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Abstract: The development of cell reprogramming technologies became a breakthrough in the
creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-
based models allow for the studying of both hereditary and sporadic cases of pathologies and produce
deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most
vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms
and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies
on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we
focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as
calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of
different neurodegenerative disorders that demonstrated aberrant calcium signaling.

Keywords: patient-specific models; calcium signaling; Alzheimer’s disease; Parkinson’s disease;
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1. Introduction

Neurodegenerative diseases are one of the most socially significant problems facing
modern medicine. The number of people suffering from neurodegenerative pathologies is
growing every year. According to data from the World Health Organization, more than
55 million people live with dementia (predominantly Alzheimer’s disease) worldwide, and
there are nearly 10 million new cases every year. As the proportion of older people in the
population is increasing in most countries, this number is expected to rise to 78 million
in 2030 and 139 million in 2050 [1]. Parkinson’s disease (PD) is the second most frequent
neurodegenerative pathology. Over recent decades, the number of people suffering from PD
has more than doubled to over 6 million. Of all the neurological disorders, PD has increased
at the fastest rate [2]. The progression of dementia leads to the disability of patients and
requires colossal expenses for their medical support. Thus, the development of new
approaches to treating neurodegenerative diseases remains highly relevant. Unfortunately,
most of the existing methods of therapy are aimed at symptomatic treatment and do not
address the basic causes of the pathologies. Therefore, one of the most important tasks of
modern neuroscience is to study the molecular mechanisms underlying neurodegeneration
and search for new targets for the treatment of neurodegenerative pathologies. To solve this
important issue, the development of adequate models reflecting, as accurately as possible,
the pathological processes of a particular disease is required. The discovery of induced
pluripotency [3] and the improvement of protocols for stem cell differentiation was a real
breakthrough along this path. The main advantages of models based on patient-specific
induced pluripotent stem cells (iPSCs) are the endogenous expression of mutant genes
and the possibility of studying the sporadic cases of diseases. Moreover, the targeted
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differentiation into different types of neurons including highly vulnerable and commonly
protected neurons makes it possible to study the molecular basis of selective neuronal death.

The previously proposed calcium hypothesis of neurodegeneration [4] postulates that
the main factor triggering neurodegenerative processes in neurons is a disturbance of intra-
cellular calcium signaling. Indeed, impaired calcium homeostasis has been reported for a
wide range of neurodegenerative diseases, in both cellular and animal model studies [5–10].
In this review, we have summarized the data accumulated to date on established iPSCs-
based models of various neurodegenerative pathologies, focusing on the revealed changes
in calcium signaling.

2. Problems and Prospects of iPSCs-Based Models of Neurodegenerative Diseases

The era of cell differentiation began with the production and culturing of embryonic
stem cells (ESCs) [11,12]. These cells have pluripotent properties and can be differentiated
into any type of adult cells. With the development of differentiation protocols, the use
of ESCs has become widespread for modeling neurodegenerative pathologies, including
Alzheimer’s disease (AD) [13–15], Parkinson’s disease (PD) [16–18], Huntington’s disease
(HD) [19,20], spinocerebellar ataxias (SCA) [21], amyotrophic lateral sclerosis (ALS) [22–24],
and other neurological disorders [25]. However, the use of human ESCs is limited by
access to preimplantation embryos and the associated ethical issues. Therefore, to model
pathologies recently, ESCs of model animals are mainly used.

The discovery of induced pluripotency by Professor Yamanaka created a new im-
pulse in disease modeling using genetic reprogramming of the cells. It was postulated
that the expression of only four transcription factors (Oct-4, Sox2, c-Myc, Klf4) can return
a differentiated cell to the pluripotent state [3]. Those cells were called iPSCs. Numer-
ous studies showed that iPSCs are fundamentally no different from ESCs: they can be
maintained in culture and can potentially be differentiated into any type of somatic cell.
However, some differences can be observed in the pattern of DNA methylation and gene
expression [26–28]. An important advantage of iPSCs has been the elimination of many
ethical problems associated with obtaining ESCs. The main applications of human iPSCs
are the establishing of cellular models of diseases and also regenerative medicine and drug
testing (Figure 1).
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Figure 1. iPSCs in modeling neurodegenerative diseases, drug screening, and cell therapy.

Model iPSCs lines obtained through the genetic reprogramming of a patient’s biologi-
cal material are called patient-specific models. They reflect the pathological phenotype of
a patient with this disease. The key advantage of iPSCs-based models is the endogenous
expression of mutant genes, which makes it possible to assess the expression levels of
affected genes, as well as to study the pathophysiological mechanisms under “native”
conditions. Another important advantage of iPSCs-based models is the possibility of iPSCs
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to be differentiated into the cell type that is most vulnerable in this particular disease. In
particular, it can be expected that the use of iPSCs-based models will shed light on one of
the key problems of neurodegeneration—the causes of selective neuronal death.

In medical practice, the use of iPSCs creates tremendous opportunities for personalized
therapy, as for each person, iPSCs from their own differentiated cells can be obtained.
Subsequent genetic correction of the mutant allele and differentiation of iPSCs into cell
preparations will allow for transplantation treatment. However, this approach has serious
limitations due to the increased risk of tumor formation even in the case of autologous
transplantation. Nevertheless, the developed cerebral organoids represent a promising
transplantation source. Transplanted rat cerebral organoids demonstrate multilineage
differentiation and migration in different damaged brain areas [29]. At the same time,
another application of iPSCs as a platform for screening potential drugs remains highly
relevant. Also, the recent advances in applying the use of high-throughput screening,
computer-aided drug design, and the development of microfluidic blood–brain barrier
models can significantly improve drug selection efficiency and complement iPSCs-based
drug screening systems [30–35].

Drug development is very expensive but approximately 90% of drugs in human
clinical trials are discarded and never sold. The main reasons for this high failure rate are
lack of efficacy and existing limitations in human disease models and drug safety testing.
The iPSCs-based models provide a unique opportunity for drug discovery and testing, as
they enable the considering of cellular and, in particular, neuronal specificity while the
activity of potential drug compounds is tested. This is highly important for the screening of
neuroprotective compounds because neurodegenerative pathologies are often characterized
by selective neuronal death. For example, the predominant death of striatal medium spiny
neurons was detected in Huntington’s disease, whereas the most vulnerable neuronal
types in Parkinson’s disease and amyotrophic lateral sclerosis are dopaminergic neurons
and motor neurons, consequently. Thus, testing a drug on neurons without considering
the specificity of neuronal vulnerability can significantly limit the search for effective
compounds. It is expected that small molecules selected using iPSCs-based models will
demonstrate similar efficacy in the treatment of patients. During the screening of chemicals,
in addition to their effectiveness, their toxicity is checked. Appropriate screening using
iPSCs-based models to select highly potent, low toxicity chemicals would significantly
reduce drug development costs.

