specific of uveal melanoma from SNP data. In Javidi et al. (2017),

they exploit discriminative dictionary learning and sparse representation based on Lasso penalty to perform

vessel segmentation on retinal images. In Li et al. (2017), they use multimodal dictionary learning with

Lasso penalty to distinguish between stages of Alzheimer’s disease.

7. ARE THERE RELEVANT RELATIONSHIPS BETWEEN VARIABLES? (A4)

Network inference is the process of estimating a graph from real-world measurements. The inferred

graph is the mathematical abstraction of a system where nodes represent the variables and edges may

represent different types of relationships according to the system under analysis. Often, in real-world

scenarios, the graph structure is not known and in fields such as computational biology, network inference

plays a key role in understanding how molecular interaction works. At the cellular level, for example, we

may seek for evidence of regulatory functions (Lozano et al., 2009), coexpression edges, metabolic
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influence (Kanehisa, 2001), as well as protein/protein interaction networks (Huang et al., 2016). Learning

the network structure from data may be hard due to the ratio between number of features and samples. The

research in this area has increased in the last years and many methods that tackle some of these problems

have been proposed. These methods include Bayesian network (BN)-based (Nielsen and Jensen, 2009),

Gaussian graphical model (GGM)-based, differential equation (DE)-based (de Hoon et al., 2002), and

mutual information (MI)-based (Margolin et al., 2006) methods. In this section, we focus on GGMs as a

specific example of a wider set of probabilistic methods that naturally leverage regularization to infer

networks. GGMs are based on penalized maximum likelihood estimation (MLE) and can be written as in

Equation (3). GGMs can also easily be adapted to many different regularization strategies. Regularization

in these methods helps to cope with the high dimensionality of the data and identifiability and interpret-

ability of the resulting network. Moreover, GGMs are suited to both the inference of coexpression

(Friedman et al., 2008) and regulatory networks (Krämer et al., 2009). This class of methods can also be

easily adapted to non-Gaussian data through appropriate data manipulation.

7.1. Graphical Lasso

Graphical Lasso is the most representative example of penalized MLE method for network inference. It

assumes the variables in the system to be distributed according to a multivariate Gaussian distribution

N (0‚
P

). The problem translates in inferring the connections between the variables. The Gaussian

assumption simplifies this inference as the connections can be read in the precision matrix, that is, the

inverse of the covariance matrix Y =
P- 1

. Indeed, two variables i and j are conditionally independent,

given the other variables, if and only if Yij = 0. Therefore, the precision matrix can be seen as the

adjacency matrix of a graph. Another main assumption is that the underlying network is sparse, that is,

only few edges are necessary to fully describe the system. Graphical Lasso (Friedman et al., 2008) can be

formalized as follows:

minimize
Y

trace(SY) - logdet(Y) + k Yk kod‚ 1‚ (13)

where �k kod‚ 1 is the off-diagonal ‘1-norm, promoting sparsity in the off-diagonal part of the precision

matrix, S is the empirical covariance matrix, and the terms trace and logdet derive from the computation of

the Gaussian log-likelihood. Equation (13) can be solved using a modified Lasso regression on each

variable in turn (Section 5) with a simple, efficient, and fast procedure (Friedman et al., 2008). This is, for

instance, in the case of Menéndez et al. (2010), where the authors exploit this method to reverse engineer

five gene regulatory networks within the context of DREAM4 challenge (http://dreamchallenges.org). It is

easy to modify the algorithm to have specific penalties kik for each edge. A value kik !1 forces nodes xi

and xj to be disconnected. This is particularly relevant in biology, when two variables (such as genes) are

known not to interact directly. It is worth mentioning that the l1 norm helps both in terms of under-

standability and identifiability of the result. Nevertheless, often the final graph may present some differ-

ences under different subsamplings of the data as it is extremely data dependent. In Liu et al. (2010), the

authors suggest a method to select the regularization parameter k based on the stability of the result under

many subsamplings of the data that were proven effective in many contexts.

7.1.1. Applications. An example is the work proposed in Ramanan et al. (2016) where the authors

inferred a network demonstrating an antagonistic relationship between Clostridiales and Bacteroidales

communities from the Human Microbiome Project. Since it was first proposed that the graphical Lasso

has received much attention for its application in biology, we refer the reader to this review (Kuismin

and Sillanpää, 2017) that compares it with other network inference methods in the context of system

biology.

