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Purpose: There is a need to identify new biomarkers of radiation exposure both for use in
the development of biodosimetry blood diagnostics for radiation exposure and for clinical
use as markers of radiation injury. In the current study, a novel high-throughput proteomics
screening approach was used to identify proteomic markers of radiation exposure in the
plasma of total body irradiated mice. A subset panel of significantly altered proteins was
selected to build predictive models of radiation exposure and received radiation dose
useful for population screening in a future radiological or nuclear event.

Methods: Female C57BL6 Mice of 8–14 weeks of age received a single total body
irradiation (TBI) dose of 2, 3.5, 8 Gy or sham radiation and plasma was collected by cardiac
puncture at days 1, 3, and 7 post-exposure. Plasma was then screened using the
aptamer-based SOMAscan proteomic assay technology, for changes in expression of
1,310 protein analytes. A subset panel of protein biomarkers which demonstrated
significant changes (p < 0.05) in expression following radiation exposure were used to
build predictive models of radiation exposure and radiation dose.

Results:Detectable values were obtained for all 1,310 proteins included in the SOMAscan
assay. For the Control vs. Radiation model, the top predictive proteins were
immunoglobulin heavy constant mu (IGHM), mitogen-activated protein kinase 14
(MAPK14), ectodysplasin A2 receptor (EDA2R) and solute carrier family 25 member 18
(SLC25A18). For the Control vs. Dose model, the top predictive proteins were cyclin
dependent kinase 2/cyclin A2 (CDK2. CCNA2), E-selectin (SELE), BCL2 associated
agonist of cell death (BAD) and SLC25A18. Following model validation with a training
set of samples, both models tested with a new sample cohort had overall predictive
accuracies of 85% and 73% for the Control vs. Radiation and Control vs. Dose models
respectively.

Conclusion: The SOMAscan proteomics platform is a useful screening tool to evaluate
changes in biomarker expression. In our study we were able to identify a novel panel of
radiation responsive proteins useful for predicting whether an animal had received a
radiation exposure and to what dose they had received. Such diagnostic tools are needed
for future medical management of radiation exposures.
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INTRODUCTION

Mass casualty medical management of potential radiological or
nuclear events primarily require diagnostics to effectively identify
individuals who have received a radiation exposure. Many
promising approaches are currently under development
including point-of-care and high-throughput off-site
approaches (Garty et al., 2016; Balog et al., 2020; Jacobs et al.,
2020). These diagnostics are based on physiological biomarkers of
radiation injury found primarily in the blood and include a wide
array of molecules at the genomic, proteomic, metabolomic, and
transcriptomic level. In addition, some methodologies for
characterizing radiation exposure utilize cytogenetic markers,
lymphocyte depletion kinetics and electron paramagnetic
resonance (EPR). Cumulatively, this variety of biomarker
classes represent the complex physiologic interaction of
biological mechanisms involved in ionizing radiation injury
(Sproull and Camphausen, 2016). At the proteomic level
several key biomarkers of radiation exposure have been
established in mammalian models of radiation exposure and
include Flt3 ligand (FL), a marker of hematopoietic stem cell
recovery, acute phase response proteins c-reactive protein (CRP)
and serum amyloid A (SAA) and other markers such as salivary
alpha amylase (AMY1) and monocyte chemotactic protein 1
(MCP1) (Ossetrova et al., 2011; Sproull et al., 2017; Balog
et al., 2019).

