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Abstract

The purpose of this study was to apply texture analysis (TA) to evaluate the uniformity of

SPECT images reconstructed with the 3D Ordered Subsets Expectation Maximization (3D-

OSEM) algorithm. For this purpose, a cylindrical homogeneous phantom filled with 177Lu

was used and a total of 24 spherical volumes of interest (VOIs) were considered inside the

phantom. The location of the VOIs was chosen in order to define two different configura-

tions, i.e. gravity and radial configuration. The former configuration was used to investigate

the uniformity of distribution of 177Lu inside the phantom, while the latter configuration was

used to investigate the lack of uniformity from center towards edge of the images. For each

VOI, the trend of different texture features considered as a function of 3D-OSEM updates

was investigated in order to evaluate the influence of reconstruction parameters. TA was

performed using CGITA software. The equality of the average texture feature trends in both

spatial configurations was assumed as the null hypothesis and was tested by functional

analysis of variance (fANOVA). With regard to the gravity configuration, no texture feature

rejected the null hypothesis when the number of subsets increased. For the radial configura-

tion, the statistical analysis revealed that, depending on the 3D-OSEM parameters used, a

few texture features were capable of detecting the non-uniformity of 177Lu distribution inside

the phantom moving from the center of the image towards its edge. Finally, cross-correlation

coefficients were calculated to better identify the features that could play an important role in

assessing quality assurance procedures performed on SPECT systems.

Introduction

Today different imaging modalities are available to assist clinicians in their daily work by

providing precious details for the detection and diagnosis of human diseases. Constant
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improvements in image acquisition devices have led to an increase in the diagnostic informa-

tion within a single study and to the possibility of extracting “quantitative” features from both

morphological and functional tomographic images. Consequently, new tools based not only

on visual analysis but also on automated image analysis are available to support clinical deci-

sion making [1]. In 1979 the concept of image texture analysis (TA) was introduced to charac-

terize the spatial relationship between gray levels in neighbouring pixels within a region of

interest (ROI) in an image [2]. However, it took almost three decades to see the first pioneering

publication investigating the use of TA in medical images [3]. Since then, many other studies

have been carried out based on the use of TA methods under different clinical conditions and

using non-invasive medical imaging modalities [4].

The discipline that studies and analyzes the features extracted from medical images is called

radiomics [5] and its aim is to generate a predictive model combining the information pro-

vided by the TA with that of patient outcome to identify a specific clinical treatment. In partic-

ular, numerous studies have highlighted the potential of radiomics as a powerful tool to

quantify the characteristics of tumors in a non-invasive manner [6], indicating its usefulness

in both prognostic and predictive models. Typically, the workflow used in the application of

the TA methods in medical images consists of a series of consecutive steps: 1) acquisition,

reconstruction and selection of the images; 2) identification and segmentation of regions

(ROIs) and volumes of interest (VOIs); 3) extraction of descriptive texture features from ROIs

or VOIs; 4) feature selection and statistical correlation with clinical outcome; and 5) data clas-

sification. Another important step that should be included for the generation of a radiomics

predictive model is external validation, an essential element for comparing the usefulness of

the generated model between different research institutions/hospitals. In fact, different

machines provide medical images with completely different characteristics [7], and this vari-

ability impairs the results of a predictive model and their generalization. One way to resolve

this problem is to identify features that are stable during the analyses and sufficiently robust

with respect to system characteristics and their acquisition/reconstruction parameters [8].

Although many studies have been published on the usefulness of TA methods in a clinical

context [9–12], only a few deal with the use of TA methods for the quantitative evaluation of

SPECT images [13]. TA applied to SPECT images could play an important role in diseases and

treatments that utilize SPECT imaging, not only for diagnosis but also for patient-specific

dosimetry purposes.

The SPECT images are affected by a “blobby” noise [14], which is strongly dependent on

the algorithm and the parameters used in the SPECT image reconstruction process. One of the

main parameters influencing the texture noise of a reconstructed image is the collimator-

detector response (CDR), for which analytic and iterative reconstruction approaches have

been implemented to compensate the CDR function. However, due to the oscillation of the

signal in the image that jumps at sharp edges, resulting in an overshoot near them, CDR com-

pensation can introduce artifacts typically known as Gibbs rings [15]. First-order statistics

based on standard descriptors [16] cannot completely characterize the images in terms of tex-

ture and pattern because they do not consider the spatial relationship and correlation with

neighboring pixel values. Recently, TA has been proven to be suitable for quantitative assess-

ment of quality assurance procedures performed on SPECT systems where only qualitative

statements are needed [13].