7.2. Graphical Lasso extensions

Many extensions of Equation (13) were proposed over the years to model systems of increasing com-

plexity. These extensions are widely based on the addition of further penalties that force the graph

structures to respect certain constraints. One notable example is the extension to the multitask/multiclass

case in which the graphs share a common structure, but they differ in some connections (Danaher et al.,

2014). These methods are mainly based on the Group Lasso or fused Lasso penalties and they were
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successfully applied in genomics (Xie et al., 2016) and neuroscience (Belilovsky et al., 2016). To include

the dynamical properties of systems, Zhou et al. (2010) propose a weighted method to estimate the graph

temporal evolution. Whereas Hallac et al. (2017) propose evolving precision matrices in time, simi-

larly to Danaher et al. (2014). Here, again, the extension is performed by applying a regularization

term that enforces similarities between graphs close in time. The graphical Lasso has also been extended

to consider hidden and unmeasurable variables that influence the system through the nuclear norm

penalty (Chandrasekaran et al., 2010). The dynamical and latent aspects were fused together in Tomasi

et al. (2018) where the authors show the ability to detect perturbation in cellular system subject to

external stimuli.

Graphical Lasso can be further extended to consider the multilayer case, which integrates components of

the cellular system that can act at different scales or time to obtain a more precise overview.

Table 2. Applications Related to the Analysis of Omic-Data of Various Nature

Data type Citation Method Regularization type

Gene expression

(microarrays)

Guyon et al. (2002) Support vector Machines Recursive feature Elimination

Bøvelstad et al. (2007) Ridge regression Tikhonov

Kursa (2014) RF Tree regularization

Deng and Runger (2013) RF Gini index regularization

Chen et al. (2016) DL Dropout

Mascelli et al. (2013) RLS Elastic-Net

Ma and Huang (2007) RLS Lasso

De Mol et al. (2009b) RLS Elastic-Net

Hughey and Butte (2015) RLS Elastic Net

Krämer et al. (2009) Network inference Lasso

Gene expression

(RNA-Seq)

citeyu2013shrinkage Negative binomial

distribution

Tikhonov

Leung et al. (2014) DL Lasso, dropout

Tang et al. (2017) Cox model Lasso

Cheng et al. (2017) Network inference Group Lasso

Yang et al. (2012a) Network inference Lasso

Gene expression, CNV Žitnik and Zupan (2015) Network inference Network integration

ncRNA- mRNA Soulé et al. (2020) RF Ensemble

SNPs Yuan et al. (2016) DL Tikhonov (weight decay)

Kratsch and McHardy (2014) RLS Tikhonov

Silver et al. (2013) RLS Group Lasso

He et al. (2016) Gradient boosting Boosting and Lasso

Alexandrov et al. (2013) Dictionary learning Lasso

Piaggio et al. (2019) Dictionary learning Lasso

SNPs, Copy number,

methylation

Aben et al. (2016) RLS Elastic-Net

Methylation Johann et al. (2019) RF Bagging

Methylation, gene

expression

Csala et al. (2017) RLS Elastic-Net

DNA sequence Liu et al. (2014b) Gradient boosting Bagging

DNA sequence Libbrecht et al. (2015) Network inference Graph-based regularization

Proteomic Chen et al. (2015) DL Tikhonov (weight decay)

Microbioma Ramanan et al. (2016) Network inference Lasso

Protein, tissue, and

function information

Zitnik and Leskovec (2017) Multilayer network inference Tikhonov

CNV Nowak et al. (2011);

Masecchia et al. (2013)

Dictionary learning Fused Lasso

For each type of datum, we provided the specific type of analyzed data, the citation, the machine learning method, and the type of

regularization. Note that recursive feature elimination was never explicitly mentioned, but it is part of the sparsity inducing

regularization techniques, details can be found in Guyon and Elisseeff (2003).