Characterization of proteomic biomarkers of radiation
exposure and novel proteomic biomarkers of other disease
states have previously been done using singleplex ELISA assay
or using multiplex immunoassay approaches including reverse
phase protein arrays (RPPAs), bead-based assays or
electrochemiluminescent-antibody based technologies (Sproull
et al., 2013; Boellner and Becker, 2015; Sproull et al., 2015;
Himburg et al., 2016; Blakely et al., 2018; Kuang et al., 2018).
Multiplex approaches have clear benefits in exploratory studies
for biomarker discovery in terms of cost and efficiency as they
maximize target screening using less sample volume. To date, the
best of these various multiplex platforms could offer was target
screening at the level of a few hundred proteomic targets. In the
current study, we sought to take advantage of emerging high-
throughput technologies which examine changes in the
mammalian proteome through high level multiplex
approaches. With access to a larger array of protein targets,
changes in the mammalian proteome due to radiation injury
can be better characterized. Using the innovative aptamer-based
SOMA-scan proteomic assay technology, plasma from C57BL6
mice was screened for changes in expression of 1,310 protein
analytes following a total body radiation exposure of 2, 3.5 or
8 Gy. A subset panel of proteins which demonstrated significant
changes in expression following radiation exposure was selected
to build predictive models of radiation exposure. In mass casualty
medical management of events involving radiation exposure,
screening to identify those individuals who have received a
radiation exposure is a key element (Sullivan et al., 2013). Yet,
different predictive diagnostics of radiation exposure may be
needed at different levels of triage. To address this need, we
created two predictive models of radiation exposure. Firstly, a

“Control vs. Radiation” model was developed to predict whether
an individual had received a radiation exposure and needed
further triage or had not received a radiation exposure and
could be sent home. We also developed a “Control vs. Dose”
model to predict how great a radiation dose an individual had
received which is useful for guiding subsequent medical
management decisions.

For this study, model building and validation were completed
with two separate sample sets to independently test the strength
of the respective models. This study identifies both novel
proteomic biomarkers of radiation exposure and two useful
predictive models of radiation exposure using the Somalogic
SOMAscan platform.

METHODS

Animal Model
For the murine model used in this study, 8–14 week old female
C57BL6 mice received a single total body irradiation (TBI) dose
of 2, 3.5, 8 Gy or sham radiation. All mice receiving TBI were
confined using a standard pie jig preventing movement. All
animal studies were conducted in accordance with the
principles and procedures outlined in the NIH Guide for the
Care and Use of Animals and procedures were approved by the
NIH Lab Animal Safety Program under an approved protocol.
Plasma was collected by cardiac puncture using a heparinized
syringe at days 1, 3, and 7 post-irradiation in Lithium Heparin
blood collection tubes (BD Biosciences). Mice received 2.5–5.5%
Isoflurane anesthesia during cardiac puncture for blood
collection. Plasma was spun at 10,000 RCF for 10 min at 4°C
and all samples were stored at −80°C.

Dosimetry
For the murine in vivomodel utilized in this study, a Pantak X-ray
source was used at a dose rate of 2.28 Gy/min. Dose rate was
calibrated based upon the procedures described in American
Association of Physicist inMedicine (AAPM) Task Group Report
61 (TG-61) with regard to the following conditions: X-ray tube
potential was 300 kV, half value layer (HVL) is 0.8 mm Copper
(Cu), source to surface distance (SSD) was 50 cm. Dose rate was
measured at 2 cm depth in solid water phantom using a PTW
model: N23342 ion chamber and Inovision, model 35040
electrometer.

SomaLogic SOMAscan Assay
Approximately 150 ul of plasma per sample was used for the
Somalogic SOMAscan Assay which uses a novel protein-capture
aptamer-based technology (Rohloff et al., 2014). For this study
the SOMAscan HTS Assay 1.3 K was used and processed through
the Center for Human Immunology at the National Institutes of
Health. The assay included measurement of 1,310 protein
analytes.

Statistical Analysis
In brief, data was received in the form of Relative Fluorescent
Units (RFU) for each of the 1,310 proteins in the SOMAscan
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assay after normalizing for intraplate and interplate variation.
These RFU scores for each protein were log2 and z-score
transformed. Statistical data analysis was performed using R
(Team, 2015). In this study, we investigated the effect of
feature selection and prediction algorithm on the performance
of prediction method thoroughly. We considered the following
feature selection and prediction methods implemented
sequentially: differential expression analysis, random forest,
regularized regression analysis, and linear discriminant
analysis (Supplementary Figure S1). For these methods, we
studied the effects of feature selection and the number of
features on prediction.

