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ABSTRACT

The association of epilepsy with structural brain changes and cognitive abnormalities in midlife has raised
concern regarding the possibility of future accelerated brain and cognitive aging and increased risk of later life
neurocognitive disorders. To address this issue we examined age-related processes in both structural and
functional neuroimaging among individuals with temporal lobe epilepsy (TLE, N = 104) who were participants
in the Epilepsy Connectome Project (ECP). Support vector regression (SVR) models were trained from 151
healthy controls and used to predict TLE patients’ brain ages. It was found that TLE patients on average have
both older structural (+6.6 years) and functional (+8.3 years) brain ages compared to healthy controls.
Accelerated functional brain age (functional — chronological age) was mildly correlated (corrected P = 0.07)
with complex partial seizure frequency and the number of anti-epileptic drug intake. Functional brain age was a
significant correlate of declining cognition (fluid abilities) and partially mediated chronological age-fluid cog-
nition relationships. Chronological age was the only positive predictor of crystallized cognition. Accelerated
aging is evident not only in the structural brains of patients with TLE, but also in their functional brains.
Understanding the causes of accelerated brain aging in TLE will be clinically important in order to potentially
prevent or mitigate their cognitive deficits.

1. Introduction

(Breteler et al., 1991). While different models of cognitive aging in
epilepsy have been proposed (progressive decline, accelerated aging

Chronic temporal lobe epilepsy (TLE) is associated with abnormal-
ities in cognition, brain structure and brain connectivity in midlife
(Baxendale and Thompson, 2016; Helmstaedter and Witt, 2012;
Hermann et al., 2017; Tavakol et al., 2019), findings that have raised
concern regarding the future course of cognitive and brain aging and
the risk of cognitive disorders of aging including dementia
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[two hit model], stable non-progressive abnormality) (Sen et al., 2018),
consensus has yet to be achieved. Importantly, all models predict sig-
nificantly more impaired cognition in aging individuals with chronic
epilepsy compared to controls (Baxendale et al., 2010; Breuer et al.,
2016; Helmstaedter and Elger, 2009). Similarly, cross-sectional mod-
eling of structural brain aging has suggested greater abnormality in
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chronic epilepsy compared to controls
(Caciagli et al., 2017; Dabbs et al., 2012).

In a novel approach, Pardoe et al. (2017) trained a machine learning
regression model using T1-weighted structural MRI scans of 2001
healthy controls to predict their chronological ages. They then used the
model to predict the ages of 94 medically refractory focal epilepsy
patients and showed that these patients had structural brains that were
on average 4.5 years older than the healthy controls. Sone et al. (2019)
recently reported findings from a similar study examining different
types of epilepsy including TLE using T1 images, and found the same
trend of accelerated aging (10.9 years older for TLE patients with inter-
ictal psychosis, and 5.3 years without).

There are many paths of exploration from these studies that can be
considered. First, will the functional brains of epilepsy patients simi-
larly show accelerated brain aging (or premature brain aging in
Pardoe et al., 2017)? Accelerated brain aging in epilepsy has been in-
vestigated mainly in the structural brain. While many studies have re-
ported changes in the functional connectivity of epilepsy patients
(Constable et al., 2013; Tracy and Doucet, 2015), whether the changes
resemble accelerated aging is unknown.

Second, what factors are associated with age accelerated structural
and functional brains? Possibilities include clinical seizure character-
istics (e.g., age of onset, seizure frequency), treatment factors (e.g.,
number or type of anti-epileptic drug [AED] use), and of course de-
mographic characteristics. Previous studies have reported that brain
volume reductions in epilepsy may be independent of or only weakly
related to seizure activity (Alvim et al., 2016) and potentially more
related to AED use (Pardoe et al., 2013). Pardoe et al. (2017) and
Sone et al. (2019) in their secondary analyses briefly reported that in-
creased brain age difference (or brain-PAD: predicted age — chron-
ological age in Sone et al., 2019) in epilepsy was associated with earlier
age of onset, but not with epilepsy duration nor AED use. More sys-
tematic search of potential correlates of accelerated brain aging is de-
sired.

