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Abstract 

Background: Purine nucleosides play essential roles in cellular physiological processes and have a wide range of 
applications in the fields of antitumor/antiviral drugs and food. However, microbial overproduction of purine nucleo-
sides by de novo metabolic engineering remains a great challenge due to their strict and complex regulatory machin-
ery involved in biosynthetic pathways.

Results: In this study, we designed an in silico-guided strategy for overproducing purine nucleosides based on 
a genome-scale metabolic network model in Bacillus subtilis. The metabolic flux was analyzed to predict two key 
backflow nodes, Drm (purine nucleotides toward PPP) and YwjH (PPP–EMP), to resolve the competitive relationship 
between biomass and purine nucleotide synthesis. In terms of the purine synthesis pathway, the first backflow node 
Drm was inactivated to block the degradation of purine nucleotides, which greatly increased the inosine production 
to 13.98–14.47 g/L without affecting cell growth. Furthermore, releasing feedback inhibition of the purine operon by 
promoter replacement enhanced the accumulation of purine nucleotides. In terms of the central carbon metabolic 
pathways, the deletion of the second backflow node YwjH and overexpression of Zwf were combined to increase 
inosine production to 22.01 ± 1.18 g/L by enhancing the metabolic flow of PPP. By switching on the flux node of the 
glucose-6-phosphate to PPP or EMP, the final inosine engineered strain produced up to 25.81 ± 1.23 g/L inosine by a 
pgi-based metabolic switch with a yield of 0.126 mol/mol glucose, a productivity of 0.358 g/L/h and a synthesis rate 
of 0.088 mmol/gDW/h, representing the highest yield in de novo engineered inosine bacteria. Under the guidance of 
this in silico-designed strategy, a general chassis bacterium was generated, for the first time, to efficiently synthesize 
inosine, adenosine, guanosine, IMP and GMP, which provides sufficient precursors for the synthesis of various purine 
intermediates.

Conclusions: Our study reveals that in silico-guided metabolic engineering successfully optimized the purine syn-
thesis pathway by exploring efficient targets, which could be applied as a superior strategy for efficient biosynthesis 
of biotechnological products.
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Background
As essential metabolites in organisms, purine interme-
diates participate in the metabolic synthesis of nucleic 
acids, energy and amino acids [1, 2]. Among them, purine 
nucleosides consist of adenosine, guanosine, inosine 
and xanthosine, which contain nucleosides and bases 
[3]. They have a wide range of applications in the fields 
of food and medicine as commercially important flavor 
enhancers and precursors of antitumor/antiviral drugs 
[4, 5]. Currently, tumors and influenza viruses seriously 
threaten the health of humans, triggering increasing 
demands for nucleoside products worldwide. Microbial 
fermentation is one of the major approaches for pro-
ducing purine nucleosides, and investigations have been 
carried out to construct genetically engineered bacteria 
by metabolic engineering [4, 6–9]. It has been revealed 
that purine nucleosides are de novo synthesized via the 
glycolysis pathway (EMP, Embden–Meyerhof–Parnas 
pathway), pentose phosphate pathway (PPP), and purine 
synthesis pathway (Additional file 1: Figure S1). First, glu-
cose-6-phosphate, the intermediate product synthesized 
by the first step of EMP, is catalyzed by the 5-step enzy-
matic reactions of PPP to form phosphoribosyl pyroph-
osphate (PRPP). Then, PRPP is catalyzed to form inosine 
monophosphate (IMP) through 11 steps of enzymatic 
reactions in the purine synthesis pathway. Finally, the 
precursor IMP is catalyzed to form various purine nucle-
otides, nucleosides, and nucleobases through the termi-
nal purine synthesis pathway. Meanwhile, nucleobases 
can be directly catalyzed by the phosphoribosyltrans-
ferases to form nucleotides in the salvage pathway (Addi-
tional file  1: Figure S1). Thus, the synthesis of purine 
nucleosides requires many precursors and energy, which 
are difficult to accumulate in the cell because of strict and 
complex regulation [3, 10].

Bacillus is known to be superior for the fermentation 
of nucleosides with advantages of a safe producer, few 
byproducts, and a simple separation process [11, 12]. 
In B. subtilis 168, inosine titer was increased to 6  g/L 
by disrupting the conversion of IMP to AMP and XMP, 
the degradation of inosine, and the repressor PurR and 
5’-UTR of the pur operon [13]. Furthermore, nucleoside 
efflux transporters have been reported to increase the 
production of extracellular purine nucleosides [9]. Under 
guidance of transcriptional and metabolite pool analy-
sis, overexpression of prs, purF and purA in B. subtilis 
XGL has been reported to increase PRPP concentration 
and pur operon transcription, which achieved adenosine 

accumulation to 7.04  g/L [7]. In 2019, Li et  al. inacti-
vated the GMP synthetase gene guaA and optimized the 
growth condition to increase adenosine titer from 7.40 to 
14.39 g/L in B. subtilis A509 [6]. Besides, Escherichia coli 
is another industrial strain that is applied to nucleoside 
synthesis and has been reported to produce 6.7–7.5 g/L 
inosine by overexpressing the prs and purF genes with 
inactivation of the purA, deoD, purF, purR, add, edd, pgi 
and xapA genes [14]. Our previous study has shown that 
a de novo engineered strain with a clear genetic back-
ground was constructed to accumulate 7.6  g/L inosine 
by deleting the purA and deoD genes in B. subtilis W168 
[11]. The flux distribution of the whole cell revealed that 
purine synthesis has a long metabolic pathway and its 
carbon flux is carried by PPP, which is not the main intra-
cellular carbon metabolism pathway. Furthermore, nucle-
oside synthesis is strictly and complexly regulated in the 
cell, remaining a great challenge for the overproduction 
of nucleosides by de novo metabolic engineering [15, 16]. 
Overall, previous efforts to construct engineered strains 
mostly focused on the metabolic pathways directly asso-
ciated with purine nucleoside biosynthesis, which often 
resulted in slow growth and relatively low production of 
desired metabolites [11, 17]. Therefore, it is necessary 
to adopt a rationally designed engineering strategy to 
achieve the effective synthesis of purine nucleosides.

With the rapid development of whole-genome 
sequencing and multi-omics technologies, genome-scale 
metabolic network models (GEMs) have been devel-
oped by constructing metabolic networks with the aid 
of computer technology [18, 19]. Based on the principle 
of gene–protein–reaction relationships, GEM is con-
structed to link genes to the proteins that catalyze reac-
tions in the network. A series of biochemical reactions 
in the cell are responsible for the synthesis of energy 
and metabolites. Thus, the constructed models can be 
widely used in quantitative predictions of cell growth and 
desired products under metabolically/environmentally 
disturbed conditions [20]. Until now, GEMs have been 
undergone multiple generations of upgrades to continu-
ously improve the completeness of models, the accuracy 
of prediction and the scope of application in industrial 
microorganisms, such as E. coli, B. subtilis, Corynebac-
terium glutamicum, and Saccharomyces cerevisiae [18, 
21–23]. Among them, the iBsu1103V2 model for B. sub-
tilis accounts for 1103 open reading frames and 1451 
metabolic reactions involving 1156 metabolites. Com-
pared with the available models in B. subtilis, it has been 
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improved considerably at predictions of metabolites and 
viability of mutant strains in rich defined medium and 
glucose minimal media. Thus, the iBsu1103V2 model 
provides an effective tool to conduct rational guidance 
for metabolic engineering and systems biology research 
in B. subtilis [24].

