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Excitation–Contraction Coupling

Excitation–contraction coupling in cardiac, skeletal,
and smooth muscle
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The term “excitation–contraction (EC) coupling”was introduced
by Alexander Sandow (Sandow, 1952) as “the entire sequence of
reactions—excitation, inward acting link, and activation of
contraction”—in skeletal muscle. It is evidence of Sandow’s
foresight that 70 years later, a large community of researchers
still recognizes EC coupling as its field. EC coupling now includes
all muscles and has spawned like-named franchises for secretion,
transcription, and other “couplings.”Not only is EC coupling still
key to understanding the normal physiology of muscle, but it is
widely accepted that alterations of EC coupling underlie a wide
spectrum of conditions including muscle fatigue (Allen et al.,
2008), congenital myopathy (Jungbluth et al., 2018), hyperten-
sion (Koide et al., 2021), and heart failure (Dibb et al., 2022).

Although Sandow coined the term, interest in EC coupling
can be traced back over two centuries. The history begins in
Bologna, then changes to the Papal States, when Luigi Galvani
started the field of bioelectricity in the 1780s with the first
demonstration of EC coupling. More than a century later, the
story moves to Pavia where Emilio Veratti (Veratti, 1902) ap-
plied the techniques of his mentor Camillo Golgi to demonstrate
the presence of transverse tubules (see Franzini-Armstrong,
2018 for an account). The adventure then relocates to London,
where A.V. Hill ruled out diffusion as a mechanism for the
propagation of excitation inside muscle (Hill, 1948)—thus pro-
viding significance to the structures described by Veratti. This
line of research reached another landmark with the demon-
stration by Hodgkin and Horowicz (1960) that in skeletal muscle
it is membrane depolarization which links excitation to release
of Ca2+ from the sarcoplasmic reticulum (SR), as subsequently
shown by the involvement of charge movement in the mem-
brane (Schneider and Chandler, 1973). In contrast, in cardiac
muscle, calcium release from the SR is activated by an influx of
calcium (calcium-induced calcium release; Barcenas-Ruiz and
Wier, 1987; Cannell et al., 1987). Finally, the richness of roles that
evolution has provided for the link between the SR and surface

membrane is illustrated in vascular smooth muscle, where lo-
calized calcium release from the SR activates potassium chan-
nels, thereby promoting relaxation (Nelson et al., 1995). In
cardiac muscle, the extrusion of this calcium through the elec-
trogenic Na/Ca exchanger modulates the action potential,
feeding back on excitation, but is also causally involved in car-
diac arrhythmias (Sipido et al., 2006).

A reason for the persistence of the interest in EC coupling,
and the expansion of its formulation to other areas of cell
function, was also previewed in the concluding statement of
Sandow’s remarkable article: “We therefore suggest that, in the
living muscle, activation of the contractile material (in the sense
of Hill) may be attributed to the enzymatic activation of the
myosin-ATPase system by Ca++” (Sandow, 1952). As proposed
(and made abundantly clear in the cover illustration by Werner
Melzer), calcium is the common link that runs through these
fields. The present JGP special issue samples current research in
the EC coupling field as it is now understood in the three major
types of muscle. The number, scientific quality, and broad va-
riety of the contributions contained in this issue reflects the
continued vibrancy of the field, as indicated by the combined
enthusiastic response of researchers and the journal’s appeal.

While celebrating advances in the field, it is also appropriate
to note the deaths over the last year of two of the pioneering
giants of the EC coupling field who were both born in 1937. Alex
Fabiato pioneered our understanding of calcium-induced calci-
um release in cardiac muscle (Fabiato, 1983, 1985). Gerhard
Meissner has provided us with so much of what is now known
about the structure, function, and regulation of the ryanodine
receptor (RyR; Lai et al., 1988; Meissner, 1994).

In addition to the papers in this special issue, JGP has recently
published many other insights in this area. This includes work
on the link between the Ca2+ channel and activation of Ca2+ re-
lease from the SR in skeletal muscle (Savalli et al., 2021;Wu et al.,
2021), measurement of localized changes of Ca2+ concentration
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(Sanchez et al., 2021), as well as the effects of disease on the
transverse tubular network (Romer et al., 2021). Another de-
veloping area in skeletal muscle concerns the mechanisms by
which Ca2+ enters the cell to compensate for that which is
pumped out during activation (Michelucci et al., 2020; Uwera
et al., 2020; Jaque-Fernández et al., 2021; Meizoso-Huesca and
Launikonis, 2021). In cardiac muscle, in addition to considering
the relationship between EC coupling and contractile force
(Mijailovich et al., 2021), a considerable amount of the published
work links alterations in EC coupling to the development of ar-
rhythmias (Cely-Ortiz et al., 2020; Ahern et al., 2021; Angelini
et al., 2021; Dries et al., 2021; Millet et al., 2021; Moise et al.,
2021), as well as the relationship between myofilament pro-
teins, EC coupling, and arrhythmias (Greenberg and Tardiff,
2021; Tobacman and Cammarato, 2021).

Finally, the cohesion and strong sense of identity of the EC
coupling community has been fostered andmaintained for many
decades by scientific meetings. The interruptions in research
interactions and community caused by the COVID-19 pandemic
inspired the JGP editors to attempt to fill this void by organizing
a virtual symposium and this special issue. The specifics of the
Symposium, including videos of some of the platform pre-
sentations (http://physiol.gy/3QATs8H) and poster abstracts,
have been published alongside the issue. The rich expanse of this
special issue is in good measure a consequence of the success of
the Symposium. We are grateful to all the colleagues who con-
tributed to this (listed in supplemental text).
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