Differential expression analysis: To remove invariant data from
the analysis, we first performed t-test or ANOVA analysis
depending on whether there two groups (Control vs. RT) or
multiple groups (Control vs. Dose) respectively. Significance test
with (p ≤ 0.05) were selected for further analysis.

Feature selection: Random Forest (RF) is a classification
algorithm using sets of random decision trees which are
generated by a bootstrap sampling for decision and voting
(Breiman, 2001; Banfield et al., 2007). We implemented Boruta
algorithm which is a wrapper built around random forest. Boruta
is a feature selection algorithm and feature ranking based on the
RF algorithm. Boruta’s benefits are to decide the significance of a
variable and to assist the statistical selection of important
variables. Besides, we can manage the strictness of the
algorithm by adjusting the p-value that defaults to 0.01. This
method allowed us to capture all the important and interesting
features with respect to the outcome variable (either RT model or
Dose model).

Elastic-Net Analysis
It is evident that good classification and prediction requires good
predictors. Elastic-net regularization uses ridge and LASSO
penalties simultaneously to take advantages of both
regularization methods (Zou and Hastie, 2005). Elastic-net
provides shrinkage and automatic variable selection. Since
Elastic-net feature selection is the result of random
permutations, we tend to get slightly different set of features
with each iteration. Since our main goal is to find stable set of
features for wider application, we implemented 20 iterations of
elastic-net computations resulting in 20 independent models. We
then ranked the features by how often each feature is present in
maximum number of models and selected top ranked four
features.

Linear Discriminant Analysis
Linear discriminant analysis (LDA) is used to find linear
combinations of features which characterize or discriminate
two or more classes. LDA is simple and fast. LDA was used
for the purpose of final feature selection and classification. A
permutation test evaluated whether the specific classification of
the individuals between groups is significantly better than
random classification in any two arbitrary groups (Bylesjö
et al., 2006). Finally, we performed model performance
evaluation with the new data for prediction accuracy. The
significance of each model and importance of each feature in

the model is further tested by multivariate and univariate anova
tests for both training and testing models. The results were shown
as heatmap and PCA plots.

RESULTS

Multivariate Model Generation
In the current study, we sought to take advantage of an emerging
technology, the Somalogic SOMAscan assay, to identify novel
biomarkers of radiation exposure using a multiplex-analysis
approach and use these findings to build radiation exposure
and dose prediction models. The radiation exposure model
(Control vs. RT) was designed to differentiate only between
exposed and unexposed animals with the exposed animals
receiving a TBI dose between 2 and 8 Gy. The dose prediction
model (Control vs. Dose) was designed to both differentiate
between exposed and unexposed and between the exposed by
dose (2, 3.5, and 8 Gy). To this end, values for all 1,310 SOMAmer
targets were obtained for each control and radiation treated
sample. SOMAmer targets which demonstrated significant
changes in expression following radiation exposure were
selected using an ANOVA test (p < 0.05) and then filtered by
rank using a Random Forest analysis. From this subset of
proteins, the top four ranked proteins were selected for each
model. For the Control vs. Radiation (RT) model, the top
predictive proteins were immunoglobulin heavy constant mu
(IGHM), mitogen-activated protein kinase 14 (MAPK14),
ectodysplasin A2 receptor (EDA2R) and solute carrier family
25 member 18 (SLC25A18). For the Control vs. Dose model, the
top predictive proteins were cyclin dependent kinase 2/cyclin A2
(CDK2. CCNA2), E-selectin (SELE), BCL2 associated agonist of
cell death (BAD) and SLC25A18. For each model, a training set of
samples was used to generate the model and determine its
predictive accuracy and a subsequent set of test samples was
later collected and used to validate each model.

