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Abstract

Background

Increased vitamin D levels, as reflected by 25-hydroxy vitamin D (25OHD) measurements,

have been proposed to protect against COVID-19 based on in vitro, observational, and eco-

logical studies. However, vitamin D levels are associated with many confounding variables,

and thus associations described to date may not be causal. Vitamin D Mendelian randomi-

zation (MR) studies have provided results that are concordant with large-scale vitamin D

randomized trials. Here, we used 2-sample MR to assess evidence supporting a causal

effect of circulating 25OHD levels on COVID-19 susceptibility and severity.

Methods and findings

Genetic variants strongly associated with 25OHD levels in a genome-wide association

study (GWAS) of 443,734 participants of European ancestry (including 401,460 from the UK

Biobank) were used as instrumental variables. GWASs of COVID-19 susceptibility, hospital-

ization, and severe disease from the COVID-19 Host Genetics Initiative were used as out-

come GWASs. These included up to 14,134 individuals with COVID-19, and up to

1,284,876 without COVID-19, from up to 11 countries. SARS-CoV-2 positivity was deter-

mined by laboratory testing or medical chart review. Population controls without COVID-19

were also included in the control groups for all outcomes, including hospitalization and

severe disease. Analyses were restricted to individuals of European descent when possible.

Using inverse-weighted MR, genetically increased 25OHD levels by 1 standard deviation on
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the logarithmic scale had no significant association with COVID-19 susceptibility (odds ratio

[OR] = 0.95; 95% CI 0.84, 1.08; p = 0.44), hospitalization (OR = 1.09; 95% CI: 0.89, 1.33; p

= 0.41), and severe disease (OR = 0.97; 95% CI: 0.77, 1.22; p = 0.77). We used an addi-

tional 6 meta-analytic methods, as well as conducting sensitivity analyses after removal of

variants at risk of horizontal pleiotropy, and obtained similar results. These results may be

limited by weak instrument bias in some analyses. Further, our results do not apply to indi-

viduals with vitamin D deficiency.

Conclusions

In this 2-sample MR study, we did not observe evidence to support an association between

25OHD levels and COVID-19 susceptibility, severity, or hospitalization. Hence, vitamin D

supplementation as a means of protecting against worsened COVID-19 outcomes is not

supported by genetic evidence. Other therapeutic or preventative avenues should be given

higher priority for COVID-19 randomized controlled trials.

Author summary

Why was this study done?

• Vitamin D levels have been associated with COVID-19 outcomes in multiple observa-

tional studies, though confounders are likely to bias these associations.

• By using genetic instruments that limit such confounding, Mendelian randomization

studies have consistently obtained results concordant with vitamin D supplementation

randomized trials. This provides a rationale to undertake vitamin D Mendelian ran-

domization studies for COVID-19 outcomes.

What did the researchers do and find?

• We used the genetic variants obtained from the largest consortium of COVID-19 cases

and controls, and the largest study on genetic determinants of vitamin D levels.

• We used Mendelian randomization to estimate the effect of increased vitamin D on

COVID-19 outcomes, while limiting confounding.

• In multiple analyses, our results consistently showed no evidence for an association

between genetically predicted vitamin D level and COVID-19 susceptibility, hospitaliza-

tion, or severe disease.

What do these findings mean?

• Using Mendelian randomization to reduce confounding that has traditionally biased

vitamin D observational studies, we did not find evidence that vitamin D supplementa-

tion in the general population would improve COVID-19 outcomes.
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website (https://www.covid19hg.org/results/). The

October 20th data freeze (v4) summary statistics

were used for our study.
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• These findings, together with recent randomized controlled trial data, suggest that other

therapies should be prioritized for COVID-19 trials.

Introduction

SARS-CoV-2 infection has killed millions of individuals and has led to the largest economic

contraction since the Great Depression [1]. Therefore, therapies are required to treat severe

COVID-19 and to prevent its complications. Therapeutic development, in turn, requires well-

validated drug targets to lessen COVID-19 severity.