Despite the many advantages of using patient-specific models, challenges exist. First
is the problem of genetic heterogeneity between different patients and between control and
disease. Significant variations in the pathological phenotype are often observed even for
patients with monogenic diseases with the same mutation. Therefore, it is important to
consider the influence of other genes. To overcome this limitation, isogenic cell lines were
established, differing only by a mutation in a particular gene [36–45].

Another important limitation is the fact that in vitro differentiation is different from
the physiological maturation of cells in the organism. Therefore, although the iPSCs-
based models can be considered among the most successful and physiologically adequate
models of neurodegenerative pathologies, scientists strive to make these models even
more relevant, developing, in particular, strategies for three-dimensional cultivation of cell
structures similar to a primitive brain [46–49].

3. Obtaining the iPSCs-Based Models of Neurodegenerative Diseases

The creation of a patient-specific iPSCs-based model of the disease begins with the
search for a patient with the corresponding pathology. Medical neurological centers di-
agnose the disease and collect biological material from donors (skin biopsy or peripheric
blood sampling), who have previously signed an informed consent. Further, a fibroblast
culture is obtained from the collected biological material of the patient. The next step is
the return of cells to the pluripotent state (reprogramming of the fibroblast culture into
iPSCs). Some models stop at this stage [50]. For the other models, the final stage is a
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differentiation of iPSCs into the suitable cell type, as a rule, into the most vulnerable in
this pathology (Figure 1). It is important to find out at what stage of differentiation the
pathological phenotype is reproduced. It has been shown that terminally differentiated
cells more fully reflect the disease phenotype than do iPSCs or NPCs (neuronal progenitor
cells) for many neurodegenerative pathologies [41,51,52].

The patient-specific models can be obtained by both reprogramming cells in iPSCs
and their subsequent differentiation, and direct induction of somatic cells (Figure 1). Direct
induction can be induced by overexpression of a set of transcription factors that promote
chromatin remodeling and trigger direct cell differentiation, bypassing the stage of iPSCs
generation [53–57].

Cell reprogramming into iPSCs is triggered by transcription factors that return a
differentiated cell to a pluripotent state. To deliver genes encoding these factors into cells,
the retroviruses (in particular, lentivirus) can be used to integrate the required genes into the
host genome [8,58], and Sendai (non-integrative) viruses or transient transfection [59,60].
Both methods of reprogramming have similar efficiency, and the cell models obtained by
these methods, as a rule, do not have any morphological or functional differences [61]. The
use of the Sendai virus looks more promising, as the virus plasmid does not integrate into
the cell genome, removing the risk of protooncogene activation, which may occur during
an integrative lentiviral infection.

The differentiation process includes three principal stages: neuronal induction, the
production of cells of the lateral ganglionic eminence (LGE), and terminal differentiation.
Obtaining the required type of neurons is necessary to choosing the appropriate combina-
tion (and concentration) of cell proliferation and differentiation factors that best suits the
conditions in the developing brain.

The process of establishing the iPSCs-based models of the diseases at all stages is ac-
companied by the careful characterization of the obtained cells. This includes confirmation
of the presence or absence of specific markers, testing the ability of iPSCs to differentiate
into cells of all three germ layers, and testing for teratoma formation. Karyotyping is
performed to control chromosomal rearrangements that periodically occur during repro-
gramming and cell culture. Using the methods of immunocytochemistry and PCR, the
expression of specific protein markers is analyzed: pluripotency (TRA-1-60, TRA-1-81,
SSEA-3, SSEA4, Oct-4), germ layers (PAX6, SOX1 (ectoderm), GATA4, α-SMA (mesoderm),
SOX17, AFP (endoderm), and differentiated cells such as neurons (MAP2, NCAM, Tuj1,
DCX). In addition, morphological and functional control of the resulting cells is required.
Functional confirmation of successful neuronal differentiation can include a demonstration
of the ability to respond to depolarization of the plasma membrane, generation of action
potentials, and forming synapses and specific morphological structures characterizing the
particular neuronal type (such as spines for medium spiny neurons). When hereditary
pathology is modeled, it is also necessary to confirm the presence of the mutation.

Since the first publication in 2007, describing a protocol for generating iPSCs from
human somatic cells, there has been an explosion in methods of differentiation into various
types of cells, including neurons. Protocols for differentiation into multiple subtypes of
neurons [58,62–64], as well as astrocytes [65,66], microglia [67–69], oligodendrocytes [70],
and endothelial cells [71,72], have been developed. Improved differentiation protocols
continue to increase the yield, purity, and maturity of cells.

To date, it is known that various neurodegenerative diseases, including AD, PD,
and HD, are characterized by impairments in different types of cells (neurons, astrocytes,
oligodendrocytes, microglia, pericytes, and endothelial cells); therefore, three-dimensional
(3D) and co-culture models are required to reproduce those pathology mechanisms that
cannot be detected in monocultures or two-dimensional cultures [36,69,73]. This is quite
important because the expression of key genes and proteins in glial cells has been proven
to be varied between 2D and 3D cultures [29].
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The existing iPSCs-based models already represent an important instrument for basic
science studies and the search for new drugs. However, these models must be improved to
obtain more precise modeling of the pathogenesis of the diseases.

4. Neurodegeneration and Calcium Signaling

Calcium is one of the most ubiquitous secondary messengers in the cell. Calcium
signaling controls a wide range of important intracellular processes such as gene expres-
sion, proliferation, and apoptosis. The key “players” that regulate the concentration of
free calcium ions in the cell include the endoplasmic (sarcoplasmic) reticulum [74], mi-
tochondria [74,75], lysosomes [76], calcium-binding proteins [77], and ion transporters:
calcium-permeable ion channels [74,78], calcium ATPases [79,80], and exchangers [81,82].
It should also be noted that mitochondrial dysfunction is closely related to aberrant calcium
signaling, as mitochondria are stores of calcium in cells, and excessive calcium uptake can
lead to mitochondria overload, caspase activation, and apoptosis. The major organelles
that maintain calcium homeostasis in cell mitochondria and the ER also play a critical role
in oxidative stress [74,75], neuroinflammation [83,84], and apoptosis [84]. Thus, alterations
in the production of reactive oxygen species that can lead to ER stress should also be
addressed in studies of aberrant calcium signaling.