Multivariate Control vs. RTPredictionModel
The Control vs. RT prediction model was structured using
SOMAmer data for IGHM, MAPK14, EDA2R, and
SLC25A18. Samples included un-irradiated controls and
samples from TBI C57BL6 mice receiving either 2, 3.5, or
8 Gy collected at days 1, 3 or 7 post-exposure. Samples were
pooled into control and irradiated (RT) groups. Heatmap
clustering of the training set of samples showed good
congruency for the Control vs. RT samples (Figure 1A).
Principle component analysis (PCA) of the sample grouping
also showed good separation of the Control vs. RT samples for
the training model (Figure 1B). Analysis of the new test set of
samples used to validate the model showed less precise
clustering of the Control vs. RT samples as compared to the
training set. As shown in Figure 2A heatmap clustering of
Control vs. RT samples was less congruent with some overlap
between control and irradiated samples. Similarly, in Figure 2B,
sample clustering using PCA showed less separation between
the control and irradiated groups as compared to the training
sample set. Illustration of the individual expression patterns for
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each of the proteins used in the model are shown for both the
training model samples and test model samples in Figure 3.
Significant changes in the expression patterns for IGHM,
EDA2R, MAPK14, and SLC25A18 was seen in the training
model samples as measured by Students t-test (p < 0.01), but
only for EDA2R, MAPK14, and SLC25A18 in the test model
samples (p < 0.05) as shown in Figures 3A,B respectively. Other
than the difference in IGHM expression between the training
and test model samples, all the proteins for this model showed
similar trends in expression between the two sample sets.

Multivariate Control vs. Dose Prediction
Model
The Control vs. Dose prediction model was structured using
SOMAmer data for CDK2/CCNA2, SELE, BAD and SLC25A18.
Samples included un-irradiated controls and samples from TBI
C57BL6 mice receiving either 2, 3.5 or 8 Gy collected at days 1, 3
or seven post-exposure. Sample groups were determined by each
dose. Heatmap clustering of the training set of samples was
generally consistent yet there was some overlap between the
samples as shown in Figure 4A. Similarly, PCA showed
reasonable clustering within groups but some overlap between
exposure groups (Figure 4B). Analysis of the new test set of
samples used to validate the model showed a similar level of
overlap between groups with the tightest clustering for the 8 Gy
Day 1 samples (Figure 5A). PCA additionally showed some
overlap between sample groups (Figure 5B). Illustration of the

individual expression patterns for each of the proteins used in the
model are shown for both the training model samples and test
model samples in Figure 6. Significant changes in the expression
patterns for SELE, SLC25A18, CDK2/CCNA2, and BADwas seen
in the training model samples by Students t-test (p < 0.05), but
only for SELE, SLC25A18 and CDK2/CCNA2 in the test model
samples as shown in Figures 6A,B respectively. Comparison of
respective expression trends in the Control vs. Dose model
showed more variation between the training and test model
sample sets than was seen in the Control vs. RT model. This
is to be expected as these samples, when separated by individual
dose, result in a much smaller N for each group.

Model Variance and Predictive Accuracy
Following analysis of the expression patterns of the respective
proteins within the sample cohorts used to construct and test each
model, we wished to test the overall strength of each model. For
both the Control vs. RT and Control vs. Dose prediction models,
algorithm development using a linear discriminant analysis
approach was completed with consideration for dose groups
but irrespective of collection time post-exposure. To test the
significance of the validation data, both a multivariate
(MANOVA) and univariate approach (ANOVA) were used to
test whether there were significant differences between the sample
groups (Table 1). Though the multivariate test demonstrated
overall significance between the test groups (control vs. RT or
control vs. Dose) it does not tell us for which individual protein
comparisons there is a significant observed mean differences.

FIGURE 1 | Control vs. RT Training Model. Analysis of proteomic expression within the sample cohort used for model building of the Control vs. RT Training model
using top selected proteins IGHM, MAPK14, EDA2R and SL25A18. Findings are represented by (A) heatmap and (B) PCA.
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Therefore, a series of univariate ANOVAs were performed to
determine the significance of these differences.