In this study, we take advantage of the iBsu1103V2 
model to analyze and predict the novel targets for 
increasing IMP flux without influencing biomass [25, 26]. 
An in silico-guided engineering strategy was designed 
to disrupt the backflow node (the pentose phosphate 
mutase Drm) of the purine synthesis pathway toward the 
PPP, release feedback inhibition of the purine operon, 
block the backflow node (the transaldolase YwjH) of 
the PPP to the EMP, and regulate the expression of key 
enzymes. Under the guidance of this rationally designed 
strategy, a universal chassis strain was de novo con-
structed to accumulate various purine intermediates. The 
final engineered strain has experimentally showed the 
highest yield of inosine in de novo engineered bacteria, 
which is of great significance for further understand-
ing purine metabolite biosynthesis and its regulatory 
mechanism.

Results
Initial biosynthesis of purine nucleosides by the traditional 
engineering method
IMP is an important precursor for synthesizing various 
purine nucleosides by 1–3 steps of catalytic reactions in 
the purine synthesis pathway of B. subtilis. Among vari-
ous purine nucleosides, inosine is directly synthesized 
from IMP through a one-step reaction (Fig. 1a). To rap-
idly evaluate the engineering effect, inosine production 
was used as an indicator to determine the metabolic flow 
of purine nucleosides in this study. The purA gene encod-
ing adenylosuccinate synthetase was first knocked out 
to block the adenosine synthesis branch and increased 
the inosine accumulation of the engineered strain PN01 
(W168 ΔpurA). Then, the purine nucleoside phosphory-
lases (PNPs) DeoD and/or PupG, which are involved in 
the degradation of nucleosides, were inactivated to gen-
erate the engineered strains PN02 (W168 ΔpurA ΔdeoD), 
PN03 (W168 ΔpurA ΔpupG) and PN04 (W168 ΔpurA 
ΔpupG ΔdeoD) (Fig. 1b).

After shake-flask cultivation for 72  h, strain PN01 
accumulated 0.62 ± 0.16  g/L inosine and 4.63 ± 0.22  g/L 
hypoxanthine formed by the degradation of inosine 
(Fig.  1b). Inosine titer increased in the pupG- and/or 
deoD-deficient strains PN02 (2.21 ± 0.88  g/L), PN03 
(8.88 ± 1.10  g/L), and PN04 (9.54 ± 1.19  g/L) with 
improved yields (0.009 to 0.039  mol/mol glucose), pro-
ductivities (0.009 to 0.133  g/L/h), and synthesis rates 
(0.002 to 0.038  mmol/gDW/h) (Additional File 2: 

Table S1). Moreover, the degradation of inosine (as shown 
by the hypoxanthine production) continuously decreased 
in these strains. These results suggested that purA inacti-
vation resulted in a high concentration of hypoxanthine 
for inosine degradation, which was significantly reduced 
by deleting the pupG and deoD genes. However, cell 
growths of strains PN02, PN03 and PN04 were greatly 
decreased, especially slow for PN03 and PN04 in seed 
cultivations, which negatively affected the engineered 
strain’s characteristics and was not ideal for further meta-
bolic engineering (Fig.  1c and d). Since the synthesis of 
nucleosides is strictly and complicatedly regulated in the 
cell, it is difficult to achieve the proper balance between 
cell growth and nucleoside production using traditional 
metabolic engineering. Therefore, it is necessary to adopt 
a rationally designed engineering strategy to search for 
optimal targets to resolve the problem.

In silico prediction of novel targets for the bi‑level 
optimization between cell growth and IMP production
Because IMP is the essential precursor of all purine nucle-
osides, the relationships between nucleoside flux and 
biomass as well as IMP productivity were investigated 
by metabolic flux balance analysis (FBA) based on the 
iBsu1103V2 model (Additional file 1: Table S3). Through 
constraint-based FBA simulations, the maximum theo-
retical growth rate, the synthesis rate of IMP, and the 
yield of IMP were estimated as 0.263   h−1, 1.450  mmol/
gDW/h, and 0.806  mol/mol (IMP/glucose), respectively 
(Fig.  2a). Robustness analysis was further conducted to 
evaluate the interaction relationship between the meta-
bolic flux of IMP synthesis and cell biomass. The results 
showed that the synthesis rate of IMP decreased with a 
continuous increase in the cell growth rate, indicating a 
competitive relationship between biomass and IMP syn-
thesis. The highest IMP production would result in bio-
mass being zero (Fig. 2b). These results suggested that a 
rational engineering strategy is required to balance the 
flux distribution between biomass and IMP production.

Considering the complexity of gene–protein–reac-
tion relationship in the glycolysis, gluconeogenesis, the 
nucleotides terminal pathways (purine/pyrimidine con-
versions) and the transport systems (Additional file  2: 
Tables S2–S4), genetic design through local search 
(GDLS) was used to predict the optimal targets for the 
bi-level optimization between cell growth and IMP pro-
duction (Fig.  2c). The reaction formulas catalyzed by 
enzymes from the EMP, the PPP and the purine synthe-
sis pathway were selected as potential targets to stimulate 
IMP production. Because of a competitive relationship 
between the metabolic fluxes of IMP and biomass, only 
two strategies were obtained to strengthen the metabolic 
flux of IMP to the maximal level of 0.293 mmol/gDW/h. 
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Fig. 1 Traditional engineering of Bacillus subtilis for de novo synthesis of purine nucleosides. a Biosynthetic pathway of purine nucleosides in B. 
subtilis. prs, encoding PRPP synthetase; purEKBCSQLFMNHD (pur operon), encoding enzymes required to synthesize IMP from PRPP; Ppur, purine 
operon promoter; purA, encoding adenylosuccinate synthase; purB, encoding adenylosuccinate lyase; guaB, encoding IMP dehydrogenase; 
guaA, encoding GMP synthetase; guaC, encoding GMP reductase; deoD, encoding purine nucleoside phosphorylase (PNP); pupG, encoding PNP; 
apt, encoding adenine phosphoribosyltransferase; hpt, encoding hypoxanthine–guanine phosphoribosyltransferase; xpt, encoding xanthine 
phosphoribosyltransferase; Ado, adenosine; Ino, inosine; Xao, xanthosine; Guo, guanosine; Ade, adenine; Hyp, hypoxanthine; Xan, xanthine; Gua, 
guanine. b Construction of engineered strains for de novo synthesis of inosine by traditional metabolic engineering. c The growth curve in seed 
cultivation. d Growth curve by shake-flask cultivation. Data shown are mean values from three biological replicates and a value of P less than 0.05 is 
regarded to be a significant difference with that of W168 strain using the T-test (**, P < 0.01)
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Fig. 2 Applications of the genome-scale metabolic network models (GEM) to predict the optimal targets. a The minimum medium design through 
GEM. The minimum medium was designed in the B. subtilis model for the simulation calculation. b Analysis of IMP flux and Biomass flux by FBA. c 
Prediction of the potential targets by GDLS. d Flow disturbance analysis of the mutants by ROOM. Maximal and minimal IMP production rates were 
predicted at different growth rates
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Specifically, strategy 1 was designed to knock out the 
pentose phosphate mutase encoded by the drm gene 
and the transaldolase encoded by the ywjH gene, while 
strategy 2 was designed to knock out drm and the fruc-
tose bisphosphate aldehyde carboxylase encoded by fbaA 
(Additional file 1: Table S4).