CNV, copy number variation; DL, deep learning; RF, Random forest; RLS, Regularized Least Squares.
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7.2.1. Applications. In Cheng et al. (2017), they propose a regularized extension that translates into a

Group Lasso penalty on the entries of the precision matrix. This method is able to detect pathway/pathway

and gene/gene interactions. Monti et al. (2014) used a dynamical graphical Lasso to detect brain functional

connections from fMRI images. Libbrecht et al. (2015) performed semiautomated genome annotation by

inferring a network with graph-based regularization.

7.3. Lasso in the non-Gaussian case

The Gaussian assumption allows to provide easy and computationally tractable algorithms and extensions,

but it imposes a limitation in the type of data that can be analyzed. Several methods consider non-Gaussian

data distributions simply manipulating the input data through log2 or copula transforms (Liu et al., 2012).

7.3.1. Applications. Research has also moved toward the use of other distributions and models, for

example, the Ising model for discrete variables or the Poisson model that provides a better modeling of

next-generation sequencing data (Yang et al., 2012a). These methods are powerful and they allow to

consider graphs, for example, gene/gene interactions, that are generated from different data measurements

such as CNV, gene expression, or single-nucleotide polymorphism data. In this context, a method that

integrates the network obtained from diverse measurements assuming the best distribution has been pro-

posed in Žitnik and Zupan (2015) where they showed that it allows to recover a more detailed network.

Zitnik and Leskovec (2017) exploit a similar method to perform prediction of multicellular function by

inferring multilayer tissue networks regularized through ‘2-norm.

8. CONCLUSION

This article clarifies the importance of regularized methods for life science studies from different per-

spectives. We covered both supervised settings, where the expected outcome is to predict some target

variable, and unsupervised scenarios, where the aim is to infer the topology of the network modeling the

interactions between the observed variables. Moreover, we showed how prior knowledge on the problem at

hand can be embedded into a regularization penalty, allowing to identify meaningful and interpretable

solutions. Moreover, we also highlighted how, thanks to different regularization penalties, it is possible to

overcome the issues faced by standard statistical methods in settings where the number of variables

outnumbers the available samples (n� p).

Table 3. Applications Related to the Analysis of Biomedical Images and Textual/Clinical Data

Data category Data type Citation Method Regularization type

Texts Clinical records Garg et al. (2016) AdaBoost Bootstrap

Structured

text

Insurance claims Fiorini et al. (2019) DL Early stopping and dropout

Clinical Patient-centered outcomes Fiorini et al. (2017) RLS Nuclear norm, Elastic-Net

Images Brain electron microscopy Fakhry et al. (2016) DL Tikhonov (weight decay)

MRI Schlemper et al. (2017) DL Data augmentation

MRI Li et al. (2018) DL Transfer learning

MRI Tong et al. (2018) DL Graph spectral regularization

fMRI Jenatton et al. (2012) Generalized linear

model

Hierarchical group Lasso

MRI Xin et al. (2014) RLS Generalized fused Lasso

fMRI Monti et al. (2014) Network inference Joint Lasso

Retinal images Javidi et al. (2017) Dictionary learning Lasso

sMRI Li et al. (2017) Dictionary learning Lasso

Retinal images Zhou et al. (2017) Dictionary learning Group Lasso

MR Ravishankar

and Bresler (2010)

Dictionary learning ‘0 penalty

For each type of datum, we provided the specific type of analyzed data, the citation, the machine learning method, and the type of

regularization.

MR, magnetic resonance; MRI, magnetic resonance imaging; fMRI, functional MRI; sMRI, structural MRI.
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We summarized the applications cited in the articles in Tables 2 and 3. We highlighted that regular-

ization is heavily used for the analysis of omic-data (Table 2), which is due to the natural high dimen-

sionality of these types of data. Furthermore, we cannot identify one specific type of method or

regularization type that is more used in general for omic-data. Indeed, the choice of regularization method

depends on a variety of additional considerations. In Table 3, we report other types of data; a clear

preference for DL and dictionary learning emerges when it comes to the analysis of biomedical images.

Such behavior is expected, indeed both DL and dictionary learning learn representations of meaningful

parts of the input signal, which is crucial in image analysis as we may want the model to have suitable

properties, for example, translation-invariance.

Regularization is a key aspect in all these works, and in many others. In the era of large-scale data, it is

very much worth to invest effort in adopting suitable regularization techniques when developing an analysis

pipeline to obtain robust, reliable, and interpretable results.
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