Disturbances in various components of calcium signaling are widely spread in different
pathologies, including neurodegenerative diseases [85–88]. For the first time, the calcium
hypothesis of neurodegeneration was proposed by neuroscientist Zaven Khachaturian in
1982 and published in 1984 [4]. The author noted the correlation between the disturbance of
calcium homeostasis in the aging brain and the occurrence of age-related neurodegenerative
pathologies such as Alzheimer’s disease. In 1994, an updated version of the calcium
hypothesis “Calcium hypothesis of Alzheimer’s disease and brain aging” was published,
clarifying the molecular mechanisms of calcium homeostasis disturbance [89]. Later, in
2004, the calcium hypothesis for Huntington’s disease was formulated [90]. In 2009,
Professor Bezprozvanny summarized the results demonstrating impaired calcium signaling
in AD, PD, HD, ALS, and SCAs [85]. Nevertheless, the lack of specific drugs with proven
therapeutic effects, including calcium signaling modulators [91], makes the search for
new targets and compounds highly relevant. This requires further study of the molecular
mechanisms of neurodegeneration, within both the framework of the calcium hypothesis
and its alternatives.

To date, a great deal of data has been accumulated on disturbances in calcium signaling
in different models of neurodegenerative disorders including animal and cellular models.
In the last decade, the patient-specific models of neurodegenerative diseases have created
new opportunities in studying the pathogenesis of these pathologies and clarifying the
calcium hypothesis of neurodegeneration. Here, we systematized the data on pathological
calcium signaling in iPSCs-based models of neurodegenerative diseases.

5. Alzheimer’s Disease

Alzheimer’s disease (AD) is one of the most widespread neurodegenerative disor-
ders, characterized by the predominant death of neurons in the hippocampus, cerebral
cortex, and locus coeruleus [92–95]. The neuropathological hallmarks of AD are amyloid
aggregates, hyperphosphorylation of the tau protein, and neurofibrillary tangles [92,96].
Hereditary AD cases are caused mostly by mutations in the genes PSEN1 and PSEN2,
encoding presenilin proteins, and APP, encoding the β-amyloid precursor protein.

The first iPSCs-based AD neuronal model was performed in 2011 [97]. Further,
the isogenic models were created [37–39,98]. Currently studied AD cellular models are
3D iPSCs-based neurons [46,48,99] and 2D cell cultures [37,97,100–104] including corti-
cal neurons [105,106] and cholinergic neurons [107] as well as astrocytes [105,108], mi-
croglia [67,69], and endothelial cells [72,109] (Table 1).
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Table 1. Alterations in calcium signaling in iPSCs-based models of Alzheimer’s disease.

Alzheimer’s Disease

The most vulnerable areas of the brain iPSCs-based models
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In iPSCs-based models of familiar AD, an increase in the production of reactive oxygen
species, impaired energy status and mitochondrial potential, lysosomal acidification, im-
paired autophagy and mitophagy, and aberrant calcium signaling have been shown [99,104].
The release of calcium by mitochondria and the endoplasmic reticulum plays an important
role in the transmission of calcium signals in various cells. In PSEN1-associated AD, these
pathways are disrupted, which may cause a further imbalance in calcium homeostasis (and
contribute to AD pathogenesis). In particular, an increase in the rate of calcium leakage
from the ER in astrocytes modeling AD has been shown [108]. It has also been reported that
calcium release from the ER is enhanced in patient-specific AD neurons [104]. Moreover,
inhibition of the key mitochondrial enzymatic complex alpha-ketoglutarate dehydrogenase
resulted in the restoration of calcium reserves in the ER. These effects were observed in
terminally differentiated neurons and were absent in iPSCs and NPCs [104].

In addition to hereditary forms of AD, genetic reprogramming technologies make it
possible to study sporadic cases of the disease. In iPSCs-based models of sporadic AD,
a mitochondrial dysfunction and an increase in both the production of reactive oxygen
species and the number of complexes of the respiratory chain have been shown [103].

AD-specific astrocytes were also characterized by the occurrence of stress in the endo-
plasmic reticulum [105] and increased production of reactive oxygen species [105,108]. Also,
astrocytes form the glymphatic pathway, which plays an important role in AD [110–113].
It is a waste clearance system that utilizes a unique system of perivascular channels,
formed by astroglial cells, to promote the efficient elimination of soluble proteins and
metabolites from the central nervous system. Intriguing data demonstrating that targeting
calcium–calmodulin signaling mechanisms in astrocytes is a viable therapeutic option
was obtained by Dr. Kitchen [114]. That study showed that pharmacological inhibition
of calcium–calmodulin signaling events prevented the development of CNS edema and
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promoted functional recovery in injured rats. This role has been recently confirmed by
work demonstrating that astrocytes are a viable therapeutic target using a photothrombotic
stroke model [115].

6. Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. The
main pathophysiological feature of PD is the progressive death of dopaminergic neurons
in the substantia nigra [116]. Pathological mechanisms of PD (Table 2) were studied using
many iPSCs-based models, including neuroepithelial stem cells (NESC) [117], dopaminergic
neurons [51,118–136], cortical neurons [137], and astrocytes [66] and microglia [68]. Isogenic
models of PD are also widely used [41,43,45]. iPSCs-based models were obtained mainly
from patients carrying mutations in genes encoding α-synuclein (SNCA), leucine repeat-rich
kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), ubiquitin ligase (E3) parkin (PARK2), a
regulator of intracellular protein sorting (VPS35), and β-glucocerebrosidase (GBA).

Table 2. Alterations in calcium signaling in iPSCs-based models of Parkinson’s disease.