Since the predicted targets catalyze other reactions at 
the same time, whether they could be used as ideal tar-
gets for enhancing IMP flux was further analyzed by reg-
ulatory on/off minimization (Additional file 1: Table S5). 
First, the upper and lower bounds of reactions catalyzed 
by the predicted target were set to "0" using the Chang-
eRxnBounds command (Fig. 2d). Subsequently, the mini-
mum switch adjustment algorithm (ROOM) was used to 
assess the effects of the two strategies on biomass forma-
tion and IMP production by MATLAB software. Results 
of these analyses showed that Strategy 2 could remark-
ably increase the IMP flux by 3.49-fold (from 0.070 to 
0.314 mmol/gDW/h), but the growth rate of the mutant 
strain dropped to zero. Strategy 1 could increase the IMP 
flux by 18.57% (from 0.070 to 0.083 mmol/gDW/h). More 
importantly, the growth rate of the mutant strain was 
only reduced to 0.243, a slight decrease of 7.60% com-
pared to that of the wild-type strain (Fig. 2d). As shown 
in the metabolic pathway, the predicted targets Drm 
and YwjH of Strategy 1 are the key backflow nodes of 
the purine nucleotides to the PPP and PPP to the EMP, 
respectively (Fig.  3a). In combination with the possible 
targets for overproduction of IMP and inosine simulated 
using  OptForceMUST (Additional file 2: Table S4), the first 
backflow node Drm and the purine operon were selected 
as a new combination to rationally optimize the purine 
synthesis pathway. Furthermore, the second backflow 
node YwjH and the glucose 6-phosphate dehydrogenase 
Zwf were combined to increase the metabolic flow of 
PPP, which could supply more carbon flux for the synthe-
sis of purine nucleotides.

Blocking the degradation of purine nucleosides into PPP 
by inactivating the backflow node Drm
To validate the effects of in silico-predicted targets on 
the degradation of purine nucleosides, the drm gene was 

genetically modified by promoter knockout, nonsense 
mutation, and ORF (opening reading frame) deletion to 
construct the engineered strains PN05 (PN01 ΔPdrm), 
PN06 (PN01 drm*) and PN07 (PN01 Δdrm), respectively 
(Fig.  3b). Since the drm and pupG genes are located in 
the same operon, these three mutations might have dif-
ferent effects on pupG expression and were subsequently 
detected by real-time quantitative reverse transcription 
PCR (qRT-PCR). The mRNA expression levels of the 
pupG gene of the PN06 and PN07 strains were upregu-
lated 2- to 7-fold compared to the original strain PN01, 
but it could not be detected in PN05 due to promoter 
deficiency (Fig. 3c). Compared with the nonsense muta-
tion, deleting the drm gene considerably increased the 
expression of the pupG gene due to the shortened dis-
tance between the promoter and ORF.

The growths of the PN05, PN06, and PN07 strains were 
marginally lower than that of the original strain PN01 in 
shake-flask cultures, while similar growth was observed 
in seed cultures (Fig.  3d). These results indicated 
that Drm inactivation did not significantly affect cell 
growth. The inosine titers of the PN05, PN06, and PN07 
strains reached 13.98–14.47  g/L with improved yields 
(0.085–0.090  mol/mol glucose), productivities (0.194–
0.201  g/L/h) and synthesis rates (0.064 to 0.064  mmol/
gDW/h), notably increasing above 20-fold compared to 
that of the original strain PN01 (Fig.  3e and Additional 
File 2: Table  S1). Interestingly, Drm inactivation in dif-
ferent ways remarkably reduced hypoxanthine synthesis 
from 4.61 to 0.21 g/L.

To clarify the effects of Drm and PupG on the degrada-
tion of purine nucleosides, complementary experiments 
were carried out by separately expressing the drm and 
pupG genes in PN05 (Additional file 1: Fig. S2). The pupG 
expression strain PN05-s2 (PN05 lacA::Pxyl -pupG -xylR) 
produced high inosine and low hypoxanthine, which were 
similar to the control strains PN05 and PN05-s0 (PN05 
lacA::Pxyl -xylR). In contrast, dramatically decreased ino-
sine titer and increased hypoxanthine production were 
detected in the drm expression strain PN-5-s1 (PN05 
lacA::Pxyl -drm-xylR). Combined with the above results, 
Drm, not the purine nucleoside phosphorylase PupG, 

(See figure on next page.)
Fig. 3 The performance of the Drm-inactivated strains. a The engineering strategy proposed by GEM for de novo synthesis of purine nucleosides 
in B. subtilis. Genes/reactions in red indicate deletion and genes/reactions in green indicate overexpression. glcK, encoding glucokinase; 
zwf, encoding glucose-6-phosphate 1-dehydrogenase; ykgB, encoding 6-phosphogluconolactonase; pgi, encoding glucose-6-phosphate 
isomerase; ywjH, encoding transaldolase; tkt, encoding transketolase; prs, encoding ribose-phosphate pyrophosphokinase; purF, encoding 
amidophosphoribosyltransferase; drm, encoding pentose phosphate mutase; pgcA, encoding phosphoglucomutase; purR, Pur operon repressor. 
b The schematic diagram for the modifying strategies of drm inactivation. The engineered strains PN05, PN06, and PN07 were constructed by 
nonsense point mutation of the drm gene, deletion of the promoter Pdrm, and knockout of the open reading frame, respectively. c The relative 
mRNA expression level of pupG gene in the engineering strains. The relative transcriptional levels were analyzed by quantitative real-time PCR using 
PN01 as the control. d The cell growth during shake-flask cultivation. The inset shows the growth curves in the seed medium. e The effect of the 
drm deficiency on the production of inosine and hypoxanthine. All error bars indicate ± SD, n = 3. A value of P less than 0.05 was regarded to be a 
significant difference with the control strain PN01 using the T-test (**, P < 0.01)
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exhibited a major effect on increasing inosine produc-
tion and decreasing its degradation (Fig.  3e and Addi-
tional file 1: Figure S2). Drm is thus a key backflow node 

for blocking the degradation of purine nucleosides into 
the PPP and promoting inosine accumulation. There-
fore, the in silico-predicted target can effectively improve 

Fig. 3 (See legend on previous page.)
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the biosynthesis of purine nucleosides without obvious 
impact on cell growth compared to traditional engineer-
ing targets (Fig. 1).