Third, is accelerated brain aging in epilepsy directly related to
cognitive status and cognitive decline over time? Are brain ages better
predictors of cognitive performance than the patients’ chronological
ages? Cognitive aging and its core dimensions (crystallized and fluid
cognitive abilities) in epilepsy have yet to be examined in relation to
potential age-accelerated alterations in functional connectivity patterns
and brain structure. Whether they have explanatory power beyond
chronological age remains to be determined.

TLE is the most common form of adult epilepsy and the largest
group among those with medically refractory seizures (Tellez-
Zenteno and Hernandez-Ronquillo, 2012). Through the Epilepsy Con-
nectome Project (ECP) (Cook et al., 2018; Hwang et al., 2019) we were
able to focus on a more homogenous group of patients than examined
previously. The ECP dataset provided a broader set of imaging, clinical,
and cognitive metrics to address the main aim of the study, which was
to characterize age-related brain structure and connectivity abnormal-
ities and their clinical significance in people with TLE.

with advancing age

2. Materials and methods
2.1. Participants

Participants included 104 TLE patients (mean age = 40.4 + 11.8
years, range = 19 — 60 years, 64 females) and 151 healthy controls
(mean age = 53.7 * 19.4 years, range = 18 — 89 years, 88 females).
All TLE patients were from the ECP. 57 controls were from the ECP, and
additionally 94 controls who matched the ECP criteria were drawn from
a related Alzheimer's Disease Connectome Project (ADCP)
(Hwang et al., 2018). The use of healthy controls from the two projects
allowed investigation of participants with a wider age range than pro-
vided by either project alone, without compromising scanner, site or
protocol variabilities. Both studies are two-site research projects
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involving the Medical College of Wisconsin (MCW) and the University
of Wisconsin-Madison (UW-Madison). Both studies were reviewed and
approved by the IRB (Institutional Review Board) at MCW and all
participants provided written informed consent. 42 TLE patients and 51
controls were scanned at MCW, while 62 TLE patients and 100 controls
were scanned at UW-Madison. The recruitment and data collection took
place between March of 2016 and December of 2018.

TLE patients were enrolled in the ECP if they were between the ages
of 18 and 60, demonstrated estimated full-scale IQ (Intelligence
Quotient) at or above 70, spoke English fluently, and had no medical
contraindications to MRI. They had a diagnosis of TLE supported by two
or more of the following: 1) described or observed clinical semiology
consistent with seizures of temporal lobe origin, 2) EEG evidence of
either Temporal Intermittent Rhythmic Delta Activity or temporal lobe
epileptiform discharges, 3) temporal lobe onset of seizures captured on
video EEG monitoring study, or 4) MRI evidence of mesial temporal
sclerosis or hippocampal atrophy. Both high resolution T1- and T2-
weighted MRI sequences were used to evaluate the medial temporal
lobes and hippocampi by a neuroradiologist to determine if there were
alterations in signal intensity, laminar structure, and volume of the
hippocampi that would be consistent with the diagnosis of hippocampal
sclerosis. Patients with any of the following were excluded: 1) Presence
of any lesions other than mesial temporal sclerosis causative for sei-
zures on 3 Tesla MRI, 2) an active infectious/autoimmune/in-
flammatory etiology of seizures, either suspected by treating clinician
or documented through laboratory testing or response to im-
munosuppressive therapy. 104 TLE patients in the study represented a
combination of pharmaco-resistant and well-controlled patients (45%
reported having at least one seizure during the past year).
Supplementary Table 1 provides clinical and demographic information
for the TLE participants.

Healthy controls of ages between 18 and 60 were enrolled in ECP,
and between 55 and 90 in ADCP. Exclusion criteria common to both
Connectome projects for healthy controls included brain injury or ill-
ness, major psychiatric condition (major depression, bipolar disorder,
or schizophrenia), or medical contraindications to MRI.

