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Simple Summary: Head and neck squamous cell carcinoma (HNSCC) has one of the highest inci-
dence and mortality rates among all cancers. Diagnostic process and treatment results are far from
satisfactory. These are the main reasons behind studying the microenvironment of the tumor and
finding the connection between the aberrant expression levels of non-coding RNAs and patients’ out-
comes. In this paper, we tried to present the function and the promising diagnostic potential of long
intergenic non-coding RNAs (lincRNAs). We proved that a multitude of them play a pivotal role in
the different processes involved in the progression of the disease—e.g., proliferation, migration, and
the epithelial-to-mesenchymal transition. Even though there is a lot of work ahead of us, lincRNAs
could become unique and valuable biomarkers or future targets for personalized medicine.

Abstract: Head and neck squamous cell carcinoma is one of the most common and fatal cancers
worldwide. Even a multimodal approach consisting of standard chemo- and radiotherapy along with
surgical resection is only effective in approximately 50% of the cases. The rest of the patients develop
a relapse of the disease and acquire resistance to treatment. Especially this group of individuals needs
novel, personalized, targeted therapy. The first step to discovering such solutions is to investigate
the tumor microenvironment, thus understanding the role and mechanism of the function of coding
and non-coding sequences of the human genome. In recent years, RNA molecules gained great
interest when the complex character of their impact on our biology allowed them to come out of the
shadows of the “junk DNA” label. Furthermore, long non-coding RNAs (lncRNA), specifically the
intergenic subgroup (lincRNA), are one of the most aberrantly expressed in several malignancies,
which makes them particularly promising future diagnostic biomarkers and therapeutic targets. This
review contains characteristics of known and validated lincRNAs in HNSCC, such as XIST, MALAT,
HOTAIR, HOTTIP, lincRNA-p21, LINC02487, LINC02195, LINC00668, LINC00519, LINC00511,
LINC00460, LINC00312, and LINC00052, with a description of their prognostic abilities. Even though
much work remains to be done, lincRNAs are important factors in cancer biology that will become
valuable biomarkers of tumor stage, outcome prognosis, and contribution to personalized medicine.
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1. Introduction

For decades, cancer has been one of the greatest medical challenges. Just head and
neck squamous cell carcinoma (HNSCC) alone, the seventh most common cancer world-
wide, is responsible for approximately 450,000 deaths per year [1]. This particularly fatal
disease has a nearly 50% mortality rate in the first five years after diagnosis [2]. Head and
neck aggressive heterogeneous malignancies form tumors in epithelial tissue of the upper
aerodigestive tract. Major risk factors for developing HNSCC are alcohol and/or tobacco
consumption [3,4], environmental carcinogens [5], and human papillomavirus (HPV) in-
fection [6]. The latter one is responsible for the higher incidence in the younger group
of patients, especially men [7]. Moreover, there is growing evidence that it is associated
with 47% of tonsillar squamous cell carcinomas (TSCCs) and 22% of oropharyngeal squa-
mous cell carcinomas (OPSCC) [8–11]. It is worth mentioning that HPV-positive patients
(HPV(+)) have a significantly better prognosis than HPV(–) individuals, due to different
clinicopathological, molecular, and even epigenetic characteristics [12,13]. Searching for
such distinctive features in all types of HNSCC brings us closer to the creation of preci-
sion medicine solutions that will become alternative for the standard therapy consisting
of chemo- and radiotherapy, surgical intervention, or systemic treatment, e.g., cisplatin,
carboplatin, and cetuximab [14–16]. The main reason behind seeking personal medicine
approaches is that more than 50% of the cases relapse despite administering aggressive
multimodal therapy [17]. After that, high risk of complications significantly narrows down
options for further treatment. Currently, cetuximab, pembrolizumab, or nivolumab is used
in combination with chemotherapy or alone as a treatment for patients with recurrent or
metastatic disease. However, in most cases, the response is only partial and often leads to
acquired resistance followed by tumor regrowth. This demonstrates the urgent need to
better understand the tumor microenvironment in order to propose targeted therapy that
could significantly improve the quality and life expectancy of patients with HNSCC in the
future [18].