The present study evaluated SPECT system reconstruction performances by using TA on

reconstructed 177Lu SPECT images of a homogeneous phantom, with the goal of finding

potential metrics to test on different SPECT systems. This in order to define a different

approach to SPECT image analysis that can use TA as a figure of merit to describe uniformity

in SPECT images. We thus extracted a large number of texture features from VOIs defined on
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reconstructed SPECT images of the homogeneous phantom, analyzing the trend of several

features as a function of the number of 3D-OSEM updates (i.e. subsets (S) and iterations (I)),

considering as starting point the results of a previous study [17]. Finally, we statistically investi-

gated possible correlations between different extracted features as a function of the reconstruc-

tion parameters and VOI location.

In brief, we: 1) statistically investigated the feature trends as a function of the reconstruction

parameters to identify potential differences in spatial configuration of VOIs inside the SPECT

phantom images; 2) studied the correlation between the features stable with respect to recon-

struction parameters in order to better define the relationship between the texture features pre-

senting significant differences; 3) explored the potential role of the TA as a new approach to

the quantitative characterization of 177Lu SPECT images that is not fully achieved by a first-

order statistics. Furthermore, to the best of our knowledge, the adoption of a functional analy-

sis statistical approach, which allows us to consider the values of the features as a function of

the reconstruction parameters, represents a novelty in TA applied to SPECT imaging.

Materials and methods

SPECT acquisition related to a homogeneous cylindrical phantom filled with 0.11 MBq/mL of
177Lu was used to perform TA (Fig 1) [17]. In particular, SPECT acquisition was performed

Fig 1. SPECT/CT images of the homogeneous cylindrical phantom. The top row shows CT images of the homogeneous phantom

in A) coronal, B) sagittal and C) transaxial sections, together with D) VOI location used for texture analysis. The second and third

rows show reconstructed SPECT images of the central slice of the phantom for E) 5S and F) 10S, and different I values.

https://doi.org/10.1371/journal.pone.0218814.g001
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using a hybrid SPECT/CT system (Discovery NM/CT 670, GE Healthcare, Milwaukee, USA),

equipped with two gamma detector heads (9.5 mm NaI(Tl) crystal thickness with 40 cm axial

by 54 cm diameter field of view), and an integrated 16-slice-CT component (model: Bright

Speed 16, GE Healthcare, Milwaukee, USA). SPECT projection data were acquired in three

energy windows using a parallel-hole medium energy general purpose (MEGP) collimator: a

symmetrical 20% wide energy window was centered at 208 keV 177Lu photopeak (energy win-

dow: 187.2 keV– 228.8 keV), together with two 8.7% and 11.8% wide adjacent scatter windows,

representing the upper and lower scatter window, respectively. Acquisition was performed

using 120 projections, non-circular step-and-shoot orbit, 128x128 matrix and 4.42x4.42 mm2

pixel size. The subsequent CT scan was acquired at 120 kV, 80 mAs, 1.375 pitch, 16x1.25 mm

collimation and 3.75 slice thickness.

The SPECT was reconstructed on a dedicated workstation (Xeleris 3.1108, GE Healthcare,

Milwaukee, USA) using a 3D-OSEM algorithm, including CDR, scatter correction and attenu-

ation correction. The OSEM parameters used were 5S and 10S, while the number of I ranges

from 10 to 25 in steps of 5, accordingly to the results reported in [17]. No pre- or post- recon-

struction filter was used. In this way a total of 8 reconstructed datasets were obtained. On each

dataset, 24 spherical VOIs of 19 cm3 in volume were contoured, and their location inside the

phantom is shown in Fig 1D. With the aim to perform an analysis similar to that proposed in

[18], the external VOIs were located at a distance of 15 mm between their surface and the

inner edge of the phantom. This configuration was repeated twice in the inner portion of the

phantom, with increasing overlapping of the VOIs.