2.2. Data acquisition

MRI was performed on 3T GE (General Electric) 750 scanners at
both institutions. T1-weighted structural images were acquired using
MPRAGE (magnetization prepared gradient echo sequence, TR/
TE = 604 ms/2.516 ms, TI = 1060.0 ms, flip angle = 8°,
FOV = 25.6 cm, 0.8 mm isotropic). Resting-state functional MRI (rs-
fMRI) images were acquired using whole-brain SMS (simultaneous
multi-slice) imaging (Moeller et al., 2010) (8 bands, 72 slices, TR/
TE = 802 ms/33.5 ms, flip angle = 50°, matrix = 104 x 104,
FOV = 20.8 cm, voxel size 2.0 mm isotropic) and a Nova 32-channel
receive head coil. The participants were asked to fixate on a white cross
at the center of a black screen during the scans for better reliability
(Patriat et al., 2013). There was minimal loss of rs-fMRI image data only
in healthy controls due to technical or scheduling issues (N = 10).

2.3. Data processing

MRI images were processed using the Human Connectome Project
(HCP) minimal processing pipelines (Glasser et al., 2013) which is
primarily based on FreeSurfer (Dale et al., 1999) and FSL (Functional
MRI of the brain Software Library) (Jenkinson et al., 2012). In brief, the
function of this pipeline is to nonlinearly register T1-weighted images
to the MNI (Montreal Neurological Institute) space, segment the volume
into predefined structures, reconstruct white and pial cortical surfaces,
and perform FreeSurfer's standard folding-based surface registration to
a surface atlas (the “fsaverage” template). The functional portion of the
pipelines removes nonlinear spatial distortions in the rs-fMRI images
using spin echo unwarping maps, realigns volumes to compensate for
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subject motion, registers to the structural images, reduces the bias field,
normalizes the 4D image to a global mean, masks the data with the final
brain mask and maps the voxels within the cortical gray matter ribbon
onto the native cortical surface space. More details on the HCP pro-
cessing pipelines can be found in Glasser et al. (2013)

254 structural features generated by FreeSurfer's standard re-
construction (recon-all) were extracted from the T1-weighted images,
including cortical thicknesses, surface areas, volumes and also sub-
cortical and global volumes. Surface areas and volumes were divided by
the total surface area and total gray matter volume respectively to
normalize for brain size. Then the structural features were normalized
through z-score transform.

Additional pre-processing was performed on the rs-fMRI images
using AFNI (Analysis of Functional Neuro-Images) (Cox, 1996). This
included motion regression using 12 motion parameters, regression-
based removal of signal changes in the white matter, CSF, global signal,
and band-pass filtering (0.01-0.1 Hz). There are trade-offs of regressing
out the global signal from the raw signals, such as potential false ne-
gative correlations (Murphy and Fox, 2017). Therefore, another ma-
chine learning model was trained without the global signal regression
to confirm whether similar results were obtained.

Using the Connectome Workbench (version 1.1.1) (Marcus et al.,
2013), time-series data from four 5-min rs-fMRI scans acquired in a
single session were concatenated. 360 time-series from Glasser Parcel-
lation (Glasser et al.,, 2016) plus 19 FreeSurfer subcortical regions
(Fischl et al., 2002) were extracted per subject. MATLAB (Matrix La-
boratory) R2018a was used to calculate pairwise Pearson correlations
between 379 timeseries for generating connectivity matrices and also
for most visualization in this study.

A subset of connectivity features were found to be affected by the
subject motion in the scanner (absolute and relative mean root-mean-
squared [RMS] motion) (Marcus et al., 2013). Therefore, absolute mean
RMS motion was linearly regressed out from features that showed sig-
nificant correlation (raw P < 0.05), first separately for healthy controls
and then for TLE patients, by combining the two groups. Without this
regression, the accelerated functional brain ages were significantly
correlated with motion (P < 0.01), while regressing it out from the
entire matrices resulted in the opposite correlation (P < 0.05). Sup-
plementary Figure 1 shows the results without motion correction.