Parkinson’s Disease

The most vulnerable areas of the brain iPSCs-based models
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Cortical neurons [43]

Mutant genes Cell type Disturbance associated with calcium signaling

LRRK2

NESC Mitochondrial dysfunction, impaired mitophagy [117]

DAn

Enhanced expression of genes involved in calcium
signaling, as well as an increase in calcium influx,
mitochondrial dysfunction, mitochondrial DNA

damage, oxidative stress, disrupted calcium dynamics
in the ER

[120,121,124,125,127,
131,132,136,138]

SNCA

Cortical neurons Mitochondrial dysfunction, oxidative stress [137]

DAn Mitochondrial dysfunction, ER stress, impaired calcium
homeostasis and ATP production

[43,119,130,131,135,
139]

PINK1 DAn Mitochondrial dysfunction, oxidative stress, slowed
utilization of damaged mitochondria [133]

PARK2 DAn Mitochondrial dysfunction, oxidative stress,
dysfunction of voltage-gated T-type calcium channels [41,51,134,140]

DJ-1 DAn Oxidative stress [129]

In 1997, mutations in the SNCA gene were first identified as a trigger contributing to the
manifestation of PD. Transcriptomic analysis of patient-specific dopaminergic neurons with
mutations in SNCA showed impaired expression of genes associated with mitochondrial
functioning [135]. Mitochondrial dysfunction not only has been identified on the gene
level but also confirmed by functional assessment [43,119,131,137]. Morphological changes
and decreased mitochondrial membrane potential were demonstrated [135,139]. Mutant
α-synuclein disrupts the association of the endoplasmic reticulum and mitochondria,
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which leads to endoplasmic reticulum stress and impaired calcium homeostasis and ATP
production [130,135].

Mutations in the LRRK2 gene are among the most frequent causes of hereditary
PD [141]. The most common G2019S mutation in LRRK2 has been studied in iPSCs-
derived neurons [142]. LRRK2 plays a critical role in delayed mitophagy that leads to the
accumulation of aberrant mitochondria [117,127]. An increased number of mitochondria
with abnormal morphology, impaired functionality, and decreased membrane potential
was detected in LRRK2 mutant cells by Professor Walter’s group [117]. PD iPSCs-based
models also revealed the progression of oxidative stress [120,121], damage of mitochondrial
DNA, and energy imbalance [132]. The crucial role of mitochondrial impairments in PD
pathogenesis was confirmed by experiments demonstrating a neuroprotective effect of
coenzyme Q10, rapamycin, and the LRRK2 inhibitor GW5074 [121].

Different effects of the mutation in LRRK2 on calcium dynamics in the endoplasmic
reticulum have been obtained on iPSCs-based PD models [138]. It has been shown that incu-
bation of dopaminergic neurons carrying the LRRK2 G2019S mutation with thapsigargin (a
blocker of SERCA) leads to a decrease in the length of neurites. This effect was not observed
in healthy control iPSCs-derived neurons [138]. The SERCA inhibition-dependent neurite
collapse has been confirmed in isogenic models [138]. Finally, LRRK2 G2019S neurons were
exposed to LRRK2 inhibitor MLi-2, as well as the use of antisense oligonucleotides that
reduce LRRK2 expression (targeting the mRNA of the LRRK2 and preventing its translation)
restore the neurite length in LRRK2 G2019S dopaminergic neurons [138]. It has also been
reported that LRRK2 G2019S dopaminergic neurons incubated with thapsigargin showed a
reduced calcium level in the endoplasmic reticulum, but an increased amount of calcium in
the cytosol. In addition, there was an increased calcium uptake during depolarization [138].
The investigated pathological changes in calcium signaling could be rescued by antisense
oligonucleotides to LRRK2. It is important to note that the dynamics of calcium in the
endoplasmic reticulum is one of the key factors in the regulation of store-operated calcium
entry. A decrease in the concentration of calcium in the endoplasmic reticulum leads to
the activation of STIM proteins, which activate store-operated calcium channels. Although
authors note a decrease in the expression of some genes (STIM1, TRPC1, and ORA1) respon-
sible for the machinery of the store-operated calcium entry [138], its functional changes
have not been studied yet what might be interesting for future investigations. iPSCs-based
neurons with mutations in the PINK1 and PARK2 genes showed several types of mito-
chondrial dysfunction such as aberrant morphology, increased ROS levels, oxidative stress,
decreased mitochondrial respiration, and impaired mitochondrial motility [41,51,133,134].
Notably, the mitochondrial dysfunctions were detected in differentiated neurons and absent
in the fibroblast cultures and iPSCs obtained from patients with these mutations [41,51].
Mutations in the DJ-1 gene are a rare cause of hereditary PD. Dopaminergic neurons with
mutant DJ-1 show mitochondrial dysfunction that leads to the accumulation of oxidized
dopamine in PD, which could be prevented by the calcineurin inhibitor FK506 [129]. Thus,
impaired calcium signaling may significantly contribute to dopamine metabolism. In
addition to mitochondrial dysfunction, the functioning of voltage-gated L-, R-, T-, N-, and
P/Q-type channels in PD is currently being discussed [140,143,144]. It was found that
mRNA, which has a complex secondary structure in the 5’-untranslated region (UTR), is
translated more efficiently in neurons with the G2019S mutation in LRRK2. This leads
to increased expression of many genes involved in the regulation of calcium signaling,
including voltage-gated calcium channel (VGCC) subunits, and consequently results in
the greater calcium influx and intracellular calcium concentration. [136]. iPSCs-derived
neurons with the LRRK2 G2019S mutation also showed changes in neurite morphology and
decreased calcium response under membrane depolarization conditions [125]. Impaired
calcium signaling plays an important role in PD pathogenesis, which can be confirmed by
the neuroprotective effects of small molecules and genetic approaches affecting calcium
homeostasis machinery. For example, dopaminergic neurons obtained from a patient with
a mutation in the PARK2 gene were rescued from the rotenone-induced apoptosis by both
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the application of a VGCC antagonist benidipine and the knockdown of T-type calcium
channels, thus demonstrating the involvement of voltage-gated calcium channels in PD
pathology [140].

While most therapeutic strategies aim to prevent neuronal loss or protect vulnerable
neurons, a potential alternative is to replace lost neurons to recover the neuronal network.
A significant breakthrough was made by an article whose authors demonstrated the conver-
sion of midbrain astrocytes to dopaminergic neurons, which provide axons to reconstruct
the nigrostriatal circuit [145]. These data create new possibilities for the treatment of
neurodegenerative diseases by replacing lost neurons.