As shown in Table 1, for the Control vs. RT training model,
significance was seen at both the multivariate (p < 0.001) and
univariate level for all proteins (p < 0.01–0.001). The Control vs.
RT test model was similarly significant at the multivariate level
(p < 0.01) and at the univariate level for all the individual proteins
(p < 0.05) excepting IGHM. For the Control vs. Dose training
model, significant differences were seen between test groups both
at the multivariate level (p < 0.001) and at the univariate level for
all proteins (p < 0.05–0.001). The Control vs. Dose test model was
similarly significant at the multivariate level (p < 0.001) and at the
univariate level for all the individual proteins (p < 0.05)
excepting BAD.

Predictive accuracy was determined for each respective model
(Table 2). The Control vs. RT model had a 100% overall
predictive accuracy for the training model but only 85% for
the test model. The Control vs. Dose model had a 96% overall
predictive accuracy for the training model and 73% for the test
model. In both models the predictive accuracy decreased when
the training model was tested with fresh samples. Predictive
accuracies for each individual sample set demonstrate the dose
groups where the model was less successful at dose prediction
with only 50% predictive accuracy for the 2 Gy group in the
Control vs. Dose training model and 33% predictive accuracy for
the control group in the Control vs. Dose test model. These results
demonstrate the relative strength of the respective models to

identify which animals have received a radiation exposure and
which radiation dose they have received.

DISCUSSION

This study presents two novel predictive models of radiation
exposure using the high throughput proteomic screening
Somalogic SOMAscan platform. Using a relatively small
amount (150 ul) of plasma 1,310 proteins were screened for
expression changes following a total body irradiation exposure.
Using this approach, two predictive models of radiation exposure
were built and validated with separate test samples. Both the
Control vs. RT and Control vs. Dose models had good overall
predictive accuracies of 85% and 73% respectively. Though the
predictive accuracies for the tested models were lower than the
training models, the additional step of testing each model with
independent samples further validates the strength of the
respective predictive algorithms. It also demonstrates model
stability relative to internal technical variables intrinsic to the
Somalogic SOMAscan assay and biological variables inherent to
individual animals, as the samples used for the training model
and the samples used to subsequently test the model were
collected more than a year apart. As we have demonstrated
previously, factors which affect successful application of a
multivariate dose prediction algorithm include variation in
technical and biological variables (Sproull et al., 2019). The

FIGURE 2 | Control vs. RT Test Model. Analysis of proteomic expression within the sample cohort used for testing of the Control vs. RT Test model using top
selected proteins IGHM, MAPK14, EDA2R, and SKC25A18. Findings are represented by (A) heatmap and (B) PCA.
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FIGURE 3 |Comparison of Selected Proteins in Control vs. RT Model. Individual biomarker expression profiles for each Control vs. RT Model protein are shown for
the sample sets used for both the (A) Training and (B) Test models.

FIGURE 4 | Control vs. Dose Training Model. Analysis of proteomic expression within the sample cohort used for model building of the Control vs. Dose Training
model using top selected proteins SL25A18, CDK2/CCNA2, SELE, and BAD. Findings are represented by (A) heatmap and (B) PCA.

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6331316

Sproull et al. Predictive Model of Radiation Exposure

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


relatively high overall prediction values of the current models
demonstrate the strength of the algorithm and stability of the
SOMAscan assay.

Although key proteomic biomarkers of radiation injury have
been established, much remains unknown regarding the complex
interaction of injury related pathways following radiation
exposure (DiCarlo et al., 2011). The key proteins chosen for
model building in this study were selected based on their relative

significance within the data set. Yet, most of the selected
biomarkers including EDA2R, IGHM, MAPK14, SLC25A18,
BAD, CDK2/CCNA2 are not well established biomarkers of
radiation exposure. Though changes at the protein expression
level of BAD, and at the gene expression level for EDA2R and
IGHM following radiation exposure have been reported, these
markers are not well characterized as radiation responsive
proteins (Chorna et al., 2005; Himburg et al., 2016; Karim

FIGURE 5 | Control vs. Dose Test Model. Analysis of proteomic expression within the sample cohort used for testing of the Control vs. Dose Test model using top
selected proteins SL25A18, CDK2/CCNA2, SELE, and BAD. Findings are represented by (A) heatmap and (B) PCA.

