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Drug-induced liver injury (DILI) is a potentially fatal adverse event and the leading cause of acute liver failure in the US and in the
majority of Europe. The liver can be affected directly, in a dose-dependent manner, or idiosyncratically, independently of the dose,
and therefore unpredictably. Currently, DILI is a diagnosis of exclusion that physicians should suspect in patients with unexplained
elevated liver enzymes.Therefore, new diagnostic and prognostic biomarkers are necessary to achieve an early and reliable diagnosis
of DILI and thus improve the prognosis. Although several DILI biomarkers have been found through analytical and genetic tests
and pharmacokinetic approaches, none of them have been able to display enough specificity and sensitivity, so new approaches are
needed. In this sense, metabolomics is a strongly and promising emerging field that, from biofluids collected through minimally
invasive procedures, can obtain early biomarkers of toxicity, which may constitute specific indicators of liver damage.

1. Introduction

Liver injury due to both prescription and over-the-counter
drugs is a growing public health problem. Although drug-
induced liver injury (DILI) is a rare cause of acute liver
injury in clinical practice, it is the leading cause of acute
liver failure (ALF) in the US and most of Europe. The
estimated incidence is 10–15 cases/100,000 patient years [1, 2].
Acetaminophen (APAP) is the drugmost frequently involved
inDILI, representing over 50% of cases of ALF in adults inUS
[2, 3]. Moreover, a small proportion of patients may develop
chronic liver disease [4–8]. Probably, the actual incidence of
DILI is higher than thought, due in part to misdiagnosis as it
is frequently difficult to identify. Inmost cases, liver injury is a
consequence of mitochondrial damage leading to hepatocyte
death. However, in different circumstances, the target of drug
toxicity can be cholangiocytes or endothelial cells, causing
cholestasis or sinusoidal obstruction syndrome instead.

DILI is usually categorized into “intrinsic” and “idiosyn-
cratic.”Themain intrinsic hepatotoxic drug is APAP, which is
characterized by dose-dependent hepatotoxicity. In contrast,
idiosyncratic DILI is not clearly related to drug dose, route, or
duration of administration. Despite the extensive safety tests
performed in the process of getting a drug to market, DILI
remains enigmatic and cannot be predicted in preclinical
and clinical trials. Even though different genetic variants and
biomarkers have been associated with the risk of developing
DILI, hepatotoxicity remains a very common side effect.
These variants include different HLA alleles [9–11] and var-
ious serum biomarkers, such as miRNA-122, high-mobility
group box-1 (HMGB-1), full length and caspase-cleaved
keratin-18 (K-18), and glutamate dehydrogenase (GLDH)
[12].

SinceDILI is associatedwith increasedmorbidity and can
lead to ALF, liver transplant, and death, it would be desirable
that physicians could easily and early establish the diagnosis
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of DILI identifying those patients with a poor prognosis.
This way, strategies to manage complications and improve
prognosis of DILI could be designed more efficiently.

In this review we will focus on the potential role of
metabolomic study on the diagnosis and prognosis of DILI.

2. The Main Challenges in DILI: Accuracy of
Diagnosis and Prediction of Evolution

Currently, DILI is diagnosed by exclusion of other liver
diseases and is frequently misdiagnosed. An important part
in the diagnosis of DILI is to establish a temporal association
between a drug and the onset of liver damage. However,
in many cases, setting a causal link can be a complex task
as most of the idiosyncratic drug-induced reactions occur
roughly between a range of 1-2 weeks and 2-3 months from
the onset of drug administration [13]. Moreover, a significant
time lag between drug discontinuation and the appearance of
elevated liver enzymes may exist [14, 15]. The indication for a
liver biopsy in patients with suspected DILI is controversial
due largely to the absence of pathognomonic histological
findings [16]. In the case of liver damage mediated by APAP,
blood concentration of APAP can be obtained early in the
course of the reaction, which can confirm toxicity. However,
APAP drug levels are not reliable predictors of liver damage
evolution. Moreover, false positive concentrations of APAP
have been observed in patients with ALF, especially in
patients with high bilirubin levels [17]. Therefore, given the
heterogeneity in terms of clinical presentation, biochemistry,
and histology of DILI, current diagnosis is based on circum-
stantial evidence.