7. Huntington’s Disease

Huntington’s disease (HD) is one of the inherited polyglutamine neurodegenerative
disorders. In addition to HD, there are six types of spinocerebellar ataxias (SCA1, SCA2,
SCA3, SCA6, SCA7, and SCA17), dentatorubral-pallidoluysian atrophy (DRPLA), and
spinal and bulbar muscular atrophy (SBMA)/Kennedy’s disease [146]. These pathologies
are associated with the apathogenic expansion of glutamine-encoding (CAG) repeats in
the mutant genes, which leads to the production of mutant proteins containing an ab-
normally elongated polyQ tract. Huntington’s disease occurs when the number of CAG
repeats in the huntingtin gene exceeds 35 [146]. The hallmark of the pathology is the
aggregation of mutant huntingtin (mHTT). Furthermore, impairments in intracellular trans-
port, autophagy, gene expression, calcium homeostasis, energy imbalance, and oxidative
stress were reported in HD [147–149]. Interestingly, mHTT production is ubiquitous in
human tissues, but HD is characterized by a unique pattern of neuronal death. The most
remarkable changes found in HD are a selective loss of GABAergic striatal medium spiny
neurons (MSNs), severe atrophy of the caudate nucleus and putamen, and atrophy of
cortical neurons [150].

For the first time, iPSCs from a patient with HD were characterized in 2008 [151].
Later, differentiated neurons were obtained [152]. To use the iPSCs-based models cor-
rectly, it is necessary to know the stage of differentiation and maturity of cells when
changes occur. The pronounced differences in gene expression between patient-specific
NPC and isogenic control and the absence of such differences between HD-specific iP-
SCs and isogenic control have been reported [52]. In 2012, the HD iPSCs Consortium
announced the creation and characterization of a panel of 14 iPSCs lines from HD patients
and healthy donors [153]. The first iPSCs-based 3D model of HD was presented in 2018 [49].
Currently, iPSCs-based HD models with terminal differentiation into cortical [154] and
GABAergic neurons [8,61,155–158], astrocytes [159,160], endothelial cells [71], and isogenic
models [36,44] are studied (Table 3).

Transcriptome analysis of iPSCs-based HD models showed a lower expression of
the genes involved in calcium signaling, including the genes that encode for NMDA and
AMPA glutamate receptors, nicotinic acetylcholine receptor subunits, some voltage-gated
calcium channel subunits, plasma membrane calcium ATPases, and various effectors such
as calcium–calmodulin dependent protein kinase (CAMKII), CALM, and CREB [73]. Also,
the expression of genes responsible for cell death was impaired [50]. Suppression of the
gene expression encoding proteins involved in the metabolism and signal transduction
pathways of glutamate and GABA was also noted [73]. On the other hand, increased
expression of genes encoding store-operated calcium channels and the inositol triphosphate
receptor was noted [73]. Functionally, increased store-operated calcium entry was observed
in differentiated GABAergic MSNs in adult-onset [8,157] and juvenile HD models [61].
We showed that STIM2, as a key activator of store-operated calcium channels in neurons,
may play a critical role in increased store-operated calcium entry in HD and be a target
for potential HD drugs [61]. In addition, we noted increased calcium uptake through
voltage-gated calcium channels in juvenile and adult-onset iPSCs-based HD models [61]. It
is well-known that the length of the huntingtin’s polyglutamine tract directly correlates
with the severity of HD and inversely correlates with the age of manifestation of the
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disease. At the moment, it has been noted that the amplitude of the store-operated calcium
currents and, likely, calcium entry through VGCC did not depend on the length of the
polyglutamine tract in the mutant huntingtin [61]. Nevertheless, it was noted that the
length of the polyglutamine tract in the mutant huntingtin may impact mitochondrial
dysfunction, the severity of DNA damage, and cell death, which was demonstrated on
isogeneic NPC models of HD (81Q, 65Q, and 45Q) [44]. The most severe alterations were
observed for NPC expressed huntingtin with a long polyglutamine tract (81Q).

Table 3. Alterations in calcium signaling in iPSCs-based models of Huntington’s disease.

Huntington’s Disease

The most vulnerable areas of the brain iPSCs-based models
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polyglutamine tract in the mutant huntingtin [61]. Nevertheless, it was noted that the 
length of the polyglutamine tract in the mutant huntingtin may impact mitochondrial dys-
function, the severity of DNA damage, and cell death, which was demonstrated on isoge-
neic NPC models of HD (81Q, 65Q, and 45Q) [44]. The most severe alterations were ob-
served for NPC expressed huntingtin with a long polyglutamine tract (81Q). 

Patient-specific models

iPSCs [50]

NPC [52,152,153,161]

Cortical neurons [154]

GABAergic neurons [8,61,155–158]

Astrocytes [159,160]

Endothelial cells [71]

Mixed cultures [73]

Isogenic models

NPC [44]

GABAergic neurons [36]

Mutant genes Cell type Disturbance associated with calcium signaling

HTT

iPSCs Impaired expression of the genes responsible for cell death [50]

Mixed cultures Impaired expression of genes responsible for
calcium signaling [73]

GABAergic neurons
Increased store-operated calcium entry and calcium
currents through voltage-gated calcium channels in

low-repet and juvenile models of Huntington’s disease
[8,61,157]

GABAergic neurons Increased mitochondrial density [156]

GABAergic neurons Dysfunction of lysosomes and autophagy [8,155]

NPC Mitochondrial dysfunction, bioenergetic defects [44,161]

HD is also characterized by mitochondria dysfunction: decreased mitochondrial den-
sity [156], the level of adenosine triphosphate (ATP), and decreased expression of glycolytic
enzymes [161]. ATP levels in the neurons of HD patients can be restored by the addition of
pyruvate; thus, pyruvate or other related metabolic supplements may have a therapeutic
effect in HD [161]. A promising modulator of calcium signaling that can be used in the treat-
ment of HD is EVP4593 compound. It has been shown that EVP4593 has neuroprotective
properties [5,162], including in iPSCs-based models [8]. EVP4593 restored pathologically
enhanced store-operated calcium entry [8,157], as well as reduced the level of huntingtin
and the STIM2 with prolonged incubation (24 h) [61]. Also, the increased formation of
lysosomes and autophagosomes have been reported in HD iPSCs-based models [8,155]. In
turn, the compound EVP4593 normalized the number of lysosomes/autophagosomes in
iPSCs-based HD neurons [8]. In HD-specific astrocytes, impaired calcium signaling (length-
ening of spontaneous calcium oscillations) was noted [160], and impaired transcytosis was
shown in endothelial cells [71]. Thus, using HD iPSCs-based models, it was possible to get
closer to understanding the mechanisms of aberrant calcium signaling from the impaired
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expression of genes responsible for calcium signaling to the dysfunction of ion channels
and mitochondria.