Recently, vitamin D status, as reflected by 25-hydroxy vitamin D (25OHD) level has been

identified as a potentially actionable drug target in the prevention and treatment of COVID-19

[2]. As the pre-hormone to the biologically active form calcitriol, 25OHD has been epidemio-

logically linked to many health outcomes [3,4]. Given calcitriol’s recognized in vitro immuno-

modulatory role [5], as well as observational and ecological studies associating measured

25OHD blood levels with COVID-19 [6,7], the vitamin D pathway might be a biologically

plausible target in COVID-19. This could be of public health importance, given that the preva-

lence of vitamin D insufficiency is high in most countries, and that more than 37% of elderly

adults in the US take vitamin D supplements [8]. Further, 25OHD supplementation is inex-

pensive and reasonably safe—thus providing a potential avenue to lessen the burden of the

SARS-CoV-2 pandemic.

However, observational studies on 25OHD are prone to confounding and reverse causation

bias. Confounding happens when the relationship between the exposure (25OHD) and the

outcome (COVID-19) is influenced by unobserved or improperly controlled common causes.

Reverse causation happens when the outcome itself is a cause of the exposure. Likewise, con-

clusions drawn from in vitro may not be applicable in vivo. Accordingly, randomized con-

trolled trials (RCTs) on 25OHD supplementation have been undertaken to test its effect on

disease outcomes where observational studies have supported a role for 25OHD level. How-

ever, across endocrinology, respirology, cardiology, and other specialties, these trials have

most often not demonstrated statistically significant benefits [9–11]. Some RCTs have even

shown a detriment to 25OHD supplementation [12]. In the field of infectious diseases, an indi-

vidual patient data meta-analysis of RCTs of 25OHD supplementation [13] showed some ben-

efit to prevent respiratory tract infections (odds ratio [OR] = 0.80; 95% CI: 0.69, 0.93).

However, this effect was driven by generally benign upper respiratory tract infections, was not

observed in lower respiratory tract disease (OR = 0.96; 95% CI: 0.83, 1.10), and even showed

numerically worse all-cause mortality (OR = 1.39; 95% CI: 0.85, 2.27). Likewise, a recent trial

on sepsis obtained a numerically higher mortality rate in patients who received 25OHD sup-

plementation [14]. At present, we are aware of 2 RCTs testing the role of vitamin D supple-

mentation on COVID-19 outcomes, both using high-dose vitamin D given at time of hospital

admission for COVID-19. The first RCT [15] was a small trial (n = 75) showing fewer intensive

care unit admissions in the vitamin-D-treated arm. However, the follow-up time for mortality

varied, and the open-label design put the study at high risk of bias. The second RCT [16] was a

larger study (n = 240) using a double-blind design, and showed no effect on mortality, risk of

mechanical ventilation, and length of stay. Nevertheless, questions remain on the use of pre-ill-

ness vitamin D supplementation and its effect on disease susceptibility. While RCTs can con-

trol for confounding and provide unbiased estimates of the effect of 25OHD supplementation

in COVID-19, large well-designed RCTs require considerable resources and time.
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Mendelian randomization (MR) is a genetic epidemiology method that uses genetic vari-

ants as instrumental variables to infer the causal effect of an exposure (in this case, 25OHD

level) on an outcome (in this case, COVID-19 susceptibility and severity) [17]. MR overcomes

confounding bias since genetic alleles are randomized to the individual at conception, thereby

breaking associations with most confounders. Similarly, since genetic alleles are always

assigned prior to disease onset, they are not influenced by reverse causation. MR has been

used in conjunction with proteomics and metabolomics to prioritize drug development and

repurposing, and support investment in RCTs that have a higher probability of success [18,19].