Releasing complex regulation of the purine operon 
to increase the synthesis of purine intermediates
The purine operon is strictly regulated by transcription 
initiation repression and ribosome-mediated switch 
in the cell (Fig.  4a). Optimization of the purine operon 
by promoter replacement was used to increase purine 
nucleoside synthesis. After analysis by DNAMAN and 
RBS calculator v1.1 [27], promoters of different strengths 
(P43, Pveg, Pctc and PgsiB) with different secondary struc-
tures were selected to replace the original promoter 
 Ppur of the purine operon. Among these promoters, Pctc 
formed the least stem–loop structure with the high-
est translation initiation efficiency of 35619.97 AU. The 
stem–loop structure of Pveg is far from the ribosome 
binding site (RBS) and the start codon with an initiation 
efficiency of 19842.93 AU. The promoters P43 and PgsiB, 
close to RBS and the initiation codon, formed a relatively 
complex stem–loop structure, which could result in a 
negative impact on translation initiation. P43 forming the 
most stable stem–loop structure, had the lowest transla-
tion initiation efficiency of 1274.25 AU, whereas PgsiB had 
a translation initiation efficiency of 15147.28 AU.

To detect the effects of different promoters on the tran-
scription levels of the purine operon and the synthesis 
of purine intermediates, the promoter Ppur in wild-type 
strain W168 was separately replaced by P43, Pveg, Pctc and 
PgsiB. The mRNA levels of the purE and purF genes were 
all upregulated 8- to 78-fold under the control of the 
replaced promoters, suggesting that the transcription 
levels of the purine operon were enhanced by promoter 
replacement (Fig.  4b). Purine intermediates of inosine, 
guanosine, and hypoxanthine were increased in the 
mutant strains (Fig. 4c). The promoter Pveg produced the 
highest accumulation of 1.24 ± 0.10 g/L purine interme-
diates, a 4.93-fold improvement in comparison with that 
of the W168 strain (0.25 ± 0.07 g/L). Therefore, Pveg could 
efficiently relieve the complex regulation of the purine 
operon and dramatically enhance the synthesis of purine 
nucleotides, which was selected to optimize the inosine 
engineered strains.

To demonstrate the effects of promoter replacement 
on inosine production, Ppur in the engineered strains 
was replaced by Pveg to generate PN09 (W168 Ppur::Pveg), 
PN12 (PN01 Ppur::Pveg), PN13 (PN03 Ppur::Pveg) and 
PN14 (PN07 Ppur::Pveg). Flask cultivation showed that 
purine intermediates of inosine and hypoxanthine were 
all significantly increased in the inosine engineered 
strains (P < 0.01), further demonstrating that Pveg could 
efficiently enhance the synthesis of purine nucleotides 

(Fig.  4d). However, inosine production of PN09 and 
PN13 did not significantly increase compared to their 
original strains W168 and PN03 (W168 ΔpurA ΔpupG), 
respectively (Fig.  4e). The accumulation of hypoxan-
thine increased by 1–35 fold in these strains, suggesting 
that the enhanced inosine was degraded to hypoxan-
thine (Fig. 4f ). When Ppur in PN01 (W168 ΔpurA) and 
PN07 (W168 ΔpurA Δdrm) strains were replaced with 
Pveg, the inosine production of PN12 and PN14 remark-
ably increased by 148% and 21%, respectively (Fig. 4e). 
The accumulations of hypoxanthine in PN12 and PN14 
were similar to their original strains (Fig.  4f ). Further 
improvement in the in silico-designed strain PN07 sig-
nificantly increased inosine titer to 16.86 ± 0.78  g/L 
with improved yield (0.103  mol/mol glucose), produc-
tivity (0.234  g/L/h) and synthesis rate (0.074  mmol/
gDW/h), but the same modification was not effective 
in the traditionally engineered strain PN03 (Fig. 4e and 
Additional file 2: Table S1).

Enhancing the PPP flow by blocking the backflow node 
YwjH and overexpressing the key enzyme Zwf
Based on the guidance of GEM, there is a complex 
exchange of metabolic flux between the EMP and the 
PPP. To supply more carbon flux for the purine synthe-
sis, the flow of PPP to EMP could be weakened by inac-
tivating the backflow node YwjH. Meanwhile, the flow of 
glucose to the PPP could be strengthened by regulating 
the expression of key enzymes (Fig.  5a). Based on this, 
the glucose-6-phosphate would be effectively catalyzed 
by the glucose 6-phosphate dehydrogenase encoded by 
the zwf gene to enter into the PPP, and therefore sup-
ply more carbon flux for the synthesis of purine nucle-
otides. According to the in silico design, the ywjH gene 
was knocked out to generate the engineered strain PN15 
(PN14 ΔywjH). The inosine titer of PN15 was signifi-
cantly increased to 20.89 ± 0.69 g/L without an apparent 
reduction in cell growth (Fig.  5A and Additional file  1: 
Figure S3). This result indicated that YwjH inactivation 
could significantly promote nucleoside biosynthesis, 
in accordance with the in silico prediction. To further 
strengthen the metabolic flow of the PPP, the zwf gene 
controlled by a strong promoter was integrated into the 
genome to generate strain PN16 (PN15:: P43-zwf), which 
increased inosine titer to 22.01 ± 1.18 g/L with improved 
yield (0.132  mol/mol glucose, p = 0.024), productivity 
(0.306  g/L/h) and synthesis rate (0.084  mmol/gDW/h, 
p = 0.038) (Fig. 5a and Additional File 2: Table S1). There-
fore, the synthesis of purine nucleosides was considerably 
improved by blocking the essential backflow node and 
overexpressing the key enzyme Zwf to enhance the PPP 
flux.
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Fig. 4 The replacement of promoter Ppur to release feedback regulation of key enzymes in purine synthesis. a Different strength of promoters 
selected to release the transcription initiation repression on the pur operon. The translation initial efficiencies of promoters are predicted by RBS 
calculator v1.1 [27]. The secondary structures formed between 5’-UTR and purE are predicted by DNAMAN. b The relative mRNA expression level 
of purE and purF genes under different promoters. The relative transcriptional levels are analyzed by quantitative real-time PCR using Ppur as the 
control. c The effect of promoter replacement on the accumulation of purine intermediates in the W168 strain. d The effect of the promoter 
replacement on the accumulation of nucleotides in inosine engineered strains. e The accumulation of inosine in the engineered strains. f The 
accumulation of hypoxanthine in the engineered strains. The promoter Pveg was used to replace Ppur in the strains W168, PN01, PN03, and PN07, 
separately producing strains PN09 (W168 Ppur::Pveg), PN12 (W168 ΔpurA Ppur::Pveg), PN13 (W168 ΔpurA ΔpupG Ppur::Pveg), and PN14 (W168 ΔpurA Δdrm 
Ppur::Pveg). All error bars indicate ± SD, n = 3. A value of P less than 0.05 was regarded to be a significant difference from the original promoter Ppur (*, 
P < 0.05; **, P < 0.01)
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Fig. 5 Overproduction of inosine by enhancing the metabolic flow of PPP. a Inosine productions of the engineered strains by knocking out the 
ywjH gene and overexpressing the zwf gene. b The effect of linearly assembling proteins GlcK, Zwf, and YkgB on the inosine synthesis and cell 
growth. The protein scaffolds GBD, SH3, and PDZ were separately used to linearly assemble proteins GlcK, Zwf, and YkgB. c The effect of the pgi 
expression level on the inosine synthesis and cell growth. Conditional expression of the pgi gene under the control of the Pxyl promoter was used 
to balance the inosine synthesis and cell growth. d Two-stage fermentation in the inosine engineered strain by the pgi-based metabolic switch. All 
error bars indicate ± SD, n = 3. A value of P less than 0.05 was regarded to be a significant difference with the W168 strain using the T-test (*, P < 0.05; 
**, P < 0.01)
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Efficient production of inosine by dynamically switching 
the metabolic flux of biomass and product
To coordinate biomass and desired metabolites, a 
dynamic switch was constructed to allocate the meta-
bolic flux into the EMP and PPP. Two regulation strate-
gies were designed to dynamically control the flow of 
glucose 6-phosphate into the EMP or PPP. In the flow 
node of glucose to the PPP, the scaffold proteins GBD, 
SH3 and PDZ were separately used to linearly assemble 
three key enzymes encoded by the glcK, zwf and ykgB 
genes (Fig.  5b). In the absence of IPTG, the engineered 
strain PN18 (PN16/pHT01-scaf-glcK-zwf-ykgB) showed 
an improved synthesis rate without an obvious impact on 
cell growth in comparison with those of the control strain 
PN17 (PN16/pHT01-scaf ). In the presence of an inducer, 
the strain PN18 showed a similar inosine synthesis rate 
and a slight reduction in cell growth (Fig. 5b and Addi-
tional file 1: Figure S4). Taken together, cell growth and 
inosine synthesis did not relate to the gene expression 
level, suggesting that the linear enzyme system was not 
an ideal candidate as a switch.