Importantly, our knowledge is scarce not only in terms of
diagnostic accuracy. The natural history of DILI is still not
completely understood. It is relatively common to find min-
imally symptomatic or asymptomatic elevated liver enzymes
related to drug administration, which in most cases is solved
by discontinuing the drug. Notably, in other cases it is
not even necessary to discontinue the drug to achieve a
complete and spontaneous remission of the side effect. This
phenomenonof “adaptation” has even been observed in drugs
with potential to cause ALF [18–20]. It is believed that severe
liver damage occurs in a subset of patients with elevated liver
enzymes that are unable to adapt to the initial mild toxicity.
Currently there is no method able to distinguish between
patients with benign and reversible elevation of liver enzymes
from those in whom liver damage will progress. To improve
both the diagnosis and the prognosis of DILI, it would
be important to have early specific biomarkers available,
which may enable physicians to improve the prognosis of
DILI and, importantly, they could avoid unnecessary drug
discontinuations in those cases in which no significant liver
damage will develop. In this field, metabolomics is emerging
forcefully in order to identify early toxicity biomarkers from
biofluids collected through minimally invasive procedures
that are specific indicators of liver damage.

3. Metabolomics: Concept and Definition

Since the early nineties, metabolomics has emerged strongly
from the omics sciences [21, 22]. This science studies the
set of metabolites (global metabolic profiling) present in a
biological system, particularly in biofluids (serum, urine,
feces, sweet, tears, and saliva). It is defined as a quantitative
andmultiparametric measurement of the response of a living
organism to pathophysiologic stimulus or genetic modifi-
cation [23]. One of the main objectives in metabolomics
research is the discovery of specific metabolic profiles asso-
ciated with the disease or the response to specific treatments.

Metabolomics offers a view distinct from Genomics
and Proteomics. While Genomics and Proteomics tell us
what “can happen,” metabolomics tells us what is “really
happening” and, therefore, is the science that can better
characterize the phenotypes of living organisms.

The main analytical methods used in metabolomic anal-
yses are nuclear magnetic resonance (NMR) and mass
spectrometry (MS). The NMR enables the measurement
of many metabolites reliably and repeatedly, starting from
conditioning process simple samples with a very high level
of automation. MS is usually coupled with a separation
technique such as liquid chromatography (LC) or gas chro-
matography (GC). LC-MS and GC-MS are able to analyze
a large number of metabolites with high sensitivity (higher
than the NMR) but treatment of samples is tedious. In
order to analyze metabolomic data, many mathematical or
statistical tools are required. The main pattern recognition
technique used is principal component analysis (PCA),which
is capable of classifying sample groups based on the inherent
similarity or dissimilarity of their corresponding biochemical
compositions [24].

Since the liver is the primary organ of metabolism and
synthesizes the majority of the endogenous metabolites, it
seems reasonable to assume that the effects of a drug causing
DILI may be reflected in these endogenous metabolites. In
this way, global metabolic profiling offers us the opportunity
to identify biomarkers or patterns of biomarker changes
related to drug toxicity in biofluid samples. To understand
the results of metabolomic profiles, the key aspects of the
pathophysiology of DILI andmetabolites involved need to be
well defined.

4. Pathophysiology of DILI

As mentioned above, DILI can be intrinsic to the drug,
as produced by APAP, or idiosyncratic. Although both
types seem to develop by different mechanisms, drugs with
well-documented idiosyncratic DILI have been shown to
have a dose-dependent component [25–27], suggesting an
important role of reactive metabolites in the pathogenesis of
idiosyncratic DILI as it is for APAP. On the other hand, there
have been reports on APAP-induced liver injury after taking
therapeutic doses suggesting idiosyncratic liver injury also by
APAP [28–30].