In the case AU : Pleasecheckthattheeditstothesentence}Inthecase:::}captureyourmeaning:Ifnot; pleaseprovidecorrectwording:of vitamin D, MR has provided causal effect estimates consistently in line with

those obtained from RCTs [9,20–24], and supporting the use of vitamin D supplementation in

preventing diseases in at-risk individuals (most notably for multiple sclerosis [25]). Hence,

MR may support investments in 25OHD supplementation trials in COVID-19, if a benefit was

shown. Further, since MR results can be generated rapidly, such evidence may provide interim

findings while awaiting RCT results.

However, MR relies on several core assumptions [26]. First, genetic variants must be associ-

ated with the exposure of interest. Second, they should not affect the outcome except through

effects on the exposure (i.e., they should exhibit a lack of horizontal pleiotropy). Specifically,

MR also assumes that the relationship between the exposure and the outcome is linear. How-

ever, this assumption is robust to non-liear effects as it will still provide a valid test of the null

hypothesis when studying population-level effects [27], as MR then measures the population-

averaged effect on the outcome of a shift in the distribution of the exposure. Third, genetic vari-

ants should not associate with the confounders of the exposure–outcome relationship. Of these

assumptions, the most problematic is the second assumption. Yet, in the case of 25OHD, many

of its genetic determinants reside at loci that harbor genes whose roles in 25OHD production,

metabolism, and transport are well known [25]. Leveraging this known physiology can help to

prevent the incorporation of genetic variants that could lead to horizontal pleiotropy.

Here, we used genetic determinants of serum 25OHD from a recent genome-wide associa-

tion study (GWAS) and meta-analysis of 443,734 participants AU : IntheAbstractitstatesthatthe25OHDGWAShad443; 734participants; buthereðlastparagraphofIntroÞ; itsaysmorethan443; 734participants:Pleasefixthisinconsistency:of European ancestry [28] in an

MR study to test the relationship between increased 25OHD level and COVID-19 susceptibil-

ity and severity.

Methods

We used a 2-sample MR approach to estimate the effect of 25OHD levels on COVID-19 sus-

ceptibility and severity. In 2-sample MR [29], the effect of genetic variants on 25OHD and on

COVID-19 outcomes are estimated in separate GWASs from different populations. This

allows for increased statistical power by increasing the sample size in both the exposure and

outcome cohorts. This study is reported as per the Strengthening the Reporting of Observa-

tional Studies in Epidemiology (STROBE) guideline [30] (S1 STROBE Checklist).

Our study did not employ a prospective protocol. Analyses were first planned and per-

formed in July 2020 and updated following peer-review in December 2020. Three major

changes were made during the update. First, we used the most up-to-date COVID-19 Host

Genetics Initiative (COVID-19 HGI) GWAS summary statistics. These were made available

during the peer-review process. Second, to alleviate potential selection and collider bias, we

modified the outcome phenotypes to include population controls. We also performed addi-

tional MR sensitivity analyses to check the robustness of our results. The latter 2 modifications

were made at the request of peer-reviewers. Finally, minor changes to the results’ interpreta-

tions were made following further peer-review in February 2021.
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Choice of 25OHD genetic instruments

To find genetic variants explaining 25OHD levels [28], we used a GWAS from our group,

which is, to the best of our knowledge, the largest published GWAS of 25OHD levels. Impor-

tantly, this meta-analysis controlled for season of vitamin D measurement to obtain genetic

variants significantly associated with 25OHD levels. From the list of conditionally independent

variants provided, we further selected SNPs whose effect on 25OHD level was genome-wide

significant (p< 5 × 10−8), whose minor allele frequency was more than 1%, and with linkage

disequilibrium coefficients (r2) of less than 5% (using the LDlink [31] tool and the European

1000 Genomes dataset, excluding Finnish populations). For SNPs that were not available in

the outcome GWAS or with palindromic alleles of intermediate frequency (between 42% and

58%), we again used the LDlink [31] tool to find genetic proxies in the European 1000

Genomes dataset (excluding Finnish populations) using a linkage disequilibrium r2 of 90% or

more.