2.4. Support Vector Regression (SVR)

Two age-prediction Support Vector Regression (SVR) models
(Amoroso et al., 2019; Smola and Scholkopf, 2004) were built in Python
using the scikit-learn library (Pedregosa et al., 2011): with structural
and functional (resting-state correlation matrices) features from the
healthy controls. A linear kernel was used with no feature selection.
First, the SVR models were trained and tested on the healthy controls
using 10-fold cross validation. A linear correction that was suggested by
Le et al. (2018) was applied to remove known systematic bias caused by
regression dilution and regression towards the mean (old subjects
predicted young, and vice versa) (Liang et al., 2019). The accuracy of
the models were quantified using the correlation between chronological
age and predicted, the amount of variance in age explained by the
model (R?), the mean absolute error (MAE) and the root mean squared
error (RMSE).

The final models were trained with the entire healthy control da-
taset and applied on the TLE patients. The predicted ages (brain ages)
were compared to the chronological ages. Accelerated ages (brain —
chronological ages) were calculated. The entire training and testing
process is summarized in Fig. 1.

2.5. Clinical information

The accelerated structural and functional ages of TLE patients were
correlated with selected clinical epilepsy characteristics (age of onset
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and duration of epilepsy, frequency of complex partial and generalized
seizures), AED treatment (number and duration of medications), and
demographic characteristics (chronological age, sex, education).
Spearman correlation was used for all variables except sex, as they were
not normally distributed (Shapiro and Wilk, 1965). Point-biserial cor-
relation was used for sex, as this variable was dichotomous.

2.6. Cognitive tests

TLE patients were administered subtests from the National Institutes
of Health Toolbox Cognition Battery (NIHTB-CB) (Gershon et al., 2013;
Weintraub et al., 2013). The seven administered tests fall into four
cognitive domains, listed in Table 1. The four domains tested (and re-
lated tests) included broad executive function (Flanker Inhibitory
Control and Attention, Dimensional Change Card Sort, List Sorting
Working Memory) (Zelazo et al., 2013), episodic memory (Picture Se-
quence Memory), processing speed (Pattern Comparison Processing
Speed), and language (Picture Vocabulary, Oral Reading Recognition).
These seven subtests belong to two core dimensions of cognition
(crystallized and fluid) (Akshoomoff et al., 2013). The two language
subtests — Picture Vocabulary and Oral Reading Recognition — measure
aspects of crystallized cognition, whereas the rest of the tests assess
fluid cognition.

The age-uncorrected standardized scores were correlated with
chronological and brain ages (structural and functional) using Pearson
correlation. There was minimal loss of cognitive data due to technical,
seizure or scheduling issues (N = 5).

2.7. Mediation analysis

In order to investigate whether the brain ages mediate the asso-
ciation between chronological age and cognitive abilities in our TLE
population, mediation analyses (Baron and Kenny, 1986) were per-
formed in Python wusing the statsmodels library (Seabold and
Perktold, 2010). Bootstrapping (5000 iterations) was performed for
significance testing (Preacher et al., 2007). Fig. 6 shows the diagram of
this analysis.

2.8. Data availability

Efforts are ongoing to release raw DICOM data from the ECP
through the CCF (Connectome Coordination Facility,
humanconnectome.org/software/connectomedb) (Hodge et al., 2016)
at Washington University in St. Louis, by the end of 2019.

WWW.