Pathogenesis of APAP-induced liver injury is well known
because its study in animal models is possible and repro-
ducible, allowing us to understand, at least in part, the
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biological pathways leading to liver damage. Conversely,
drugs that produce idiosyncratic DILI in humans rarely cause
liver damage in experimental animals, probably because
some baseline factors needed in the individual that enhances
the damage, such as old age or the presence of infections,
are not present in the model. For this reason, we have
developed two animal models for studying this type of DILI:
lipopolysaccharide (LPS) Costimulation, consisting in the
administration of potentially hepatotoxic drug after nontoxic
doses of LPS (bacteria endotoxin that promotes inflamma-
tion) [31] and Mn-SOD (+/−) heterozygous mice, which
possess a decreased activity of the superoxide dismutase
2 (SOD2, the mitochondrial form of superoxide dismutase
which protects against reactive oxygen species (ROS)) [32,
33]. Both models are aimed at creating added risk factors
for drug administration, yet the underlying mechanisms
involved in idiosyncratic DILI are not completely known. A
model has been suggested in three stages. First, the drugs
or their metabolites can cause direct cellular stress (intrinsic
pathway), trigger immune reactions (extrinsic pathway),
and/or directly alter mitochondrial function. After the first
insult, the mitochondrial permeability transition (MPT) is
produced, which ultimately leads to the onset of apoptosis or
cell necrosis [34].

In the case of APAP, its pathogenesis is known largely
thanks to metabolomics studies [35, 36]. APAP is predomi-
nantlymetabolized in the liver by the conjugation reactions of
sulfation and glucuronidation (phase II) leading to nontoxic
sulfate and glucuronide conjugates, which are inert and are
excreted in the urine. Only a small proportion of the drug
administered at therapeutic doses is metabolized by several
P450 cytochromes (CYPs) (phase I), specially CYP2E1, lead-
ing to N-acetyl-p-benzoquinone imine (NAPQI), a highly
reactive intermediate metabolite, which is conjugated to
glutathione (GSH) and detoxified to mercapturic acid [37].
When doses of APAP are excessive, phase II is saturated
and the rapid generation of NAPQI can lead to depletion
of cytoplasmic and mitochondrial glutathione [38]. Uncon-
jugated NAPQI covalently binds to proteins and subcellular
structures, which can potentially affect its functions [39]
(Figure 1). Both GSH depletion (which is important in detox-
ifyingH

2
O
2
in themitochondrialmatrix and cytoplasm) and

NAPQI covalent bonds can alter the electron transport chain,
increasing the production of reactive oxygen species (ROS)
[40, 41].TheROS generated andNAPQI itself can oxidize and
modify proteins, lipids, DNA, and other macromolecules,
impairing their functions; thus a wide range of signaling
pathways can be activated or inhibited [42]. Among these
are crucial oxidation of proteins in the inner mitochondrial
membrane by inducing MPT, which dissipates the proton
gradient required for oxidative phosphorylation [43, 44],
and the activation of JNK, which promotes cell damage
and death by inducing MPT. This way, apoptotic factors,
such as cytochrome c, which ultimately leads to hepatocyte
death, are released [45, 46]. In addition, the APAP produces
metabolic changes in the liver, such as rapid depletion of
glycogen, probably an increased utilization of energy for
repair and detoxification and an increase in triacylglycerol
synthesis suggesting a slight increase in fatty liver after APAP

[47]. All these changes and others, such as changes in small
molecule metabolites that act as precursors or compounds
of substances involved in the metabolism of drugs (e.g.,
glycine and S-adenosylmethionine (SAMe) important in the
synthesis of GSH), can be evaluated by metabolomic tools
allowing us to identify biomarkers of DILI from small single
aliquots.