COVID-19 outcome definitions and GWASs

We used the COVID-19 HGI outcome definitions and GWAS summary statistics for

COVID-19 susceptibility, hospitalization, and severe disease outcomes [32]. For all outcomes,

a COVID-19 infection defined as a positive SARS-CoV-2 infection (e.g., RNA RT-PCR or

serloogy test), electronic health record evidence of SARS-CoV-2 infection (using International

Classification of Diseases or physician notes), or self-reported infections from the patients. The

susceptibility phenotype compared COVID-19 cases with controls, which were defined as any

individuals without a history of COVID-19. The hospitalized outcome compared cases, defined

as hospitalized patients with COVID-19, and controls, defined as any individuals not experienc-

ing a hospitalization for COVID-19, which includes those without COVID-19. The severe dis-

ease outcome cases were defined as hospitalized individuals with COVID-19 who died or

required respiratory supportAU : Ichangedwhorequiredrespiratorysupporttowhodiedorrequiredrespiratorysupport; tomatchthedefinitiongiveninTable1:Ifthisisnotcorrect; pleasefixthedefinitionhereandininTable1:. Respiratory support was defined as intubation, continuous positive

airway pressure (CPAP), bilevel positive airway pressure (BiPAP), continuous external negative

pressure, or high-flow nasal cannula. Controls for the severe COVID-19 outcome were defined

as individuals without severe COVID-19 (including those without COVID-19). The inclusion of

COVID-19-negative participants as controls in each outcome decreases the possibility of collider

bias [33] and allows for better population-level comparisons. These 3 outcome phenotypes are

referred to as C2, B2, and A2, respectively, in the COVID-19 HGI documentation.

For our study, we used the 20 October 2020 (v4) COVID-19 HGI fixed effect meta-analysis

of GWASs from up to 22 cohorts, performed in up to 11 countries. Every participating AU : Pleasecheckthattheeditstothesentence}Everyparticipating:::}captureyourmeaning:Ifnot; pleaseprovidecorrectwording:cohort

was asked to provide summary statistics from a GWAS on the above 3 outcomes, and includ-

ing the non-genetic covariates age, sex, age × age, and age × sex; 20 genetic principal compo-

nents; and any locally relevant covariates at the discretion of participating studies (e.g.,

hospital, genotype panel). Cohorts were asked to follow common sample and variant quality

control, and performed analysis only if they enrolled 100 cases or more. Analyses were done

separately for each major ancestry group to further control for population stratification. For

the purposes of our study, we used the meta-analysis results from European ancestry cohorts,

except for the severe COVID-19 outcome, for which this meta-analysis was not available. Fur-

ther details on the 3 phenotypes and participating cohorts are found in Table 1 and S1 Data.

Primary MR analysis

The effect of 25OHD level on COVID-19 outcomes was obtained for each SNP by using the

Wald ratio method. The effect of each SNP was given in standardized log-transformed

25OHD level. Each estimate was meta-analyzed using the inverse-variance weighted (IVW)
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method, and we performed variant heterogeneity tests to check the robustness of IVW results.

Allele harmonization and computations were performed using the TwoSampleMR package

[34].

Horizontal pleiotropy sensitivity analysis

We undertook multiple analyses to assess the risk of horizontal pleiotropy (a violation of the

second MR assumption). First, we used the MR–Egger method, which allows for an additional

intercept (alpha) term, which also provides an estimate of directional horizontal pleiotropy.

This method AU : Pleasecheckthattheeditstothesentence}Thismethod:::}captureyourmeaning:Ifnot; pleaseprovidecorrectwording:relies upon the assumption that the size of the direct effect of a genetic variant on

the outcome that does not operate through the exposure is independent of the variant’s effect

on the exposure. Given possible instability in MR–Egger estimates [35], we also used the boot-

strap MR–Egger method to meta-analyze the causal effect estimates from each SNP instru-

ment. Further, we used 4 additional meta-analysis methods known to be more robust to the

presence of horizontal pleiotropy (at the expense of statistical power): penalized weighted

median, simple mode, weighted median, and weighted mode [36].