3. Results
3.1. Testing on healthy controls

Cross validation showed that the ages of older validation subjects
were systematically predicted younger, and vice versa, most likely due
to regression dilution and regression toward the mean (Le et al., 2018;
Liang et al, 2019). A linear correction that was suggested by
Le et al. (2018) was applied, and then the final model was applied on
the testing subjects (Fig. 1). The final prediction results of healthy
controls are visualized in Fig. 4 (r = 0.82, R? = 0.67, MAE = 10.7,
RMSE = 13.65 for structural, r = 0.91, R? = 0.83, MAE = 6.94,
RMSE = 8.86 for functional model). The variance was significantly
larger (P < 0.001, two-sample F-test for equal variances) in the ac-
celerated structural ages compared to the functional ages.

3.2. TLE age prediction
Fig. 2 shows the histograms of the accelerated brain ages of the TLE

patients. The final SVR model with the linear correction predicted their
structural brain ages to be on average 6.6 years older than their
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Fig. 1. This diagram summarizes the process of support vector
regression (SVR) model training and testing procedure. 10-

All Subjects ﬂ

fold cross validation on the healthy controls were first per-
formed (left top), and then separately the testing on the

151 Controls

temporal lobe epilepsy (TLE) patients (left bottom). Linear

| 90% Train |._..| 10% Test |

correction suggested by Le et al. (2018) was preformed to
remove systematic bias caused by regression dilution and re-

151 Controls

104 TLE

Repeat
10 times

gression towards the mean.

Table 1

This table summarizes the correlation results between the three brain ages of the temporal lobe epilepsy (TLE) patients and their cognitive test scores. False discovery
rate (FDR) correction was made on the P-values within each age measure and cognition type. Overall, fluid cognition was well associated with both chronological and
functional ages. Chronological age was the best predictor among the three age measures of Picture Vocabulary (Z > 2.1, P < 0.05).

Cognition Type NIHTB-CB Measure Subdomain Chronological Age Correlation Structural Age Correlation Functional Age Correlation
r P r P r P
Fluid Flanker Inhibitory Control and Attention —-0.174 0.091 —0.094 0.605 —0.172 0.088
Executive Function
Dimensional Change Card Sort —0.239 0.028* —0.070 0.608 -0.214 0.041*
List Sorting Working Memory -0.171 0.091 —0.033 0.748 -0.221 0.041*
Picture Sequence Memory Episodic Memory —0.290 0.008* —0.254 0.055 -0.335 0.005*
Pattern Comparison Processing Speed Processing Speed —0.313 0.008* —0.092 0.605 —-0.231 0.041*
Crystallized Picture Vocabulary Language 0.293  0.006* 0.094 0.508 0.154 0.180
Oral Reading Recognition 0.143 0.156 0.067 0.508 0.135 0.180

* corrected P < 0.05. NIHTB-CB for National Institutes of Health Toolbox Cognition Battery.

chronological ages (P < 0.001, paired t-test). Their structural brain
ages were significantly older than those of the healthy controls (P <
0.001, unpaired t-test). The accelerated structural ages (structural brain
age — chronological age) ranged from —27 (brain age younger than
chronological age) to + 39 years (brain age older than chronological
age), with the standard deviation of 13.7 years, which was the same as
in healthy controls. There was no specific structural feature whose
value was significantly associated with the accelerated structural ages
(Spearman correlation).

The final SVR model predicted the functional brain ages of the TLE
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|
|
|
|
|
I
:
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40 -30 20 10 O 10 20 30 40
Accelerated Structural Age (years)

patients to be on average 8.3 years older than their chronological ages
(P < 0.001, paired t-test). Without the global signal regression of the
raw signals, a similar results were found with the TLE patients’ func-
tional brain ages predicted to be on average 5.1 years older than their
chronological ages (P < 0.001, paired t-test). Their functional brain
ages were significantly older than those of the healthy controls (P <
0.001, unpaired t-test). The accelerated functional ages ranged from
—14 to + 34 years with the standard deviation of 9.2 years, which was
similar to 8.9 years in healthy controls. They were not significantly
associated with the absolute/relative mean RMS motion (P’s > 0.6, r's

25

20 1

15

Count

10

0
40 -30 20 10 0 10 20 30 40
Accelerated Functional Age (years)

Fig. 2. These histograms show the accelerated brain ages of 104 temporal lobe epilepsy (TLE) patients: (A) with structural, and (B) functional features. Accelerated
aging in TLE was observed both in the structural (6.6 * 13.7 years) and functional brains (8.3 = 9.2 years). .
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Fig. 3. These 48 resting-state functional connections are most significantly associated with accelerated functional brain aging (corrected P-values < 0.0001, p’s <
—0.53). Weaker correlations in these connections are associated with more accelerated functional brain aging.