To dynamically control the metabolic flow of glu-
cose into the EMP, the pgi gene was knocked out or 
conditionally expressed by the inducible promoter Pxyl 
(Fig. 5c). Flask cultivation of the engineered strains PN19 
(PN16Δpgi) and PN20 (PN16 Ppgi::Pxyl) showed that pgi 
deficiency greatly inhibited cell growth (Fig. 5c and Addi-
tional file 1: Figure S5). Compared to the original strain 
PN16, the strain PN20 showed significantly decreased 
cell growth and enhanced inosine biosynthesis in the 
absence of xylose (P < 0.01). In contrast, cell growth was 
significantly enhanced and the inosine biosynthesis sig-
nificantly decreased in the presence of xylose (P < 0.01, 
Fig.  5c). These results showed that pgi expression con-
trolled by an inducer was effective for regulating cell 
growth and inosine synthesis. The low expression level 
of pgi likely weakened central carbon metabolism, which 
could further divert metabolic flux to inosine synthesis 
(Fig. 5c). While, overexpression of pgi by the addition of 
an inducer could enhance central carbon metabolism, 
which would promote cell growth and thereby decrease 
inosine synthesis (Fig. 5C). Therefore, Pxyl-driven pgi was 
used to optimize the fermentation process by dynami-
cally regulating biomass and inosine synthesis.

According to the above results, a two-stage fermenta-
tion based on the metabolic switch was further adapted 
to improve inosine production. While the pgi gene was 
conditionally controlled by Pxyl, the cell growth was 
improved as the inducer concentration increased from 
0 to 3% (Additional file 1: Figure S6). In the cell growth 
stage, xylose was added to increase pgi expression, and 
thereby enhance the EMP flow to promote biomass. In 
the inosine production stage, pgi expression was reduced 

to weaken the EMP flow by removing the inducer, result-
ing in the flow enhancement of the PPP and purine 
nucleosides (Fig.  5d). Under the optimized fermenta-
tion process, the final engineered PN20 produced up to 
25.81 ± 1.23  g/L inosine with a yield of 0.126  mol/mol 
glucose, a productivity of 0.358 g/L/h and a synthesis rate 
of 0.088  mmol/gDW/h in shake-flask cultivation (Addi-
tional file 2: Table S1). Similar production performances 
were also observed in a 5-L fed-batch cultivation (Addi-
tional file 1: Figure S8). Therefore, the metabolic switch 
was successfully developed to dynamically regulate meta-
bolic flow and maximize inosine production.

Construction of the universal purine chassis strain
Under the guidance of in silico design by GEM, the syn-
thesis of inosine was remarkably improved by block-
ing the backflow nodes, releasing feedback inhibition of 
the purine operon and regulating the expression of key 
enzymes (Fig. 6a). Here, a general chassis bacterium for 
efficient synthesis of various purine intermediates was 
constructed by expressing the purA gene in the finally 
optimized strain. The purine metabolites of the univer-
sal chassis strain were detected by HPLC after flask cul-
tivation. The detection condition of each standard was 
optimized to separate each purine base, nucleotide, or 
nucleoside well (Fig.  6b). Purine intermediates of AMP, 
IMP, GMP, adenine, hypoxanthine, guanine, inosine, 
and guanosine were detected in the universal chassis 
strain (Fig. 6c). Among these metabolites, the accumula-
tions of IMP, GMP, inosine and guanosine were remark-
ably increased in PN17, whereas AMP and adenosine 
were reduced. As a decomposition product of inosine, 
the hypoxanthine concentration was extremely low. The 
accumulation level of purine intermediates was ranked 
as IMP > inosine > AMP > GMP > guanosine > adeno-
sine > hypoxanthine. Among these metabolites, the high 
IMP titer of 13.63 ± 0.78  g/L provided a sufficient pre-
cursor for the synthesis of various purine intermediates. 
Therefore, the universal chassis strain was successfully 
constructed to produce various purine intermediates 
under the guidance of an in silico-guided engineering 
strategy, providing an effective and universal approach 
for metabolic engineering of the purine biosynthesis 
pathway.

Discussion
In this study, a rationally designed strategy based on the 
genome-scale metabolic network model succeeded in 
maximizing the biosynthesis of purine intermediates and 
biomass. With advantages over previous studies [6, 7, 9, 
11, 13, 14], the method developed here investigates the 
global regulation and metabolic flux to construct a gen-
eral purine chassis strain for the first time and achieves 



Page 12 of 18Deng et al. Biotechnology for Biofuels and Bioproducts           (2022) 15:82 

the highest yield of inosine in de novo engineered bac-
teria to our knowledge. Based on the metabolic pathway, 
purine nucleosides are not the end products, but can be 
converted into ribose and base by the salvage pathway, 

resulting in a decline of nucleoside accumulation [4]. In 
bacterial cells, the decomposition of purine nucleosides 
is mainly reversibly catalyzed by the purine-nucleoside 
phosphorylase PNP (encoded by deoD or pupG genes) 