Second, we restricted our choices of SNPs to those whose closest gene is directly involved in

the vitamin D pathway. These genes have an established role in vitamin D regulation through

its synthesis (DHCR7/NADSYN1 and CYP2R1), transportation (GC), and degradation

(CYP24A1) (S1 Fig). This decreases the risk of selecting a genetic variant that affects COVID-

19 outcomes independent of its effect on 25OHD levels.

Third, we used the PhenoScanner tool [37,38] on the remaining SNPs to check for variants

associated (at a genome-wide significant threshold of p< 5 × 10−8AU : Ichangedp ¼ 5� 10 � 8top < 5� 10 � 8tomatchelsewhereinthepaper:Ifthisisnotcorrect; pleaseedit:) with phenotypes at risk of

affecting COVID-19 outcomes independent of 25OHD, making them at higher risk of

Table 1. Sources of data for the analysis.

Phenotype Source of genetic variants

Cohort Participants

25OHD circulating

levels

Manousaki et al.

[28]AU : ShouldacitationbegivenforManousakietal:inTable1?Ifso; ifthecorrectrefis½24�or½28�;pleaseaddafteretal:Ifthecorrectrefis½40�orarefnotcurrentlyincludedinthereferenceslist;pleaseaddasrefnumber½34�;andrenumbersubsequentrefs=calloutsaccordingly:

Meta-analysis of 2 25OHD GWASs:

• 401,460 adult white British participants from the UKB

• 42,274 from an international consortium of adult individuals of

European ancestry

COVID-19

susceptibility

Susceptibility Meta-analysis of 22 GWASs performed in individuals of European

ancestry from 11 countries:

• Cases: 14,134 individuals with COVID-19 by laboratory confirmation,

chart review, or self-report

• Controls: 1,284,876 individuals without confirmation or history of

COVID-19

COVID-19 severity Hospitalized Meta-analysis of 13 GWASs performed in individuals of European

ancestry from 11 countries:

• Cases: 6,406 hospitalized individuals with COVID-19

• Controls: 902,088 individuals without hospitalization with COVID-19

Severe disease Meta-analysis of 12 GWASs performed in individuals of European

ancestry from 9 countries:

• Cases: 4,336 SARS-CoV-2-infected hospitalized individuals who died or

required respiratory support (intubation, CPAP, BiPAP, continuous

external negative pressure, or high-flow nasal cannula)

• Controls: 623,902 without severe COVID-19

COVID-19 susceptibility and severity outcomes are taken from the COVID-19 Host Genetics Initiative. See S1 Data

for details on cohorts of COVID-19 susceptibility and severity phenotypes.

25OHD, 25-hydroxy vitamin D; BiPAP, bilevel positive airway pressure; CPAP, continuous positive airway pressure;

GWAS, genome-wide association study; UKB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003605.t001
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horizontal or vertical pleiotropy. Note that vertical pleiotropy, which happens when the

COVID-19 outcome is influenced by a phenotype directly in the causal pathway between

25OHD level and COVID-19 outcome, does not violate MR assumptions.

Research ethics

Each cohort included in this study received its respective institutional research ethics board’s

approval to enroll patients. All information used for this study is publicly available as deidenti-

fied GWAS summary statistics.

Results

Choice of 25OHD genetic instruments

We obtained our 25OHD genetic instruments from our previously published GWAS on circu-

lating 25OHD levels in 401,460 white British participants in the UK Biobank (UKB) [39],

which was meta-analyzed with a GWAS on 25OHD levels of 42,274 participants of European

ancestry [40]. Of the 138 reported conditionally independent SNPs (explaining 4.9% of the

25OHD variance), 100 had a minor allele frequency of more than 1%, of which 77 were

directly available in the COVID-19 HGI GWAS summary statistic and had a linkage disequi-

librium coefficient of less than 5%. Additionally, 3 more variants had good genetic proxies

(r2� 90%)AU : IntheMethods; ther2threshholdisgivenas � 90%ðlinkagedisequilibriumr2of 90%ormoreÞbuthereitisgivenas > 90%:Pleasefixthisinconsistency:and were therefore added to our instrument lists, for a total of 80 variants. These

explained 4.0% of the variance in 25OHD serum levels. The full list of SNPs used can be found

in S2 Data.