CGITA software was used for TA [19]. In the analysis performed, a total of 69 texture fea-

tures were computed and grouped as follows: 6 belong to Co-occurrence (C), 11 to Voxel

Alignment (VA), 5 to Neighborhood Intensity Difference (NID), 11 to Intensity Size Zone

(ISZ), 7 to Normalized Co-occurrence (NC), 11 to Voxel Statistics (VS), 2 to Texture Spectrum

(TS), 3 to Texture Feature Coding (TFC), 8 to Texture Feature Coding Co-occurrence (TFCC)

and 5 to Neighborhood Gray-Level Dependence (NGLD) matrix. The features used in this

study are reported in Table 1. A detailed feature description is reported in [19] and references

therein. Moreover, the analysis performed on the considered VOIs used the following CGITA

settings: 1) local normalization performed with minimum and maximum values calculated

inside the VOI; 2) the distance between pairs of voxels was set to one (direct neighbours); 3)

the angular orientation is averaged and 4) digitization bins of 64.

Statistical analysis

The dependence of TA results as a function of the reconstruction parameters was investigated

with respect to VOI locations. A total of 13248 (i.e. 69 texture features x 24 VOIs x 8 SPECT

datasets) texture feature values were computed. For each texture feature and fixed VOI loca-

tion, the feature values were calculated at different SPECT image reconstruction parameters

(i.e. S and I). Moreover, considering that each specific feature could be related to the location

of the VOI inside the phantom, they were grouped according to two different spatial configu-

rations, i.e. 1) gravity and 2) radial configuration, as shown in Fig 2A and 2B, respectively.

The first configuration (Fig 2A) splits the VOIs into two groups with respect to the phan-

tom’s midplane (the ones above and the ones below the horizontal black dashed line in Fig 2A),

and each group includes 9 VOIs. The VOIs lying on the phantom’s midplane were omitted as

they did not belong to any group. This configuration allowed us to statistically infer whether

the texture values were invariant with respect to the symmetry in reference to the midplane.

In the second configuration (Fig 2B), VOIs were grouped to define three different rings

(inner, middle and fringe rings), each one including 8 VOIs. This configuration enabled us to
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statistically test whether the feature values were invariant with respect to VOI location along a

radius within the scan field of view.

In the analysis performed we fixed S and considered the texture features as a function of I.

The texture feature trend of each VOI represents the datum. Thus, the null hypothesis (H0) to

Table 1. Texture features analized with CGITA software.

Parent matrix Feature measure

Co-occurrence (C) second angular moment, contrast, entropy, homogeneity, dissimilarity,

inverse difference moment

Voxel Alignment (VA) short-run emphasis, long-run emphasis, intensity variability, run-length

variability, run percentage, low-intensity run emphasis, high-intensity run

emphasis, low-intensity short-run emphasis, high-intensity short-run

emphasis, low-intensity long-run emphasis, high-intensity long-run emphasis

Neighborhood Intensity Difference

(NID)

coarseness, contrast, busyness, complexity, strength

Intensity Size Zone (ISZ) short-zone emphasis, large-zone emphasis, intensity variability, size-zone

variability, zone percentage, low-intensity zone emphasis, high-intensity zone

emphasis, low-intensity short-zone emphasis, high-intensity short-zone

emphasis, low-intensity large-zone emphasis, high-intensity large-zone

emphasis

Normalized Co-occurrence (NC) second angular moment, contrast, entropy, homogeneity, dissimilarity,

inverse difference moment, correlation

Voxel Statistics (VS) minimum SUV, maximum SUV, mean SUV,SUV variance, SUV SD, SUV

skewness, SUV kurtosis, SUV skewness (bias corrected), SUV kurtosis (bias

corrected), TLG, tumor volume1, entropy, SUV peak
1

Texture Spectrum (TS) max spectrum, black-white symmetry

Texture Feature Coding (TFC) coarseness, homogeneity1, mean convergence, variance

Texture Feature Coding Co-

occurrence (TFCC)

second angular moment, contrast, entropy, homogeneity, intensity, inverse

difference moment, code entropy, code similarity

Neighborhood Gray-Level

Dependence (NGLD)

small-number emphasis, large-number emphasis, number non-uniformity,

second moment, entropy

1These features were not considered in the analyses due to regularity over subsets.

https://doi.org/10.1371/journal.pone.0218814.t001

Fig 2. Spatial configurations used for statistical analysis. A) Gravity configuration: the horizontal black dashed line

defines the midplane of the phantom, dividing it into two halves. B) Radial configuration: the location of the VOIs is

the same as in A), but they are grouped in inner (dotted line), middle (dashed line) and fringe (continuous line) rings.