Fig. 6 Construction of the general purine chassis bacterium by in silico-guided metabolic engineering strategy. a Schematic diagram for in 
silico-guided metabolic engineering strategy. b The retention times of purine nucleosides, bases, and nucleosides by HPLC. c Determination of 
purine nucleosides metabolites synthesized in the general purine chassis strain. All error bars indicate ± SD, n = 3. A value of P less than 0.05 was 
regarded to be a significant difference with the W168 strain using the T-test (*, P < 0.05; **, P < 0.01)
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(Fig.  3a). In previous studies, deoD and/or pupG were 
normally knocked out to increase the accumulation of 
purine nucleosides [13, 14]. However, the biomass was 
usually reduced dramatically in the engineered strains, 
which was difficult to further optimize [11]. Conse-
quently, the lack of understanding global regulation and 
metabolic networks results in poor cell performance and 
low production [17]. Therefore, it is necessary to block 
the conversion of nucleosides into other substances with-
out affecting cell growth as much as possible. Based on 
the computational prediction, the Drm enzyme was 
found to be an essential backflow node of the purine 
synthesis pathway toward PPP. The present study first 
proved that Drm deficiency could preferentially block the 
decomposition of nucleosides and considerably increase 
the production of purine nucleosides without an obvi-
ous impact on cell growth (Fig.  2). To validate the pre-
dicted target, the drm gene was inactivated in different 
ways since the drm and pupG genes are located in the 
same operon in B. subtilis. Although the mRNA expres-
sion levels of the pupG gene were different in these drm 
inactivation strains, the inosine titers increased to 13.98–
14.47 g/L. These results indicate that the drm gene plays 
a major role in blocking inosine decomposition, which is 
further verified by the complementary experiment (Addi-
tional file 1: Figure S1). Therefore, we show for the first 
time that the loss of Drm function can effectively block 
the decomposition of purine nucleosides.

The purine synthesis pathway is strictly regulated by 
complex regulatory mechanisms, coupled with amino 
acids, folic acids and energy metabolism [28]. To effec-
tively increase nucleoside synthesis, it is particularly 
important to release the complex regulations of the 
purine operon (Fig.  3a). The pur operon (purEKBC-
QLFMNHD) encoding 11 enzymes is necessary for de 
novo synthesis of the precursor IMP of the purine inter-
mediates in B. subtilis. However, transcription of this 
operon is dually regulated by a repressor protein encoded 
by the purR gene [29] and a riboswitch controlled by 
purine levels [16]. The regulatory sequences are located 
in the intergenic sequence upstream of the operon. Usu-
ally, the expression level of the purine operon is increased 
by deleting the purR gene, destroying the riboswitch 
structure, or optimizing the core sequence of the pur 
operon promoter region [3, 13, 30]. In this study, the pro-
moter sequence of the purine operon was replaced with 
constitutive promoters of different strengths (including 
 P43,  Pveg,  Pctc, and  PgsiB) to eliminate the pur box sequence 
and riboswitch structure of the PurR recognition site 
in the original promoter region, which can simply and 
effectively relieve complex regulation. Combining the 
transcription level and translation initiation efficiency 
(Fig.  4a, b), the highest expression level of the purine 

operon was in the W168 strain with  Pctc, followed by  Pveg 
or  PgsiB, and the lowest was  P43. However,  Pveg reached the 
highest nucleoside accumulation in the W168 (Fig.  4c), 
possibly attributing to the existence of the post-tran-
scriptional/translational modification in the regulation of 
the purine operon [31]. Consequently, inosine titer was 
significantly increased to 16.86 ± 0.78 g/L in the inosine 
engineered strain by replacing  Ppur with  Pveg (Fig. 4d).

Due to the complexity of the purine metabolic net-
work, the metabolic flow of nucleosides might be difficult 
to enhance through traditional metabolic engineering 
[15]. First, the PPP, the carbon carrier pathway for purine 
nucleotide synthesis, is not the mainstream pathway in 
cells and the metabolic flow is relatively low [11]. Second, 
when the metabolites of PPP increase, they will return to 
the central carbon metabolism pathway (Fig.  5a). Based 
on these reasons, GEM was used to predict the essential 
target transaldolase YwjH, which can reversibly catalyze 
erythrose-4-phosphate (E4P) and sedoheptulose-7-phos-
phate (S7P) in PPP to form fructose-6-phosphate (F6P) 
and pyruvate in EMP. According to the analysis of met-
abolic network, YwjH deficiency blocks the PPP flow 
to the EMP. Additionally, overexpression of transaldo-
lase has been reported to affect the synthesis of ribose-
5-phosphate (R5P) and increase histidine accumulation 
[32]. In contrast, transaldolase deficiency could weaken 
the competitive pathways and promote the synthesis of 
ribose-5-P. The metabolic flow of PRPP synthesis was 
thereby enhanced, contributing to the accumulation of 
purine nucleosides. As a result, ywjH knockout signifi-
cantly increased inosine titer to 22.01 ± 1.18 g/L (Fig. 5a).

The performance of the inosine engineered strain was 
further optimized to balance cell growth and inosine 
production by constructing a dynamic switch. Glucose 
is phosphorylated by the glucokinase GlcK to synthe-
size glucose-6- phosphate (G6P), which can be catalyzed 
either by glucose-6-P-1-dehydrogenase Zwf to form glu-
cono-1,5-L-6P of PPP or by glucose-6-P isomerase Pgi to 
form F6P of EMP (Fig. 3a). Previously, the protein scaf-
folding strategy was designed by the principle of inter-
action between scaffold proteins and their ligands to 
combine multiple targets on the metabolic network into 
a linear pathway and rebuild a multi-enzyme-catalyzed 
biological reaction system in the cell [33]. This technol-
ogy has been successfully applied to the accumulation of 
target products such as mevalonic acid, saccharic acid, 
alkanes, and butanediol [34–37]. To dynamically control 
the metabolic flow of PPP and EMP, in the present study, 
the scaffold proteins GBD, SH3, and PDZ were separately 
used to linearly assemble glcK, zwf, and ykgB expressed by 
the inducible promoter  Pgrac (Fig. 5b). Inosine production 
did not change under the control of the inducer except 
for the reduced biomass by the addition of the inducer, 
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suggesting an inefficient effect on the dynamic control of 
metabolic flow. Then, the pgi expression level controlled 
by the inducible promoter  Pxyl was used to establish an 
efficient dynamic switch (Fig.  5c). Notably, inosine pro-
duction was greatly decreased by overexpressing the pgi 
gene under the induction condition, but was increased 
in the absence of an inducer. Meanwhile, the cell growth 
was improved by adding an inducer, but was decreased 
by removing the inducer, suggesting a potential switch 
to dynamically regulate the biomass and product. The 
expression intensity of the pgi gene was further adapted 
as an effective metabolic switch to balance the product 
and biomass, achieving inosine titers of 25.81 ± 1.23 g/L 
and 26.6  g/L by shake-flask and fed-bath cultivation, 
respectively (Fig.  5d and Additional file  1: Figure S7). 
HPLC data showed that a large amount of inosine and 
small amounts of other metabolites were detected in 
the fermentation products, suggesting low concentra-
tions of overflow metabolites. At this stage, we cannot 
rule out that other factors, such as the expression inten-
sity of the multi-enzyme catalytic system and the ratio of 
each enzyme’s expression level might also affect inosine 
synthesis. It is necessary to finely control the expression 
levels of the key enzymes in the metabolic pathway to 
achieve the joint and cooperative expression of multiple 
genes in further studies [38].