< 0.05). The variance was significantly larger (P < 0.001, two-sample
F-test for equal variances) in the accelerated structural ages compared
to the functional ages.

8341 out of 71,631 connectivity features were significantly asso-
ciated (corrected P-values < 0.05, Spearman correlation) with the ac-
celerated functional ages, with the top 48 features (p’s < —0.53) all
showing negative correlation (weaker connection associated with more
accelerated functional age). Most of these 48 connections were bilateral
temporal or frontal lobe connections (Fig. 3). Supplementary Figure 2
shows the matrix representation of the connections based on the cor-
relation values (Spearman p).

Fig. 4 shows the age prediction results. The brain aging effect in TLE
was found in all age groups. The 5th and 95th percentiles of the cross-
validation (healthy control) results were marked. 17 TLE patients
(16%) showed structural brain ages greater than the 95th percentile
(>19.7 years of acceleration), and 34 patients (33%) showed func-
tional brain ages greater than the 95th percentile (>12.9 years of ac-
celeration), with seven patients who overlapped. There was no sig-
nificant correlation between the two accelerated ages (r < 0.01,
P = 0.94 in healthy controls, r = 0.14, P = 0.15 in TLE patients)
(Fig. 5).

3.3. Correlation between ages

In healthy controls, structural (r = 0.82) and functional (r = 0.91)
brain ages were highly correlated with chronological age, and also were
inter-correlated (r = 0.74). The three ages were still correlated in TLE
(r = 0.60, r = 0.77, r = 0.53 correspondingly), but to a significantly
lesser degree compared to healthy controls (P’s < 0.01, z = 3.54,
z = 3.87,2 = 2.75).

3.4. Clinical correlates

Out of 104 TLE patients that were examined, 74 reported having
had complex partial seizures (49 currently) and 62 reported secondary
generalized seizures (22 currently). After correcting the P-values for
multiple comparisons with Benjamini-Hochberg false discovery rate

(FDR) correction (Benjamini and Hochberg, 1995), only trend-to-sig-
nificant relationships were found between the functional accelerated
ages of the TLE patients and their complex partial seizure frequency
(P = 0.07) and AED count (P = 0.07). Patients who reported having at
least one seizure during the past year were taking a greater number of
AEDs (P < 0.01) compared to those who were seizure-free the past
year, although there were no significant differences in the accelerated
brain ages between the two groups. These results are summarized in
Supplementary Table 2 with their raw P-values.

3.5. Cognitive correlates

Table 1 shows the correlation results between the three ages of TLE
patients and their cognitive test scores. The FDR multiple comparison
correction was performed on the P-values within each age measure and
cognition type.

Chronological age was significantly associated (corrected P < 0.05)
with four of seven tests, with trends (corrected P < 0.1) seen for two
others. Structural age was not significantly associated with any test.
Functional age was significantly associated with four of seven tests,
with trends seen for one other: all fluid cognitive tests. Brain ages were
not significantly associated with the crystallized subtests. Chronological
age was significantly more associated with Picture Vocabulary than the
brain ages (Z = 2.31, P = 0.02 for structural, Z = 2.13, P = 0.03 for
functional age, Steiger's Z-test).