5. The Potential Role of Metabolic Profiling in
the Diagnosis and Prognosis of DILI

Biomarkers are analyzed from blood, urine, or other biologi-
cal samples that may provide insight into the severity, cause,
or outcome of an injury to a specific tissue. In the case of
DILI, biomarkers can improve the speed and accuracy of
diagnosis and know the prognosis [21, 48]. For this purpose,
various serum biomarkers have been proposed, such as ala-
nine aminotransferase (ALT), sorbitol dehydrogenase (SDH),
glutathione S-transferase (GST𝛼), GLDH, microRNAs, CK-
18, andHMGB-1, but these are not specific ofDILI or liver dis-
ease [48]. Measuring derived products of a drug metabolism
could be used to detect toxic responses to a drug, but these
products may not be detectable in blood because they have
very short half-lives or covalent binding protein may render
them undetectable by standard pharmacokinetic analyses
[49]. Further, various models have been developed based on
laboratory test (Hy’s Law, DrILTox ALF Score) to predict the
risk of developing fulminant hepatic failure in patients with
DILI [50–52] but without sufficient specificity and sensitivity.
From a genetic standpoint, biomarkers of DILI have also been
developed. They have demonstrated association of genetic
variants, especially HLA alleles, with the risk of developing
DILI [9–11, 53]. The problem with these biomarkers is that
not only do genetic factors influence susceptibility to DILI
[54] (Figure 2) but also environmental (concomitant disease),
host-related (age, gender, and ethnicity), and drug-related
factors (dose, metabolism, and lipophilicity) may modulate
susceptibility to DILI [22, 54].

Therefore, pharmacokinetic approaches and genetic or
analytical tests are not sufficient to diagnose and predictDILI,
so new approaches are needed. Metabolomics, whose aim is
to globally assess all the metabolites present in a biological
sample, may represent an alternative in the search of specific
markers of DILI. On one hand, the study of metabolomic
profiles related to liver toxicity is particularly focused on the
identification of preclinical susceptibility to hepatotoxicity by
the assessment of specific patterns of endogenous metabo-
lites, prior to the administration of a drug [40, 55]. This type
of diagnostic approach has been called “pharmacometabo-
nomic” approach. The potential of metabolomics to predict
DILI was first suggested by Claytone et al. [55]. In this study,
they found a correlation between NMR-based metabolomics
profiles of urine samples of rats before administration of
single toxic-threshold dose of APAP with the postdose
histopathological damage. Translating metabolomics from
animals to humans is complex, as a result of the great genetic
heterogeneity and variations in environmental factors, such
as age, nutritional status, intestinal microbiota, and lifestyle,
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Figure 1: Hepatotoxicity of APAP. APAP: acetaminophen; SULT: sulfotransferase; UGT: glucuronosyltransferase; CYPs: P450 cytochromes;
APAP-S: APAP-sulfonate; APAP-G: APAP-glucuronide; NAPQI: N-acetyl-p-benzoquinone imine; GST: glutathione S-transferase; GSH:
glutathione; ROS: reactive oxygen species.
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which influences the composition of themetabolome [41–43].
Several studies have demonstrated that humans are charac-
terized by individual metabolic phenotypes or “metabotypes”
[56–58]; that is, there are areas of the metabolome, which
remain stable over time and are characteristic of each person.
Therefore, different metabotypes can predict differences in
drug metabolism and susceptibility to DILI in different
subjects. In this regard, several studies have evaluated the
application of pharmacometabonomics to humans advocat-
ing an individualized drug therapy [59, 60]. Winnike et al.
[44] analyzed themetabolomic profiles in urine samples from
58 healthy adults before and after receiving 4 g of APAP per
day for 7 days (a regimen that produces mild liver injury
in about one-third of subjects). Urine metabolomic profiles
obtained 2 days prior to treatment were not sufficient to
predict the development ofmild liver damage, but the profiles
obtained after a short period of administration of APAP
were able to predict it. These results suggest that, before the
drug administration, the differences in metabotypes are too
small to be detected beyond the inherent variation of the
population and that, after administration of the drug, changes
in the endogenous metabolites can allow us to distinguish
between those individuals who will adapt to the initial mild
liver damage from those susceptible to developing a more
severe liver damage [45].