COVID-19 outcome definitions and GWASs

Using the COVID-19 HGI results restricted to cohorts of European ancestry, we used a total of

14,134 cases and 1,284,876 controls to define COVID-19 susceptibility, 6,406 cases and

902,088 controls to define COVID-19 hospitalization, and 4,336 cases and 623,902 controls to

define COVID-19 severe disease. Table 1 summarizes the definition and sample size of both

the exposure and outcome GWASs. Since the UKB was used in the 2 phases of the MR study,

some overlap between the exposure and the outcome GWASs was unavoidable (S1 Data).

Primary MR analysis

We first used IVW meta-analysis to combine effect estimates from each genetic instrument.

For a standard deviation increase in log-transformed 25OHD level, we observed no statistically

significant effect upon odds of susceptibility (OR = 0.95; 95% CI: 0.84, 1.08; p = 0.44). Of note,

in the UKB, the distribution of 25OHD levels has a mean of 48.6 nmol/L and a standard devia-

tion of 21.1 nmol/L. This standard deviation is comparable to what can be achieved with vita-

min D supplementation, especially over short therapeutic courses [41]. Similarly, we observed

no significant difference in risk of hospitalization (OR = 1.09; 95% CI: 0.89, 1.33; p = 0.41) or

risk of severe disease (OR = 0.97; 95% CI: 0.77, 1.22; p = 0.77) associated with a standard devia-

tion increase in log-transformed 25OHD level (Table 2; Fig 1).

Horizontal pleiotropy assessment and sensitivity analysis

Using the MR–Egger intercept terms, we did not observe evidence of horizontal pleiotropy.

While they have less statistical power than IVW meta-analysis, the 6 sensitivity meta-analyses

we used also showed no evidence of an association between 25OHD levels and COVID-19 sus-

ceptibility, hospitalization, and severe disease, with each confidence interval crossing the null
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in the primary analysis using all SNPs (Fig 1; S1 Table). Our results are therefore unlikely to be

strongly biased by horizontal pleiotropy.

We also restricted our analysis to SNPs that reside close to the 4 genes directly involved in

25OHD metabolism. This left 11 SNPs, explaining 2.9% of 25OHD variation. Using IVW,

each standard deviation increase in log-transformed 25OHD was again not associated with

COVID-19 susceptibility (OR = 0.94; 95% CI: 0.81, 1.08; p = 0.39), hospitalization (OR = 1.04;

95% CI: 0.75, 1.46; p = 0.81), and severe disease (OR = 0.92; 95% CI: 0.68, 1.25; p = 0.59). For

the 3 phenotypes, the MR–Egger intercept term did not support bias from directional horizon-

tal pleiotropy.

Lastly, we used the PhenoScanner [37,38] tool to check if the SNPs used in the MR study

were associated with other phenotypes. Using PhenoScanner, rs11723621 was associated with

white blood cell level, and rs6127099 was associated with glomerular filtration rate [42,43]. In

both cases, the association with each phenotype was mild compared to the SNP’s effect on

25OHD level, as rs11723621 explained less than 0.03% of the variance in white blood cell

count, and rs6127099 explained less than 0.001% of the glomerular filtration rate variance.

Removing these SNPs from the 11 SNPs above further decreased the proportion of 25OHD

variance explained to 1.4%. While confidence intervals widened, effect estimates when restrict-

ing our analysis to these SNPs remained null for susceptibility (OR = 0.91; 95% CI: 0.71, 1.17;

p = 0.48), hospitalization (OR = 1.02; 95% CI: 0.61, 1.73; p = 0.93), and severe disease

(OR = 1.05; 95% CI: 0.64, 1.73; p = 0.85).