Based on the robustness analysis by constraint-based 
FBA, a competitive relationship between biomass and 
IMP synthesis suggests a rational engineering strategy 
is urgently required. Furthermore, many enzymes are 
responsible for multiple reactions in the glycolysis, gluco-
neogenesis, the nucleotides terminal pathways (purine/
pyrimidine conversions) and the transport systems (Addi-
tional file 2: Table S4). Effective targets in these pathways 
are difficult to predict by  OptForceMUST, which identifies 
genetic modifications through maximizing the objective 
flux [39]. Therefore, GDLS and ROOM were used to ana-
lyze, predict, and assess the optimal targets through the 
bi-level optimization between cell growth and IMP pro-
duction (Fig. 2c) [25, 26]. The predictions by FBA, GDLS, 
and ROOM were all consistent with experimental results 
in this study (Additional file 1: Table S6). First, the shake-
flask and fed-batch cultivation experiments using FM 
showed that the final engineered strain achieved 0.172–
0.237   h−1 of cell growth rate and 0.081–0.096  mmol/
gDW/h of inosine synthesis rate, closing to predictions 
of ROOM (0.243  h−1of biomass and 0.083 mmol/gDW/h 
of IMP flux). Furthermore, the fermentation experiment 
was carried out using the minimum medium (MM) that 
was usually used for in silico design (Additional file  1: 
Figure S8, Additional file 2: Table S1). The titer, yield, and 
productivity of MM were lower than that of fermentation 
medium (FM), but its inosine synthesis rate (0.220 mmol/

gDW/h) was remarkably higher than that of FM (0.081–
0.096 mmol/gDW/h). The inosine synthesis rate of MM 
was close to the maximal value of 0.293  mmol/gDW/h 
predicted by GDLS (Additional file 1: Table S6). Moreo-
ver, the specific growth rate of MM (0.011  h−1) was dra-
matically lower than that of FM (0.172–0.237  h−1). These 
experimental data showed that the higher IMP flux would 
result in lower biomass in MM, indicating a competitive 
relationship between biomass and IMP flux as predicted 
by FBA. Compared to the glucose minimal medium, the 
rich medium has considerably improved the biomass of 
the final engineered strain, which still has the potential 
to maximize the product synthesis rate by fed-batch fer-
mentation in further study.

Conclusions
In the present study, GEM was used to in silico predict 
metabolic targets for optimization of purine nucleoside 
synthesis. The production of purine nucleosides was 
remarkably improved by optimizing the targets drm, 
 Ppur, ywjH, zwf, and pgi to block nucleoside degradation, 
strengthen the PPP, and weaken the EMP. Under a two-
stage fermentation by a pgi-based metabolic switch, the 
engineered strain produced up to 25.81 ± 1.23  g/L ino-
sine without affecting cell growth, suggesting the high-
est inosine production in de novo engineered bacteria 
to date. Finally, an in silico-guided metabolic engineer-
ing strategy was successfully used to generate a universal 
chassis bacterium capable of producing various purine 
intermediates, such as inosine, adenosine, guanosine, 
IMP, and GMP. Overall, the rational engineering strategy 
based on GEM is successfully used to resolve the com-
petitive relationship between cell growth and nucleoside 
synthesis, suggesting potential applications for a wide 
range of biotechnology products.

Methods
Strains, medium, and chemicals
The strains used in this study are listed in Additional 
file  1: Table  S1. EC135 lacking all R-M systems and 
orphan MTases was used as a cloning host to construct 
plasmids [40]. All strains were cultured in Luria–Bertani 
(LB) medium (10  g/L tryptone, 5  g/L yeast extract, and 
10 g/L NaCl) supplemented with the appropriate antibi-
otics (100 µg/mL ampicillin was used in E. coli and 20 µg/
mL erythromycin, 10  µg/mL kanamycin, and 10  µg/mL 
chloromycetin were used in B. subtilis).

Kits for DNA purification/gel recovery and extracting 
genomic DNA, plasmid DNA, and RNA were purchased 
from TIANGEN Biotech (Beijing, China). DNA poly-
merase, restriction enzymes, and dNTPs were purchased 
from New England Biolabs (USA). Antibiotics, inducers, 
and standard chemicals, such as ampicillin, kanamycin, 
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chloromycetin, erythromycin, IPTG, xylose, purine 
bases, nucleotides, and nucleosides were purchased from 
Sigma-Aldrich (USA). Tryptone and yeast extract were 
purchased from Oxoid Company (UK). Other reagents 
for cell culture and fermentation medium were all analyt-
ical pure, and purchased from Beijing Modern Oriental 
Fine Chemical Co., Ltd (China).

DNA manipulation for plasmid and strain construction
The TCCRAS method was used for scarless manipula-
tion of the bacterial genomes as described by our pre-
vious studies [41]. To construct recombinant plasmids 
for gene modifications in B. subtilis, the upstream and 
downstream DNA fragments flanking the targets purA, 
pupG, deoD, drm, Ppur, ywjH, pgi, and zwf were amplified 
using W168 genomic DNA as the template. The purified 
DNA fragments were jointed by splice overlap extension 
(SOE) PCR and then ligated with the vector pWYE486 
using the digestion–ligation approach or NEBuilder HiFi 
DNA fragment rapid assembly kit (New England Biolabs, 
USA). After verification by PCR and DNA sequencing, 
the recombinant plasmids were separately transformed 
into competent B. subtilis cells to generate engineered 
strains through two rounds of homologous recombina-
tion (Additional file 1: Table S1). The detailed procedures 
for constructing recombinant plasmids, preparing com-
petent cells, and screening engineered strains were car-
ried out according to previous methods [41, 42]. All of the 
primers used in this study are shown in Additional file 1: 
Table S2 and were synthesized by Invitrogen (Shanghai, 
China). PCR amplification was performed with Q5 DNA 
polymerase (New England Biolabs, USA) following the 
procedure of the manufacturer. DNA sequencing was 
performed by Beijing Genomics Institute (BGI, Beijing, 
China) and Tianyi Huiyuan Biotechnology Co., Ltd.

Constraint‑based metabolic flux analysis
In silico analysis of metabolic fluxes for the growth rate 
and IMP/inosine overproduction was performed by the 
iBsu1103V2 model using commercially available MAT-
LAB software and GLPK solvers [24]. According to our 
previous method [21],  OptForceMUST was used to pre-
dict the possible reactions/genes that were required to be 
knocked out or up/downregulated to maximize the pro-
duction of IMP/inosine using 13C flux data of the wild-
type strain on glucose under aerobic condition [43]. The 
main features of the model are shown in Additional file 1: 
Table S3. During the simulation calculation, the medium 
used in the B. subtilis model was the minimum medium. 
The upper and lower limits of the flux for each exchange 
reaction in the model are set as the previous method 
[44]. Based on the experimental value [43, 45], the upper 
limits of uptake rates for glucose,  O2 and  CO2 are set to 

9.5, 10.9, and 15.1  mmol/gDW/h (millimoles per gram 
of dry weight per hour), respectively. The lower limits of 
the absorption rates for phosphate, sulfate, and  NH3 are 
set to − 5 mmol/gDW/h.  H2O,  Ca2+,  H+,  K+,  Mg2+,  Na+ 
and  Fe3+ are allowed to be freely transported as external 
metabolites for exchange (Fig. 2a).