Therefore, it could be assumed that the importance of
the metabolomic analysis in the diagnosis and prognosis of
DILI is due to the multifactorial nature of DILI, the lack of
detectable changes in the overall pretreatment metabolites,
and the absence of cost-effectiveness of implementing any
DILI predictor test before starting a potentially hepatotoxic
drug. In this regard, numerous studies in animal models
have identified changes in the metabolomic profiles in the
presence of liver damage due to different drugs [36, 46, 48–
54, 56–69]. Moreover, in recent years several studies in both
animal models and in vitromodels have been published [70–
85]. Nevertheless, it should be pointed out that these studies
were mainly designed to help the pharmaceutical industry
and drug agencies to identify potentially hepatotoxic drugs
and to screen hepatotoxicity (before the elevation of liver
enzymes). There are few human studies evaluating the use
of metabolomics to discover biomarkers of DILI [86–88].
Kim et al. [86] analysed plasma and urinary samples from
subjects treated with APAP (3 g/d for 7 days) using a NMR
platform. Although all biochemical parameters of hepatic
function were within normal range, the metabolomics data
showed evident changes in urinary and plasma metabolites,
identifying 14 and 10 endogenous metabolites in the urine
and plasma, respectively, related to APAP treatment and
possible changes in hepatic function. They concluded that
urinary and plasmatic metabolic profile could be useful for
the prediction of hepatotoxicity in human. Bhattacharyya
et al. [87] described different metabolomic profiles regarding
serum acylcarnitines, intermediates in the mitochondrial 𝛽-
oxidation of fatty acids, in children in different settings: with
no exposure to APAP, under therapeutic doses of APAP, and
afterAPAP overdose. Levels of palmitoyl- and oleoylcarnitine
were elevated in children both after therapeutic doses and
after APAP overdose. Moreover, children with higher levels

of acylcarnitines were those after APAP overdose. However,
most of the serum samples in the group of children with
overdoses of APAP were taken after starting NAC, and, fur-
thermore, this analysis did not take into account the levels of
liver enzymes and, therefore, it cannot ensure that high levels
of acylcarnitines are indicative of APAP-induced liver injury.
Recently, Huo and collaborators have published a study in
humans, using ametabolomic approach to identify diagnostic
biomarkers of DILI [88]. They evaluated the liver toxicity
of sodium valproate using ultra-performance LC-MS and
HNMR-based metabolomics analysis of serum samples from
34 epileptic patients receiving this drug. They found differ-
ences in metabolites involved in glycolysis, lipid metabolism,
energy metabolism, and amino acids metabolism between
patients with normal liver function and those with elevated
liver enzymes due to the mentioned drug. Thus, they could
definemetabolites associated with valproate sodium-induced
hepatotoxicity.This work demonstrates the potential of using
metabolomics to discover biomarkers of hepatotoxicity.

6. Conclusions

One of the major concerns a clinician has to face when
suspecting DILI is to establish an early and precise diagnosis
in order to attempt to identify those patients at higher risk
of significant liver damage and ALF. Only when this could
be reached, measures to improve prognosis can be adopted.
In this sense, the tremendous growth metabolomics has
experienced over the last decade is notable, with remarkable
applications in the area of liver toxicity. It is in this field
where metabolomics has shown the potential of combining
physiological and metabolic pathway information to drug
toxicity studies. Moreover, its ability to rapidly detect many
metabolites using NMR and MS from biofluid obtained
by minimally invasive techniques makes metabolomics a
promising tool in the discovery of biomarkers allocated to
establish an early diagnosis and prognosis of DILI.

There are few human studies that use a metabolomic
approach. Therefore, further studies are necessary to con-
trast different metabolomic profiles: first, comparing patients
exposed to a drug with no liver damage to patients taking
the same drug but developing DILI; second, comparing DILI
patients to patients with liver disease of a different etiology.
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