The VOIs crossed by the aforementioned lines were considered for statistical analysis.

https://doi.org/10.1371/journal.pone.0218814.g002
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be tested was the equality of the average trends grouped according to each VOI spatial configu-

ration (i.e. gravity and radial). It was evaluated using the non-parametric functional analysis of

variance (fANOVA, S1 Appendix). The adopted fANOVA methodology consists in testing H0

between projected values of texture feature trends for a given spatial configuration (S1 Appen-

dix) at the significance level (α) of 0.05. In the case of the radial configuration, if H0 is rejected,

a post-hoc analysis (S2 Appendix) is implemented to further investigate the equality of the

average trends between VOI groups in two-by-two comparison. With regards to the gravity

configuration, the comparison is already between two groups, hence the post-hoc analysis may

be redundant. Lastly, the cross-correlation coefficients were computed to investigate the rela-

tionships between the features that rejected H0.

Statistical analyses were performed using a script written in the statistical language R v.3.4.1

[20]. For the sake of clarity, the workflow adopted for statistical analysis is shown in Fig 3.

Results

Gravity configuration

Table 2 shows the corrected p-values of the fANOVA test for 5S and 10S performed for the

gravity spatial configuration (Fig 2A). For 5S all features reported rejected H0 (i.e. p-value <

0.05). However, for 10S no feature rejected H0 (a complete report of the corrected p-values of

the fANOVA test is shown in S1 Table). Post-hoc analysis for the gravity configuration was not

necessary as the comparison was only among two spatial groups.

Fig 3. Workflow adopted for the statistical analysis.

https://doi.org/10.1371/journal.pone.0218814.g003

Table 2. fANOVA results of the gravity configuration. Corrected p-values obtained from the statistical analysis on

texture features performed for 5S that rejected H0. For completeness, the corrected p-values for 10S are also reported.

Texture feature p-value

5S 10S

NID–strength 0.015 0.428

ISZ–short-zone emphasis 0.028 0.263

VS–minimum SUV 0.002 0.163

TS–black-white symmetry 0.028 0.415

TFCC–intensity 0.007 0.490

https://doi.org/10.1371/journal.pone.0218814.t002
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Radial configuration

Tables 3 and 4 show the corrected p-values of the fANOVA analysis performed for the radial

configuration for 5S and 10S, respectively. Only the texture features that rejected H0 are

reported in either table (a complete report of the corrected p-values of the fANOVA test is

shown in S2 Table).

Tables 5 and 6 show the results of post-hoc analysis performed to assess the possible two-by-

two differences between the average texture feature trends according to the radial grouping (a

complete report of the post-hoc analysis is shown in S3 and S4 Tables).

Texture features NC-correlation, TFC-coarseness and TFCC-code similarity showed a sig-

nificant difference in average trends inside the rings with respect to 5S. The post-hoc analysis

identified a radial effect between the fringe ring and both the inner and middle rings, whereas

no significant difference was noted between the last two. Indeed, a significant dissimilarity was

appreciable at the edge of the phantom (corrected p-values refer to inner vs fringe and middle

vs fringe). The same radial effect was found for the features NID-busyness, TFC-coarseness,

TFCC-homogeneity and TFCC-code similarity for 10S (Table 6).

A descriptive analysis was also performed of the features that showed in the post-hoc
analysis a radial effect between both the inner and middle rings with respect to the fringe ring.

Specifically, the individual and average trends of such features and the subset-wise cross-corre-

lation between them were graphically investigated. In particular, Fig 4 shows values referring

to 5S and the features reported in Table 5, while Fig 5 refers to 10S and the data reported in

Table 6. In all figures data are grouped according to VOIs spatial location: points are individual

values, whereas thick lines represent the average trend of each ring. Moreover, for sake of clar-

ity, box plots are reported for each ring, I and texture feature shown.

For 5S it is worthy of note that features NC—correlation (Fig 4A) and TFCC–code similar-

ity (Fig 4C) showed similar behaviors for all the rings considered, with texture data for the

inner and middle rings higher than that of the fringe ring. This aspect confirms the nature of

Table 3. fANOVA results of the radial configuration for 5S. Corrected p-values obtained from the statistical analysis

on texture features that rejected H0.