FIGURE 6 | Comparison of Selected Proteins in Control vs. Dose Model. Individual biomarker expression profiles for each Control vs. Dose Model protein are
shown for the sample sets used for both the (A) Training and (B) Test models.
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et al., 2016). CDK2/CCNA2, SLC25A18, and MAPK14 have not
been reported to demonstrate changes in expression directly
linked to radiation exposure, though these proteins are
indirectly related to radiation induced injury as SLC25A18 is
involved in energy metabolism andMAPK14 and CDK2/CCNA1
are involved in DNA damage repair (Liang et al., 2013; Maier
et al., 2016; Yoo et al., 2020). E-selectin however, has been
reported in multiple studies to demonstrate changes in
expression following radiation exposure (Hallahan and
Virudachalam, 1997; Liu et al., 2012).

Surprisingly we did not find that established protein
biomarkers of radiation exposure such as AMY1, FL, and
MCP1, or acute phase reactant proteins such as CRP or SAA
were among the top significantly changed proteins within the
SOMAscan assay (Ossetrova et al., 2011; Sproull et al., 2017;
Balog et al., 2020). One confounder in comparing proteomic
expression trends across different technologies is the lack
of universal homology in capture or binding molecules.
While this confounder has the potential to restrict testing

and validation within the same technology, it also provides
novel opportunities to discover new radiation responsive
biomarkers within specific platforms. Advantages to the
SOMAscan platform include its automated high-throughput
capacity and its large multiplex approach (>1,300 targets) to
proteomic analysis using a small sample volume. This multiplex
capacity has also recently been increased to 4,500 targets
using the same sample volume which will allow for greater
characterization of changes within the mammalian proteome.
These current data also establish a data cohort of proteomic
expression changes relative to total body radiation exposures
in C57BL6 mice within the Somalogic SOMAscan platform.
This total body irradiation data can be used as a baseline
comparison for future screening of other types of radiation
exposures including partial body exposures and organ specific
exposures which have more practical value for medical
management of radiological or nuclear event exposures. This
study presents a novel cohort of protein biomarkers with
potential predictive value for radiation exposure.

TABLE 1 |Model Validation Analysis of Variance. Models were validated using both multivariate analysis of variance (MANOVA) and univariate analysis of variance (ANOVA)
for both the Control vs. RT and Control vs. Dose training and test models. p-values represent the Pr (>F), the p-value of the given effect and F statistic.

Analysis of variance model validation

Control vs. RT training model p value Control vs. Dose training model p value
Multivariate analysis 3.47E − 06 Multivariate analysis 5.30E − 08
Univariate analysis Univariate analysis

IGHM 0.002 SELE 0.022
EDA2R 1.479E − 04 SLC25A18 4.81E − 05
MAPK14 0.006 CDK.CCNA2 0.017
SLC25A18 0.001 BAD 0.027

Control vs. RT test model Control vs. Dose test model
Multivariate analysis 0.008 Multivariate analysis 8.76E − 07
Univariate analysis Univariate analysis

IGHM 0.674 SELE 0.028
EDA2R 0.011 SLC25A18 3.60E − 03
MAPK14 0.033 CDK.CCNA2 0.032
SLC25A18 0.023 BAD 0.587

TABLE 2 | Model Predictive Accuracy. Summary of the predictive accuracy scores for each model using a linear discriminant analysis approach. Both overall predictive
accuracy scores and predictive accuracy scores by test group were generated for both Control Vs. RT and Control vs. Dose training and test models.

Predictive accuracy across models

Control vs. RT training model Control vs. Dose training model
Overall predictive accuracy 100% Overall predictive accuracy 96%
Accuracy by test group Accuracy by test group

Control 100% 0 Gy 100%
RT 100% 2 Gy 50%

3.5 Gy 100%
8 Gy 100%

Control vs. RT test model Control vs. Dose test model
Overall predictive accuracy 85% Overall predictive accuracy 73%
Accuracy by test group Accuracy by test group

Control 81% 0 Gy 33%
RT 100% 2 Gy 89%

3.5 Gy 89%
8 Gy 40%
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