Flux balance analysis (FBA) was used to analyze the 
metabolic flux distribution of B. subtilis. The organism 
was assumed to be in a pseudo-steady state in which 
the concentration of each intermediate metabolite was 
unchanged [46]. The calculation principle of FBA can be 
expressed by the following formula:

where  CT is the objective function value, expressed as a 
function of the flux of each reaction; S is the m × n order 
stoichiometric matrix; v is the reaction flux;  vmax is the 
upper limit flux of each reaction; and  vmin is the lower 
limit flux of each reaction. In general, the accumulation 
rate of biomass was used as an objective function to cal-
culate the metabolic flux distribution in the case of maxi-
mizing biomass.

Genetic design through local search (GDLS) converts 
the bi-level optimization problem (metabolic fluxes of 
biomass and IMP synthesis) into a mixed-integer linear 
programming problem using MATLAB software and 
GLPK (GNU Linear Programming Kit) solvers. An effec-
tive, low-complexity multi-path search was carried out 
to find a set of locally optimal strategies in the solution 
space that maximizes the target metabolic flow under a 
certain growth rate of the strain (≧0.05  h−1 in this study). 
Based on the iBsu1103V2 model, most purine nucleo-
sides/nucleotides are predicted to be secreted out of the 
cell, including AMP, 3’-AMP, xanthosine, guanosine, 
GMP, guanine, adenosine, adenine and inosine. The ini-
tial calculation principle was designed as previously 
described [25]. The calculation principle of GDLS can be 
expressed by the following formula:

max g ′v.

subject to 
L∑

l=1

yl ≤ C,

yl ∈ {0, 1},
max f ′v,
subject to Sv = 0,

where g’v is the value of the outer objective function, f ’v 
is the inner objective function, S is the m × n order stoi-
chiometric matrix, v is the reaction flux vector, and G 
is the GPR relationship graph in the genome metabolic 

(1)
Maximize : CT · v

Subject to : S · v = 0

vmin ≤ v ≤ vmax,

(2)(1− y)′Gjaj ≤≤ vj ≤ (1− y)′Gjbj , j = 1, . . . .n,
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network model to get an l × n matrix composed of genes 
and reaction equations.  Gj is the jth column of the matrix 
G. When the first gene is knocked out, the  yl value is one. 
Otherwise, it is zero. C is the maximum amount of gene 
knockout allowed.

Regulatory on/off minimization (ROOM) was deter-
mined by the smallest number of reactions, which could 
change the metabolic flow of the modified strain [47]. 
These reactions would be used as objective functions for 
the analysis of flow disturbance after metabolic engineer-
ing. The calculation principle is as follows:

where Min
∑m

t=1 yi is the value of the objective function, 
which is expressed as the total number of reactions that 
change the metabolic flux. S is the stoichiometric m × n 
matrix, v represents the reaction flux vector,  vmax repre-
sents the upper limit of each reaction flux,  vmin represents 
the lower limit of each reaction flux, and w represents the 
reaction flux vector of the wild-type strain. The upper 
threshold is specified by  wi

u and the lower threshold is 
specified by  wi

l.

Shake‑flask cultivation
To determine the production of purine nucleotide/base/
nucleoside metabolites, the strains were pre-cultured in 
seed medium (20 g/L glucose, 10 g/L sodium glutamate, 
20  g/L peptone, 20  g/L yeast powder, 5  g/L corn steep 
liquor, 2.5  g/L NaCl, 1  g/L urea, pH 7.2) at 32  °C and 
220  rpm. Until the  OD600 reached 10–12, three millilit-
ers of seed culture was inoculated into a 500-mL shake 
flask containing 30  mL of fermentation medium (FM) 
containing 120 g/L glucose, 16 g/L soybean meal hydro-
lysate, 14  g/L yeast powder, 15  g/L  (NH4)2SO4, 4  g/L 
 MgSO4·7H2O, 4  g/L  K2HPO4, 0.01  g/L  FeSO4, 0.1  g/L 
biotin and 20 g/L  CaCO3. During the two-stage fermen-
tation process, bacterial strains were first cultured for 
12  h in a medium containing 3% xylose, soybean meal 
hydrolysate, yeast powder,  (NH4)2SO4,  MgSO4·7H2O, 
 K2HPO4,  FeSO4, biotin and  CaCO3. Then, the sterilized 

(3)

Min

m∑

i=1

yi

S · v = 0

vmin ≤ v ≤ vmax

vj = 0, j ∈ A

for 1 ≤ i ≤ m

vi − yi(vmax, i − wu
i ) ≤ wu

i

vi − yi(vmin, i − wl
i) ≥ wl

i

yi ∈ {0, 1}

wu
i = wi + δ|wi| + ε

wl
i = wi + δ|wi| + ε

glucose solution (800  g/L) was supplemented into the 
culture to a final concentration of 120 g/L. According to 
our previous method [11], the cells were grown at 36 °C 
and 220 rpm, and the medium pH was adjusted to 7.0 by 
supplementation with ammonia. At least three independ-
ent experiments were repeated to show the average data, 
standard deviations and statistical significance.

Quantitative real‑time PCR
Bacterial total RNA was extracted by an RNA isolation 
kit and NanoDrop 2000c (Thermo Fisher, USA) was used 
to determine the concentration of RNA sample, which 
was then subjected to cDNA synthesis using a FastQuant 
RT Kit. The primers for qRT-PCR are listed in Additional 
file 1: Table S2. The qRT-PCR experiment was performed 
using a LightCycler® 96 Real-Time PCR System (Roche, 
Switzerland). The 16S rRNA gene was used as the refer-
ence gene to normalize the mRNA levels of target genes. 
The negative controls were designed in each PCR to 
exclude DNA and other contaminants. A melting curve 
analysis and Rotor-Gene Q series software (Qiagen, Ger-
many) with the  2−∆∆CT method were used to verify and 
analyze qPCR data [48]. The transcription levels of target 
genes were determined by the qRT-PCR method. At least 
three repeated experiments for each sample were carried 
out.

Analytical methods
Cell density was measured by determining the absorb-
ance at 600  nm  (OD600) using a spectrophotometer 
(V-1100D; Mapada Instruments, Shanghai, China). The 
concentration of glucose was assayed using an enzyme 
electrode analyzer (SBA-40D; Institute of Biology, Shan-
dong, China). After dilution and filtration of the culture 
supernatant and cell extract with  ddH2O, nucleoside 
metabolites were determined using a high-performance 
liquid chromatography (HPLC) system (Agilent, USA) 
with an SB-AQ column (4.6 × 250 mm, 5 μm, Agilent) at 
33 °C. Mobile phase A was 100% (v/v) methanol, whereas 
mobile phase B consisted of 0.5% (W/V)  KH2PO4 at a 
pH of 4.5. HPLC was performed using a ratio of 90% A 
and 10% B at 1  mL/min with a monitor at 360  nm. All 
measurements were performed at least in triplicate and 
standard deviations (SD) were calculated from three 
independent experiments.
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