Texture feature p-value

5S

NID–coarseness 0.000

NID–busyness 0.017

NID–strength 0.044

ISZ–intensity variability 0.005

C–correlation 0.002

VS–SUV SD 0.027

VS–SUV kurtosis 0.000

VS–entropy 0.028

TFC–coarseness 0.022

TFCC–second angular moment 0.010

TFCC–entropy 0.008

TFCC–homogeneity 0.008

TFCC–inverse difference moment 0.019

TFCC–code entropy 0.006

TFCC–code similarity 0.003

NGLD–second moment 0.023

NGLD–entropy 0.037

https://doi.org/10.1371/journal.pone.0218814.t003
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the features NC-correlation and TFCC-code similarity. Conversely, this relationship was

inverted for TFC-coarseness (Fig 4B). In particular, NC—correlation quantifies the linear

dependency of grey levels in neighborhood pixels with a specific distance between pixels (in

our case, 1 pixel) and angular orientation (averaged in our case), while TFCC-code similarity

was calculated using the TFC method. This coding approach transforms the original image

Table 4. fANOVA results for the radial configuration for 10S. Corrected p-values obtained from the statistical anal-

ysis on texture features that rejected H0.

Texture feature p-value

10S

C–homogeneity 0.007

C–inverse difference moment 0.002

VA–run-length variability 0.006

VA–high-intensity short-run emphasis 0.033

NID–coarseness 0.001

NID–busyness 0.014

NID–strength 0.010

ISZ–intensity variability 0.003

NC–homogeneity 0.004

NC–correlation 0.000

VS–SUV kurtosis 0.026

TS–max spectrum 0.027

TFC–coarseness 0.001

TFCC–second angular moment 0.004

TFCC–homogeneity 0.002

TFCC–intensity 0.017

TFCC–inverse difference moment 0.005

TFCC–code entropy 0.001

TFCC–code similarity 0.000

NGLD–number non-uniformity 0.038

NGLD–entropy 0.033

https://doi.org/10.1371/journal.pone.0218814.t004

Table 5. Post-hoc analysis results of the radial configuration for 5S.

Texture feature corrected p-value corrected α H0 rejection

NC–correlation

inner vs fringe 0.001 0.017 TRUE

middle vs fringe 0.003 0.033 TRUE

inner vs middle 0.074 0.050 FALSE

TFC–coarseness

inner vs fringe 0.000 0.017 TRUE

middle vs fringe 0.000 0.033 TRUE

inner vs middle 0.166 0.050 FALSE

TFCC–code similarity

inner vs fringe 0.000 0.017 TRUE

middle vs fringe 0.000 0.033 TRUE

inner vs middle 0.091 0.050 FALSE

TRUE, different average texture feature value between the considered rings; FALSE,equal average texture feature value between the considered rings.

https://doi.org/10.1371/journal.pone.0218814.t005
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Table 6. Post-hoc analysis results of the radial configuration for 10S.

Texture feature corrected p-value corrected α H0 rejection

NID–busyness

inner vs fringe 0.001 0.017 TRUE

middle vs fringe 0.024 0.033 TRUE

inner vs middle 0.333 0.050 FALSE

TFC–coarseness

inner vs fringe 0.000 0.017 TRUE

middle vs fringe 0.000 0.033 TRUE

inner vs middle 0.103 0.050 FALSE

TFCC–homogeneity

inner vs fringe 0.000 0.017 TRUE

middle vs fringe 0.005 0.033 TRUE

inner vs middle 0.196 0.050 FALSE

TFCC–ode ss code similarity

inner vs fringe 0.000 0.017 TRUE

middle vs fringe 0.010 0.033 TRUE

inner vs middle 0.151 0.050 FALSE

TRUE, different average texture feature value between the considered rings; FALSE,equal average texture feature value between the considered rings.

https://doi.org/10.1371/journal.pone.0218814.t006

Fig 4. Texture features for VOIs in radial configuration for 5S. A) NC-correlation, B) TFC-coarseness and C) TFCC-code similarity. Dots

represent individual texture values inside the VOIs in the considered rings, while thick lines are their average values. Colors indicate spatial

groupings of the VOIs (inner, middle and fringe). Box plots are reported under each plot.

https://doi.org/10.1371/journal.pone.0218814.g004
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into a texture feature image in which each pixel value is a Texture Feature Number (TFN). In

particular, for a texture image pixel, the TFN is generated on the basis of the grey-level changes

in the surrounding pixels, which represent the texture unit. Successively, the TFC—co-occur-

rence matrix is calculated starting from the texture image, and represents the local variation of

the TFNs. The same approach is used to calculate the TFC—coarseness, this last feature repre-

senting a drastic change in the TFNs of the texture unit.