Genetic instrument heterogeneity

Overall, our results showed little evidence of heterogeneity of effect between our genetic

instruments (Table 2). We nonetheless observed that for at least 1 of the 3 analyses, we would

have rejected the null hypothesis of homogeneous genetic effects in the COVID-19 hospitaliza-

tion phenotype. However, given the large number of hypotheses tested, this may be due to

chance.

Table 2. Mendelian randomization results.

Outcome Number of SNPs� IVW OR (95% CI) IVW p-value IVW SNP heterogeneity p-value Egger alpha Alpha p-value

25OHD primary analysis with all SNPs

Susceptibility 80 0.95 (0.84, 1.08) 0.44 0.009 0.003 (−0.004, 0.009) 0.39

Hospitalization 80 1.09 (0.89, 1.33) 0.41 0.065 0.0004 (−0.010, 0.011) 0.93

Severe disease 80 0.97 (0.77, 1.22) 0.77 0.140 0.008 (−0.004, 0.020) 0.17

25OHD sensitivity analysis restricted to genes in the vitamin D pathway

Susceptibility 11 0.94 (0.81, 1.08) 0.39 0.204 0.002 (−0.024, 0.029) 0.86

Hospitalization 11 1.04 (0.75, 1.46) 0.81 0.003 0.028 (−0.033, 0.089) 0.39

Severe disease 11 0.92 (0.68, 1.25) 0.59 0.117 0.044 (−0.008, 0.096) 0.13

25OHD sensitivity analysis after removal of SNPs identified by PhenoScanner

Susceptibility 9 0.91 (0.71, 1.17) 0.48 0.110 0.002 (−0.034, 0.038) 0.91

Hospitalization 9 1.02 (0.61, 1.73) 0.93 0.008 0.012 (−0.065, 0.089) 0.77

Severe disease 9 1.05 (0.64, 1.73) 0.85 0.127 0.032 (−0.038, 0.103) 0.40

Confidence AU : Pleasecheckthattheeditstothelegend=footnotesforTable2captureyourmeaning:Ifnot;pleaseeditasnecessary:intervals were obtained using normal approximations.

�Number of SNPs retained for this analysis.

25OHD, 25-hydroxy vitamin D; IVW, inverse-variance weighted; OR, odds ratio; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003605.t002
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Discussion

In this large-scale MR study, we did not find evidence to support increasing 25OHD levels in

order to protect against COVID-19 susceptibility, hospitalization, or severity. This lack of evi-

dence was consistent across phenotypes, sensitivity analyses, and choice of genetic instru-

ments. Differences between our findings and those reported in observational studies [6] may

reflect the fact that associations between vitamin D and COVID-19 may be confounded due to

factors difficult to control for even with advanced statistical adjustments, such as socioeco-

nomic status, institutionalizaton, or medical comorbidities associated with lower vitamin D

levels. While our study assessed the association between genetically determined levels of

25OHD and COVID-19, these results can still inform us on the role of vitamin D supplemen-

tation. Specifically, in contrast to observational studies, our findings do not support an associa-

tion between higher 25OHD level and better COVID-19 outcome, and therefore do not

support the use of vitamin D supplementation to prevent COVID-19 outcomes. Further, AU : Pleasecheckthattheeditstothesentence}Further;while:::}captureyourmeaning:Ifnot; pleaseprovidecorrectwording:while

one randomized trial [15] showed a benefit of vitamin D supplementation, it used an endpoint

at risk of bias due to the unblinded intervention (admission to the critical care unit) and had a

small sample size (n = 75); a larger, double-blinded randomized trial [16] of 240 patients

Fig 1. Odds ratio point estimates and 95% confidence intervals for the effect of a 1-SD increase in 25OHD levels (on the log scale) on COVID-19

susceptibility and severity. Restricted to 25-OHD Genes: analysis restricted to SNPs near the 4 genes involved in known vitamin D metabolic pathways.