In recent years, more and more studies indicate a disturbed expression of many coding
and non-coding RNA molecules, which could soon be used as predictive or prognostic
biomarkers specific for a particular type, or even stage, of a tumor [19–21]. This complex
regulatory network composed of microRNAs (miRNAs), messenger RNAs (mRNAs), and
long non-coding RNAs (lncRNAs), including long intergenic non-coding RNAs (lincRNAs),
gained significant interest after being correlated with changes in genome stability, cell
proliferation, differentiation, and migration, leading to metastasis caused by the epithelial-
to-mesenchymal transition (EMT), and subsequent relapse of patients [22–24]. The aim of
this review is to elucidate the role of lincRNAs in HNSCC, which are the least characterized
molecules from all of the above.

2. lncRNA or lincRNA: Difference, Biogenesis, Function

Long non-coding RNAs belong to a subgroup of RNA molecules that are at least
200 nucleotides long and the majority of them do not have proteincoding ability [20,25].
It is worth emphasizing that roughly 93% of the human genome can be transcribed as
RNA, but only 2% of it may be translated into protein. For many years, the rest of the
genome was considered a “junk DNA” that does not bear any function [20]. However, with
time, lncRNAs were associated with a great number of pivotal biological processes such as
regulation of gene expression, e.g., chromatin modification, interaction with transcriptional
factors, mRNA processing, cell metabolism, proliferation, apoptosis, acting as “molecular
sponge,” and creating ribonucleoprotein complexes [22–25]. Genes encoding lncRNAs
could be situated in intergenic and intragenic positions. The intragenic lncRNA transcripts
can be found in intronic, enhancer, promoter as well as in 3′UTR regions of the specified
gene [25].

More than 50% of lncRNAs are long intergenic non-coding RNAs (lincRNAs), which
have been distinguished based on the lack of overlapping annotated protein-coding genes
in their transcripts [26]. Creating this subgroup of lncRNAs was proposed after conducting
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studies using tiling arrays across the genome [27]. Extensive research allowed the division
of lincRNAs into four classes depending on the distance from the protein-coding tran-
script and direction of transcription, sense or antisense: (i) same strand, (ii) convergent,
(iii) divergent, and (iv) isolated—the only one placed further than 50kb from the nearest
protein-coding gene [26] (Figure 1A). It should be noted that divergent (bidirectional)
lncRNAs are transcribed often concordant with expression of the nearby protein-coding
gene [28].
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Fluorescent in situ hybridization and ribosome profiling provided information on
nuclear enrichment of lincRNAs compared to the cytoplasm compartment where more
of lncRNAs can be found [29,30]. Localization within the nucleus corroborates an impor-
tant role in the process of cell differentiation, providing proper nuclear architecture and
modulating states of the chromatin condensation [23,26,31]. However, it has been proven
that the whole group of lncRNA also regulates the mechanism of transcription itself and
post-transcriptional modifications, such as polyadenylation, 5′capping or splicing [32].

The broad range of lincRNA functions includes also acting as a protein and RNA
scaffold or decoy, sequestering different intracellular molecules or improving their func-
tion, and producing micropeptides (Figure 1B). Furthermore, the low abundance of these
molecules does not affect their ability to form multiple macromolecular complexes alter-
ingthe epigenetic state of neighboring genes [26]. The vast majority of described lincR-
NAs are also involved in developmental pathways, including linc-RoR, TINCR, ANCR,
LINC00261, PNKY, or lincRNA-EPS, which are responsible for, respectively, establish-
ing and maintaining pluripotency, promoting epidermal differentiation, and maintaining
its progenitor state, cardiac lineage specification, neurogenesis, and immunomodula-
tion [29,33–36]. Even though there are a multitude of aforementioned functions, a de-
scription of the exact role of specific lincRNAs is still difficult to accomplish. This class of
molecules remains one of the poorest understood so far.