For 10S, NID-busyness (Fig 5A), TFC-coarseness (Fig 5B), TFCC-homogeneity (Fig 5C)

and TFCC-code similarity (Fig 5D) rejected H0. TFCC-homogeneity represents no significant

changes in the TFNs of the texture unit, and it had the same trend as TFCC-code similarity,

with higher values for the inner and middle locations. NID-busyness represents the spatial

frequency of changes in grey-level intensity between one pixel and its neighbors, and it had a

similar trend to that of TFC-coarseness, with higher average trajectory for the fringe ring.

However, the trend was inverted with respect to Fig 5C and 5D.

Finally, Fig 6 shows the heat-maps of the cross-correlation between those texture features

showing significant differences among fringe and both middle and inner rings in the post-hoc
analysis. With regard to 5S (Fig 6A), TFC-coarseness negatively cross-correlated with the

other two features (i.e. NC-correlation and TFCC-similarity) once more highlighting the

opposite aspects they measure. Conversely, NC-correlation and TFCC-code similarity

showed a positive cross-correlation. Similarly, NID-busyness vs TFC-coarseness and TFCC-

Fig 5. Texture features for VOIs in radial configuration for 10S. A) NID-busyness, B) TFC-coarseness, C) TFCC-homogeneity and D)

TFCC-code similarity. Dots represent individual texture values inside the VOIs in the considered rings, while thick lines are their averaged

values. Colors indicate spatial groupings of the VOIs (inner, middle and fringe). Box plots are reported under each plot.

https://doi.org/10.1371/journal.pone.0218814.g005
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homogeneity vs TFCC-similarity for 10S (Fig 6B) had high positive cross-correlation values,

confirming their trends in Fig 5A and 5B. The cross-correlation is negative for the remaining

features.

Discussions

SPECT images consist of a sequence of slice images containing information about the distribu-

tion of the radiotracer in form of counts stored in each pixel. Although some commercial

SPECT systems show comparable performances [21], the reconstruction artifacts remain a

handicap towards accurate quantification in SPECT acquisitions. International protocols pro-

vide methods for data quantification and comparison of SPECT images [19, 20], proposing

that the spatial information of the radiotracer distribution at the pixel level be mediated over

the neighboring pixels. Conversely, TA provides methods to re-introduce this spatial informa-

tion at pixel level by means of heterogeneity quantification. Recently, TA approach has been

proven to be suitable for quantitative assessment of the quality assurance procedures based on

visual inspection in SPECT systems [13]. With regard to tomographic uniformity, an interna-

tional protocol [18] proposed a quantitative evaluation limited to a 15x15-pixel square ROI

centered on several reconstructed slices, whereas judgment about the overall tomographic uni-

formity of the phantom actually pertained to the visual assessment. With this in mind, we used

TA on reconstructed 177Lu SPECT images of homogeneous phantom to address the impact of

reconstruction algorithm. The trend of different texture features as a function of 3D-OSEM

parameters (i.e. S and I) was investigated for different VOI location to identify non–uniform

regions and to underline potential discrepancies between them. We did this for two reasons: 1)

to overcome the limitations of the visual assessment of SPECT uniformity evaluation and 2) to

study non-uniformities, which are of particular interest because any non-uniformity in a

SPECT system is amplified by the tomographic reconstruction process. The latter reason is

even more important as recent publications have proposed using a uniform phantom for

SPECT calibration [17, 22–24], within the context of personalized dosimetry for molecular

radiotherapy (MRT) [25, 26].