8. Spinocerebellar Ataxias

Spinocerebellar ataxias (SCAs) are a large (over 40 disorders) and diverse group
of inherited neurodegenerative pathologies [163]. All of them are characterized by the
progressive degeneration of the cerebellum, especially Purkinje cells [164]. Great success in
obtaining a Purkinje cell culture differentiated from mouse [165,166] and human ESCs [47],
and subsequently from iPSCs obtained from healthy donors and patients with SCA 42 [167]
and SCA 6 [140], was achieved by the Japanese group of Yoshiki Sasai and Keiko Muguruma.
These works showed that Purkinje cells can be obtained in 3D culture, which reproduces
the microenvironment in vivo well [42,47,165,166,168,169]. However, the creation of iPSCs-
based SCA models based on Purkinje cells remains a complicated task. Currently, only a
few protocols for the differentiation of iPSCs into Purkinje cells are known [42,170–173].
There are few other iPSCs-based models of SCA; thus, obtaining further models remains an
important task. The first iPSCs-based SCA model was investigated in 2011 [58]. Currently,
the presented iPSCs-based SCA models are (Table 4): SCA 1 [174,175], SCA 2 [176–178],
SCA 3 [58–60,178–188], SCA 6 [42,189], SCA 7 [190–192], SCA 14 [193], SCA 16 [194], SCA
36 [195], and SCA 42 [167]. More data accumulated on iPSCs-based models of different
SCAs can be found in the review by Hommersom et al., 2021 [196].

It is known that SCA types 6 and 42 arise as a result of mutations in the CACNA1A
and CACNA1G genes encoding voltage-gated P/Q- and T-type calcium channels, respec-
tively [197]. Depending on the results of alternative splicing, the CACNA1A gene can
encode not only the α1A subunit of the voltage-gated P/Q calcium channel, but also
the α1ACT transcription factor. Ishida’s group focused on the dysregulation of α1ACT-
dependent gene expression and the vulnerability of cells to oxidative stress [42]. In the
work of Bavassano’s group, the authors investigated the expression and function of the
CACNA1A gene products in a 2D culture of iPSCs-based neurons obtained from patients
with SCA 6. Expression levels of CACNA1A encoding the α1A subunit were similar
between SCA6 and control neurons, and no differences were found in the subcellular
distribution of the Cav2.1 channel. Electrophysiological data showed that the obtained
voltage-dependent calcium currents were sensitive to the selective blocker of P/Q channels
ω-agatoxin IVA; however, no differences in the amplitudes of currents were found between
normal and pathological conditions. The authors suggested that the absence of differences
was due to use of the model, as the disease has a late age of manifestation, and the neurons
obtained in culture were not mature enough to reveal the pathological phenotype [189].
Moreover, it can be suggested that the absence of differences is due to the use of GABA
and glutamatergic neurons but not a Purkinje cell, which is well-known to be a primary
target in ataxias.

The role of the p.Arg1715His mutation in the CACNA1G gene on neurogenesis has
also been studied [167]. In that work, Purkinje cells differentiated from iPSCs of healthy
donors and patients with SCA 42 did not demonstrate significant differences in either the
morphology of the dendritic tree or the expression of markers of Purkinje cells (L7 and
GRID2, a specific glutamate receptor of Purkinje cells); therefore, this mutation likely does
not affect cell differentiation [167]. Unfortunately, there are currently no data on the effect
of the p.Arg1715His mutation in the CACNA1G gene on the functioning of voltage-gated
T-type calcium channels (Cav3.1) obtained from iPSCs-based models. However, it is known
that this mutation affects the voltage sensor (segment S4) Cav3.1 and leads to a shift in the
activation curve of mutant channels toward positive potentials compared to the control,
without changing the maximum amplitude of currents through Cav3.1 [167].



Int. J. Mol. Sci. 2022, 23, 624 12 of 27

Table 4. Alterations in calcium signaling in iPSCs-based models of spinocerebellar ataxias.

Spinocerebellar Ataxias

The most vulnerable areas of the brain iPSCs-based models
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Patient-specific models

iPSCs [193]

NPC [176,177]

Neurons [58–60,174,175,180,182–
188,190,192]

Cortical neurons [179,181,194]

Motoneurons (MNs) [195]

GABAergic and glutamatergic neurons [189]

Purkinje cells [167,170–173]

Mixed cultures [178]

Isogenic models

NPC [191]

Purkinje cells [42]

Mutant genes Cell type Disturbance associated with calcium signaling

ATXN1(SCA1) GABAergic neurons
Decreased store-operated calcium entry, no
changes in the functioning of voltage-gated

calcium channels

Vigont et al.,
unpublished data

ATXN2 & 3(SCA2 & 3) Mixed cultures

Altered expression of glutamate receptor subunits
and other participants in calcium signaling.

Increased calcium concentration in the cytosol.
Distorted mitochondrial microstructures and

mitochondrial dysfunction

[178]

ATXN3(SCA3) Cortical neurons

Mitochondrial fragmentation and cristae
alterations leading to decreased capacity of

mitochondrial respiration, impaired mitochondrial
degradation. Enhanced calpains-activated ataxin 3

cleavage and produce ataxin 3 fragments.

[58,179,181]

CACNA1A (SCA6) GABAergic&
glutamatergic neurons

No differences in both CACNA1A expression and
amplitudes of voltage-gated calcium currents [189]

ATXN7(SCA7) NPC

Decreased mitochondrial network length.
Mitochondrial dysfunction, reduced oxygen
consumption rate and increased extracellular

acidification rate

[191]

TBP(SCA17) GABAergic neurons Increased store-operated calcium entry and
voltage-gated calcium uptake

Vigont et al.,
unpublished data

Currently, interesting data demonstrating aberrant calcium signaling have been ob-
tained in iPSCs-based models of polyglutamine ataxias, including SCA1, SCA2, SCA3,
SCA7, and SCA17. According to our unpublished data, SCA1 and SCA17 are characterized
by the disturbance of calcium signaling. We have shown an increase in store-operated cal-
cium entry and calcium entry through VGCC in SCA17 GABAergic MSNs, which are also
highly vulnerable in SCA17 as well as in HD (Vigont et al., unpublished data). In contrast,
we observed a decrease in the store-operated calcium entry in SCA1 and no changes in
the functioning of voltage-gated calcium channels in GABAergic neurons, which are not
affected in SCA1 (Vigont et al., unpublished data). Unfortunately, at present, there is a lack
of iPSCs-based models of SCA1 and SCA17, except for studies on differentiated neurons
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from patients with SCA1 [174,175] and the characterization of iPSCs from patients with
SCA17 [198].