Three of seven tests (Dimensional Change Card Sort, Picture
Sequence Memory, Pattern Comparison Processing Speed) were sig-
nificantly associated with both chronological and functional age mea-
sures. Subsequent mediation analyses addressed the question of whe-
ther structural or functional brain age mediated the association
between chronological age and these cognitive scores. Structural age
was never a significant mediator while functional age partially medi-
ated the relationship between chronological age and performance on
three tests: Picture Sequence Memory (P < 0.001), Dimensional
Change Card Sort (P = 0.004) and Flanker Inhibitory Control and
Attention (P = 0.03) (Fig. 6).
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Fig. 4. These scatter plots show the support vector regression (SVR) age prediction results of both healthy controls (blue) and temporal lobe epilepsy (TLE) patients
(orange): (A) with structural, and (B) functional features. The dotted lines indicate the 5th and the 95th percentiles of the cross validation results.
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Fig. 5. This scatter plot shows the relationship between two accelerated ages.
No statistically significant relationship was found in neither healthy controls
(blue, r < 0.01, P = 0.94, Pearson correlation), nor TLE patients (orange,
r=0.14,P = 0.15). .

4. Discussion
4.1. Accelerated brain aging in TLE

The results of this investigation demonstrated an accelerated brain
aging effect in TLE using both structural and functional imaging. The
SVR models predicted the structural brain ages of TLE patients to be an
average of 6.6 years older, and the functional brain ages to be 8.3 years
older than their chronological ages. 16% of the patients showed
structural brain ages greater than the 95th percentile (>19.7 years of
acceleration) of the healthy control sample, and 33% showed functional
brain ages greater than the 95th percentile (>12.9 years of accelera-
tion).

Accelerated aging is evident not only in the structural brains of
patients with TLE, but also in their functional brains. This confirms and

expands prior findings, here in a TLE group. Pardoe et al. (2017) and
Sone et al. (2019) trained their regression models with a larger number
of healthy control data (N = 2001 and 1196 respectively). Although the
present study comparably lacks power in the trained age regression
models (N = 151), the parameters and qualities of MRI images here are
more controlled and the comparisons between the structural and
functional brain ages provide novel insights into different dimensions of
the brain aging effect in TLE.

While the overall structural and functional brain ages are indeed
accelerated compared to chronological age (Fig. 2), inspection of the
age discrepancy plots (Fig. 4) shows that this accelerated aging effect is
evident across the chronological age range of the TLE participants ex-
amined here. We did not observe increased accelerated brain aging in
the older compared to younger TLE participants, nor in participants
with longer history of seizures compared to shorter (Supplementary
Table 2).

It is worth noting that the correlations among the chronological and
the two brain ages were significantly weaker in TLE patients compared
to healthy controls (P’s < 0.01), suggesting a detectable dissociation of
brain ages from chronological age. Weintraub et al. (2013) reported
correlations between chronological age and NIH-TB cognition scores in
healthy controls (N > 230), and observed significantly stronger nega-
tive correlations in fluid cognitive abilities (P’s < 0.001, —0.46 > r's
> —0.65) compared to those seen in the TLE patients in our study (P’s
< 0.03, Z> 2.2). Together with the finding that the functional age
mediated the relationship between chronological age and cognition in
TLE patients, this leads us to conclude that judgment of cognitive
abilities in the TLE patients based on their chronological ages may be
less predictable compared to healthy controls.

There were significantly smaller variances (P < 0.001) in the pre-
dicted accelerated functional brain ages compared to the structural
ages, both from the healthy control and TLE groups (Figs. 2 and 4),
although the opposite was expected given the increased complexity of
the model (71,631 dimensions in functional, compared to 254 in
structural). This suggests that the functional brain age calculated from
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Fig. 6. This diagram shows the results from the mediation
analysis for Picture Sequence Memory test. The independent
variable was the chronological age of the TLE patients. The
mediator was either their functional or structural brain age.

B=0.939 Partial Mediation (P < 0.001) B =_‘0-355 Functional age partially mediated (P < 0.001) the assc?ciation
P <0.001 P=0.001 between chronological age and the test score (top triangle),
whereas structural age did not (bottom triangle). Numbers in
parentheses are results after the mediator was introduced.
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P =0.002 (0.447)
Chronological Picture Sequence
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resting-state functional connectivity is a more stable measure of brain
age.