PhenoScanner Filtered: analysis restricted to the 4 genes above, and with removal of SNPs identified as having other associations in PhenoScanner. Full results

including odds ratios, confidence intervals, and p-values are available in S1 Table. 25OHD, 25-hydroxy vitamin D; IVW, inverse-variance weighted; MR,

Mendelian randomization.

https://doi.org/10.1371/journal.pmed.1003605.g001
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showed no effect of a single high dose of vitamin D3 on mortality, length of stay, or risk of

mechanical ventilation. Thus, findings from the largest randomized trial to date are concor-

dant with our MR results.

Our study’s main strength is MR’s track record of predicting RCT outcomes for multiple

medical conditions [9–11,21–24,44,45]. Our study also leverages, to our knowledge, the largest

cohort of COVID-19 cases and controls currently available (even outside of genetic studies)

and the largest study on genetic determinants of 25OHD levels to date. Using these data

sources, we were able to obtain results robust to multiple sensitivity analyses.

Our study still has limitations. First, our results do not apply to individuals with vitamin D

deficiency, and it remains possible that truly deficient patients may benefit from supplementa-

tion for COVID-19-related protection and outcomes. However, individuals who are found to

have frank vitamin D deficiency, should undergo replacement for bone protection. Second,

our study may suffer from weak instrument bias, especially within sensitivity analyses that

restricted to smaller sets of genetic instruments. In 2-sample MR, this bias would tend to make

estimates closer to the null. Nonetheless, similar studies have been able to use MR to establish

an association between 25OHD levels and other diseases (most notably multiple sclerosis

[25]), suggesting that these instruments are strong enough to find such associations. Further,

AU : Pleasecheckthattheeditstothesentence}Further; given:::}captureyourmeaning:Ifnot; pleaseprovidecorrectwording:given the large percentage of individuals from the UKB shared between the vitamin D expo-

sure GWASs [28] and the severe COVID-19 phenotype GWASs, this analysis is close to a

1-sample MR, which would show bias towards the observational study association. Given that

this analysis also shows largely null effects, we do not suspect that weak instruments bias is a

significant issue in our results. Third, given that vitamin D levels are affected by season (with

higher levels after sunlight exposure), even if our SNP instruments were obtained from a

GWAS that controlled for season of blood draw, effect attenuation by averaging the effect of

25OHD levels on COVID-19 over all seasons may influence results. Nevertheless, a recent

study in a Finnish cohort (where sun exposure greatly varies by season) showed that genetic

determinants of 25OHD level were able to discriminate between individuals with a predisposi-

tion to varying levels of 25OHD, regardless of the season [46]. Therefore, while the cyclical

nature of 25OHD level is not completely modeled by MR, the size of this bias is likely small.

Fourth, our MR analyses assume a linear exposure–outcome relationship. While this may

slightly bias our results, simulation studies have previously shown that this assumption pro-

vides adequate results when looking at a population effect [27]. Therefore, for the purpose of

vitamin D supplementation in the general population, our conclusions should still be valid.

However, as pointed out above, we are not able to test the effect of vitamin D deficiency on

COVID-19 outcomes. Lastly, as we only studied the effect of 25OHD and COVID-19 in indi-

viduals of European ancestry, it remains possible that 25OHD levels might have different

effects on COVID-19 outcomes in other populations. However, previous RCTs on vitamin D

supplementation have given similar results in populations of various ancestries [44,45].

In conclusion, using a method that has consistently replicated RCT results from vitamin D

supplementation studies in large sample sizes, we find no evidence to support a protective role

for higher 25OHD in COVID-19 outcomes. Specifically, vitamin D supplementation as a pub-

lic health measure to improve COVID-19 outcomes is not supported by this MR study. Most

importantly, our results suggest that investment in other therapeutic or preventative avenues

should be prioritized for COVID-19 RCTs.
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