For SCA2 and SCA3, a change in the expression of the gene encoding subunits of glu-
tamate receptors and other proteins involved in calcium signaling was shown. Significant
suppression of gene expression and a decrease in the amount of glutamate receptor protein
(GRIA4) and other participants in calcium signaling was noted in SCA3 when cells were
incubated in a medium with glutamate [178]. In the presence of glutamate, neuronal death
has also been increased; especially in SCA3, an increase in the concentration of cytosolic
calcium occurs, and mitochondrial dysfunction is observed [178]. The use of glutamate
receptor blockers prevented the release of calcium into the cytosol, leading to a mitigation
of the pathological phenotype in SCA2 and SCA3. The most effective drug for arresting
the pathological effects in SCA3 was dantrolene, which is known as a ryanodine receptor
antagonist. This agent reduced cell death and the amount of calcium in the cytosol, as well
as restored mitochondrial function [178]. Riluzole has been shown to be effective in the
treatment of both SCA2 and SCA3. The less effective substances were MK801 and NBQX,
known as NMDAR and AMPAR antagonists, respectively [178].

The production and accumulation of mutant polyglutamine proteins lead to the for-
mation of intracellular aggregates. It was found that the formation of aggregates of mutant
ataxin 3 is a calcium-dependent process. Treatment of iPSCs-based SCA3 neurons with
glutamate enhanced the cleavage of ataxin 3, which was accompanied by the accumulation
of its fragments and the formation of aggregates, leading to a decrease in the lifespan of
neurons. In turn, blockers of calpain, which require calcium for its activation, had a neuro-
protective effect and prevented the formation of aggregates [58]. Calpain-induced cleavage
of ataxin 3 led to the formation of ataxin 3 fragments causing mitochondria fragmentation
and cristae damage as well as disrupting the respiratory function of mitochondria, in addi-
tion to mitochondria degradation [179,181]. Notably, these alterations were not observed in
both SCA3 fibroblasts [58] and NPS [188] but only in mature neurons.

Spinocerebellar ataxia type 7 (SCA7) is another polyglutamine disorder characterized
by degeneration of the cerebellum and retina. Patients with SCA7 demonstrated atrophy
of the cerebellar cortex and brainstem and significant loss of Purkinje cells. An important
feature of SCA7 that distinguishes it from other spinocerebellar ataxias is retinal degenera-
tion. As the disease progresses, dysfunction turns into complete blindness. Many clinical
features of SCA7 were observed in mitochondrial diseases; therefore, it is interesting to
study the functioning of mitochondria in patients with SCA7. NPCs obtained from iPSCs
from patients with SCA7 showed a decrease in the length of the mitochondrial network.
The strong changes were observed in a SCA7 patient with 70 glutamine residues in polyQ
tract in ataxin7 (70Q) but only minor changes were detected in patients with a shorter
mutant polyQ tract (50Q) and (65Q). It has been shown that the length of the mitochondrial
network is reduced depending on the length of the polyglutamine tract in isogenic cell
lines. In addition, NPCs producing ataxin7-113Q showed a marked decrease in the oxygen
consumption rate (OCR) and a significant increase in the extracellular acidification rate
(ECAR), which was possibly caused by a significant decrease in the NAD+ level in SCA7
NPC [191].

9. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is one of the most severe neurodegenerative
pathologies with the predominant death of motoneurons (MNs). Therefore, differentiated
patient-specific motor neurons [64,199–219], as well as isogenic models [220–223], have been
widely used to model this pathology since 2008. It is important to note that in the published
papers, the proportion of MNs from the differentiated cells varies from 30% to 95% (Table 5).
In Table 5, all the presented models are marked as “motoneurons.” Optimization of the
protocols of iPSCs differentiation into MNs remains an important task. In addition to MNs,
cortical neurons [205], astrocytes [202,224,225], and oligodendrocytes [226] were presented.
More than 90% of cases of ALS are sporadic. Hereditary forms of ALS are associated mainly
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with mutations in the genes: SOD1 (superoxide dismutase 1) [227], TDP-43 or TARDBP (Tar
DNA binding protein) [228], C9ORF72 (chromosome 9 open reading frame 72) [229], and
FUS (fused in sarcoma) [230]. Due to the use of iPSCs-based models, not only are hereditary
forms of ALS currently being studied, but so are sporadic cases of ALS [205,209,215,216]. In
iPSCs-based models of hereditary and sporadic ALS, changes in both gene expression and
functional alterations associated with the mitochondria and calcium signaling were noted.

Table 5. Alterations in calcium signaling in iPSCs-based models of amyotrophic lateral sclerosis.

Amyotrophic Lateral Sclerosis

The most vulnerable areas of the brain iPSCs-based models
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In iPSCs-based MNs with a mutation in the C9ORF72 gene, an increase in the calcium
influx to the cytosol after depolarization and a slow recovery up to physiological conditions
was shown [219]. This study also demonstrated a decrease in the amount of calbindin,
which may reduce calcium buffering capacity in the cytosol. [219]. C9ORF72 ALS MNs
were found to be more sensitive to glutamate treatment than control cells [204]. At the
same time, glutamate-induced cell death was compensated for by treatment with blockers
of glutamate receptors and calcium channels (MK-801, 10 µM; CNQX, 10 µM; nimodipine,
2 µM) [204]. Motor neurons with the TARDBP mutation showed high basal levels of
intracellular calcium [218], as well as increased glutamate-induced calcium entry into the
cytosol. Both MNs with mutations in C9ORF72 and TARDBP have been shown to have
a greater conductance of AMPA and NMDA receptors for calcium [219]. In addition, an
increase in the expression of genes encoding kainate, AMPA, and NMDA receptors [217],
as well as VGCC subunits [218], have been reported. No differences were found in the
expression of genes encoding the Orai1, STIM1, and SERCA1 proteins involved in the store-
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operated calcium entry [218]. At the same time, a decrease in the thapsigargin-induced
release of calcium from the ER with mutations in the SOD1, FUS, and TDP43 genes was
noted [218]. Motor neurons with a mutation in SOD1 were characterized by changes in gene
expression and functional disorders associated with the mitochondria. There was a change
in morphology, a decrease in mobility, and an increase in the density of mitochondria [224].
Some mitochondrial disorders are also characteristic of MNs with mutations in C9ORF72
and TARDBP: a decrease in the mitochondrial membrane potential [212], a decrease in the
calcium buffering capacity [219], and dysfunction of mitochondrial uniporters [219,221].
MNs with the FUS mutation are characterized by the absence of morphological changes
in mitochondria; however, a decrease in their motility was noted. Moreover, the severity
of the impairment increases with the maturation of neurons [223]. For sporadic cases of
ALS, changes in gene expression associated with mitochondrial function were noted [209].
Motor neurons with a mutation in SOD1 were also characterized by oxidative and ER
stress, hyperexcitability of neurons [221], and a decreased level of calcium-binding proteins
CDH23 and CALU [220].