4.2. Clinical correlates

It was hypothesized that accelerated brain aging in TLE was related
to either or both the clinical features of the epilepsy and AED use.
Accelerated functional brain age was correlated with both complex
partial seizure frequency (corrected P = 0.07) and the number of AEDs
(corrected P = 0.07), suggesting that the accelerated functional brain
aging in TLE patients may be related to both seizure burden and related
polytherapy. It may also be argued that the association of the number of
AEDs may not be directly related to AED effects, but from more severe
epilepsy leading to more intensive AED therapy.

Results from this study confirm those from Pardoe et al. (2017) and
Sone et al. (2019) which reported that there was no significant re-
lationship between epilepsy duration and the accelerated brain age.
However, the relationship between age of seizure onset and the ac-
celerated brain age in our TLE population was found insignificant.
Current data in this study were not sufficient to reveal definitive clinical
correlates of accelerated brain aging.

4.3. Cognitive correlates

Table 1 depicts the dynamic nature of the relationships between
chronological and brain ages with crystallized and fluid cognitive
abilities. In regard to crystalized abilities, only chronological age pre-
dicted improvement on one of the two measures (Picture Vocabulary,
r = 0.293, corrected P = 0.006), predictably showing improving
naming ability with age. In contrast, the interplay of chronological age
with brain ages was more dynamic for fluid abilities. Mediation ana-
lyses indicated that structural brain age did not mediate any relation-
ships between chronological age and cognition. In contrast, functional
brain age partially mediated the relationship for three measures in-
cluding memory (Picture Sequence Memory) and selected measures of
executive function (Dimensional Change Card Sort, Flanker Inhibitory
Control and Attention) (Fig. 6). The relationship between chronological
age and processing speed was not mediated by brain age.

Importantly, these brain age relationships are detected in a pre-
dominantly young to middle age sample (mean age = 40.3) who have
yet to enter the epoch where age exerts stronger and more diverse ef-
fects. To that point, the relationships reported (Table 1), while sig-
nificant, are modest in explanatory power. It will be important to

continue to monitor these relationships prospectively to confirm their
change over time and linkages to changing cognition.

4.4. Limitations

One limitation of this investigation is the relatively small sample
sizes. In order to control for the scanner variability, scan protocols and
procedures, only data from the two Disease Connectome Studies (ECP
and ADCP) were used. This resulted in a smaller training sample size
compared to previous studies (Pardoe et al., 2017; Sone et al., 2019),
while allowing us to expand the study to investigate the functional
brain aging and other clinical and cognitive traits in TLE.

The age range of our TLE population (19 - 60 years) was towards
the younger spectrum of that of our control population (18 — 89 years).
The results using this dataset should remain valid, since 1) the age
range of the training set covered that of the testing set, and 2) the
testing results on the healthy controls confirmed the performance of the
linear correction. Before the linear correction, the bias in the regression
model over-estimated the ages of young test subjects, making the pre-
diction of TLE brain ages unreliable. The correction mitigated, if not
completely removed, this bias effect (more discussion can be found in
Le et al., 2018). Use of larger training sample sizes in conjunction with
accurate non-linear regression models will create more robust age-
predicting models. Future work is also desired to confirm the findings
from the current study in older TLE population.

5. Conclusion

Accelerated aging is evident not only in the structural brains of
patients with TLE, but also in their functional brains. Functional brain
age seems to be a better measure of the brain age because of the smaller
variance and better predictive power of cognitive ability, compared to
the structural age. Functional brain age of TLE partially mediated the
relationship between the chronological age and threeof the fluid cog-
nition scores. On the other hand, structural brain age was not a good
predictor of their crystallized cognition. Future work is desired to reveal
the causes of accelerated aging in TLE in order to potentially prevent or
mitigate their cognitive deficits.
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