Fig 6. Heat-maps of cross-correlation coefficients between texture features rejecting H0 in the radial configuration. In each heat-map the

horizontal and vertical axes refer to the value of the texture features obtained at a specific I for A) 5S and B) 10S. The legend reported in both

maps refers to the Pearson’s correlation coefficient, and the color associated with a legend value is reported on the square regions of the maps,

representing the level of correlation between the texture features.

https://doi.org/10.1371/journal.pone.0218814.g006
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In the present study, two spatial configurations (i.e. gravity and radial) were used to investi-

gate: 1) the isotropy of the SPECT signal produced by the 177Lu activity distribution and 2) the

influence of reconstruction parameters and VOI location (Fig 3) on texture features. We also

used VOIs rather than ROIs, as suggested by the international protocols on SPECT image

quality evaluation [18].

With regard to gravity configuration, a visual inspection of the reconstructed SPECT

images shown in Fig 1E (5S) and Fig 1F (10S) reveals the presence of blobby noise due to the

reconstruction parameters used. Fixing S, the noise increased as I increased, and this also

occurred when I was fixed but S increased [23]. The increase in noise in the considered images

is also confirmed by the line profile rippling along the dotted lines in the reconstructed SPECT

images (supplementary materials S1 Fig). In particular, the profiles obtained showed two pro-

nounced horns on each side with respect to their central region due to the use of CDR in the

SPECT reconstruction process, as reported in [14].

The TA results in Table 2 relating to gravity configuration show some exceptions for 5S,

suggesting non-uniformity inside the SPECT images. These findings disappear at 10S

(Table 2) for which all texture features investigated were invariant with respect to the symme-

try relating to the midplane of the phantom image (i.e. equality of average texture trend

between the two halves). It can be assumed that the effect observed for 5S was a consequence

of the 3D-OSEM reconstruction algorithm used: as S increased, so did the number of projec-

tions used in the reconstruction process. Given that counts provide information on 177Lu

radioactivity at pixel level, the results obtained in the present study indicate that S<10 do not

provide reliable information on the uniformity requirements for SPECT images due to the

effect of the reconstruction algorithm. These findings are in agreement with the results

reported in [18], where S = 10 was considered the best compromise between reducing the

noise in the reconstructed images and diminishing difference between reconstructed and real

activity. For this reason no cross-correlation analysis was performed for S = 5.

With regard to the radial configuration, Tables 3 and 4 summarize the texture features that

rejected H0 (i.e. at least one spatial grouping average texture trend differed from the others),

moving from the center of the reconstructed SPECT image towards its edge. Rejection of H0 is

directly related to the reconstruction algorithm: the contribution of a given pixel is related to

its position inside the imaged phantom and to SPECT acquisition angle [27]. Among these fea-

tures, there were thirteen common features rejecting H0 (features reported in bold in Tables 3

and 4) for both 5S and 10S, revealing differences between the edge of the phantom and the

inner and middle rings. Post-hoc analysis identified common features (Table 5 for 5S, and

Table 6 for 10S) presenting differences between the three rings considered. SPECT uniformity

was assured in the inner and middle rings, as detected by second order statistics. The first

order statistics (i.e. Voxel Statistics) did not reject H0 (as reported in Tables 3 and 4), but

the post-hoc analysis revealed that it was not suitable to detect non-uniformities inside the

phantom. Moreover, the approach based on a comparison of the rings not only confirmed the

uniformity in the central region but also provided information on its extension and, conse-

quently, on the phantom portion suitable for SPECT calibration.

The texture features selected by the post-hoc analysis are capable of detecting non-unifor-

mities, and they could provide a new key lecture for the image quality assessment. Moreover,

this investigation attempts to overcome the limitation declared in a published study [13],

with the aim to address quantitatively the possible non-uniformity sources due to reconstruc-

tion process. However, our results must now be validated by extending the present investiga-

tion to different gamma camera systems and related reconstruction workstations, at the

same time considering the role of post filtering parameters at the end of the reconstruction

process.
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Conclusions

In the present study we investigated the uniformity of the reconstructed SPECT images of a

homogeneous phantom using TA. In particular, statistical analysis revealed that some texture

features are indicative of differences between VOIs in the reconstructed SPECT images, pro-

viding a new “finger-print” in the assessment of quality assurance for SPECT systems. Future

developments of this study include further validations of different gamma camera systems

and reconstruction workstations with the aim of defining a new metric based on TA

methods.
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