The data analysis allows us to conclude that the aberrant calcium signaling observed in
ALS highly varies depending on the gene in which the mutation occurs [219,221] (Table 5).

10. Other Neurological Diseases
10.1. Autism Spectrum Disorders

Autism spectrum disorders (ASD) are a heterogeneous group of pathologies associated
with impairments in the development of the nervous system. ASD have an unclear etiology:
A fairly large number of gene mutations that can be associated with autism has been
identified. Among them are the genes responsible for the functioning of voltage-gated
calcium channels (VGCC): CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E,
CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as accessory subunits CACNB2,
CACNA2D3, and CACNA2D4 [231].

Timothy’s syndrome is a prominent example of ASD associated with mutations in
voltage-gated channels. This pathology results from a mutation in the CACNA1C gene
encoding voltage-gated L-type calcium channels (Cav1.2) [232]. The mutation is localized
in the S6 segment and leads to impaired inactivation of the Cav1.2 channels [232]. ASD
are characterized mostly by the dysfunction of cortical neurons; therefore, ASD including
Timothy’s syndrome are commonly modeled by iPSCs-based cortical neurons. Recent
data on modeling Timothy’s syndrome on patient-specific neurons are presented in detail
in a review [233]. iPSCs-based neurons from patients with Timothy’s syndrome were
characterized by a decrease in the dendritic tree [234]. Using calcium imaging (Fura 2AM),
a significant increase in the depolarization-induced calcium influx, which was sensitive to
the L-type calcium channel blocker nimodipine, has been shown in iPSCs-based neurons of
patients with Timothy’s syndrome (Table 6). Also, using Illumina microarrays, changes
in the expression of 223 genes in patients with Timothy’s syndrome were shown, some
of which are responsible for calcium signaling [235]. In addition, it has been shown that
VGCC in Timothy’s syndrome are involved in neuronal differentiation and developmental
regulation [236].

It is also important to note that disturbances in the functioning of voltage-gated cal-
cium channels can be caused not only by mutations of the genes encoding them but also by
the dysfunction of regulatory proteins. For example, neurexins are transmembrane, pre-
dominantly presynaptic proteins involved in the regulation of different calcium channels,
including VGCC. It has been shown that neurons with a mutation in the neurexin gene
(NRXN1α +/−) obtained from iPSCs of patients with autism exhibit changed VGCC func-
tioning with an increased frequency, duration, and amplitude of calcium oscillations [238].
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Table 6. Alterations in calcium signaling in iPSCs-based models of other neurological diseases.
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buffering capacity [237]

10.2. Leigh’s Syndrome

Leigh’s syndrome (LS) is the most frequent mitochondrial disorder in infants and
is characterized by neurodegeneration and astrogliosis in the basal ganglia or brainstem.
There are currently no drugs or effective treatments for this disease, in part due to a lack of
relevant models. More recently, an iPSCs-based model of LS carrying the mtDNA m.13513G
mutation has been created (Table 6). Characterization of mitochondria, electrophysiological
analysis, and calcium imaging in iPSCs-based neurons were carried out. Impairment of
oxidative phosphorylation in the neurons of LS patients was clearly demonstrated. This
is the first report of electrophysiological studies performed on iPSCs-derived neurons
carrying the mtDNA mutation, which showed that affected neurons exhibit mitochondrial
dysfunction along with decreased calcium buffering capacity. This can lead to an increase
in cytoplasmic calcium concentration and subsequent cell death seen in patients [237].

11. Conclusions

In summation, we can say that iPSCs-based models became important instruments
for studying the mechanisms underlying neurodegenerative pathologies and screening
potential neuroprotective drugs. In particular, rare pathologies such as HD, SCAs, LS,
and others have become available for research. Moreover, iPSCs-based models opened up
the possibility of studying sporadic forms of neurodegenerative diseases, which are most
common in AD, PD, and ALS. In general, studies carried out using iPSCs-based models
reproduce previously obtained data in animal and cellular models, but at the same time
significantly deepen our understanding of the molecular mechanisms of pathogenesis.
Although the molecular mechanisms of the pathogenesis of various neurodegenerative
diseases may differ, aberrant calcium signaling is characteristic of most of them. The most
common abnormalities of calcium signaling in neurodegenerative pathologies include
altered functioning of calcium-permeable channels, changes in levels of calcium-binding
proteins, and mitochondrial dysfunctions. A stable increase in the concentration of calcium
in the cytosol may lead to the launch of the apoptotic cascade and cell death. To prevent cell
death, various compensatory mechanisms regulate the dynamics of calcium in the cell. For
example, excess calcium can be accumulated in intracellular calcium stores (mitochondria
and endoplasmic reticulum) or buffered by calcium-binding proteins. Thus, the often
observed alterations in the expression of the genes encoding calcium-binding proteins may
be separated from disease causes but represent a compensatory mechanism seeking to
prevent cell death.

The collected data allow us to suggest a central role of calcium signaling disturbances
in neurodegenerative processes and establish the components of calcium signaling machin-
ery to be a promising target for medical treatment. Summarizing the data, we can also
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suggest that the pathological increase of calcium uptake along with the greater calcium
release from intracellular stores is more dangerous for cells than pathological attenuation of
calcium signaling pathways. So, screening for new drugs in general should focus on find-
ing the novel inhibitors of calcium channels and transporters. Additionally, iPSCs-based
models open up studies of the neuronal specificity of the pathological processes and may
shed light on the problem of the selective vulnerability of neurons in distinct pathologies.
We would like to believe that in the near future the use of iPSCs-based technologies will not
only clarify the molecular mechanisms of neurodegenerative processes but also contribute
to the development of novel and very specific neuroprotective drugs.
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