The study by Cabili et al. indicated that lincRNA expression is remarkably more tissue
specific compared to coding genes [37]. Surprisingly, the enrichment of the repressive
H3K9me3 modification at lincRNA gene promoters is associated with higher tissue speci-
ficity, instead of low-expressed tissue-specific mRNAs [38]. This feature makes lincRNAs
very promising diagnostic or prognostic biomarkers, not only in HNSCC but in many more
diseases [23,26].

3. lincRNAs as Biomarkers and How to Find Them

Epidemiology with the mortality rate of HNSCC designates a tremendous need
for finding a specific, non-invasive biomarker of the early stages of the disease. The
abundance of lncRNAs, their tissue specificity, and association with different cancers’
abnormal expression landscape suggest promising results within this group of potential
diagnostic markers. Furthermore, it has been proven that they can be detected not only in
tissue samples but also in body fluids [23,26,39–41]. However, the fact that they are tissue
and even cell specific makes their profile particular for each type of collected biological
material [42]. Studies investigating lncRNAs as salivary, plasma, or urine biomarkers
proved that their stability, half-life, and resistance to RNase digestion meet the requirements
of a good biomarker [20,23,42]. Surprisingly, PCA3 became the first FDA-approved (Food
and Drug Administration, USA) lncRNA-based biomarker whose predictive values exceed
those characteristic of PSA serum testing [23,43].

There are two types of methods used in lincRNAs profiling: RNA-centric methods, es-
pecially ChIRP (chromatin isolation by RNA purification), CHART (capture hybridization
of RNA targets) or RAP (RNA antisense purification), andprotein-centric methods, such
as different variants of nRIP (native RNA immunoprecipitation), and CLIP (crosslinking
immunoprecipitation), which are based on lincRNAs’ known ability to encode micropep-
tides [26]. These techniques are excellent for academic purposes but too expensive and
complex for diagnostic use. Even though the classical method of RNA isolation with TRIzol
or column-based protocols raises questions about its accuracy for this kind of molecule,
it appears to not affect the quantification results [20,44]. Moreover, carefully designed
collection tubes and column protocols can minimize the negative effect of background
RNAs from coagulation, blood cell contamination, as well as progressive hemolysis on
results [44,45]. After isolation of RNA, the most common methods to perform are microar-
rays, NGS (new generation sequencing), or simply qRT-PCR. The latter one, being the least
expensive and the most popular, is a golden standard for lincRNA quantification, especially
in the field of diagnostics [46]. The lincRNA amplification could be a challenging step due
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to the different evolutionary conservation patterns than in protein-coding genes. The level
of conservation can depend on the function of the molecule, and linker sequence patterns
will differ from functional modules [47]. However, it has been proven that thousands of
lncRNAs are in fact evolutionarily conserved and the ones that are not are likely to have
conserved promoter regions [47,48].

Liquid biopsy may be a good response to the aforementioned need for a non-invasive,
accurate method of detecting the disease, assessing its stage, and monitoring the course
of its treatment. For this type of analysis, non-solid biological materials, such as blood
and its fractions, are obtained [49–52]. They contain many biomarkers that allow the
assessment of changes in the cancer phenotype (modifications of the genome, epigenome,
and transcriptome), immunophenotype, response to therapy, and the incidence of infec-
tion [49–56]. Such characterization cannot always be performed by traditional biopsy,
because it often does not fully reflect tumor heterogeneity [57,58] or cannot be obtained at
all, as in the case when neoadjuvant therapy reduces the volume of the neoplastic lesion to
an undetectable size [50]. Liquid biopsy can be based on cells, e.g., circulating tumor cells
(CTCs), or circulating endothelial cells (CECs) and molecules, like DNA, e.g., circulating
tumor DNAs (ctDNAs), or cell-free fetal DNAs (cffDNAs) and RNA, e.g., circulating tumor
RNAs (ctRNAs), or circulating free RNAs (cfRNAs) [49,59–61]. The study by Umu et al.
indicated that some of the RNA classes are highly expressed in serum and presented the
percentage distribution of their uniquely-mapped reads: miRNA (45.7%), mRNA (20.3%),
miscRNA (11.8%), lncRNA (10.7%), piRNA (4.3%), tRFs (1.9%), and others (5.3%) [53].
Even though lncRNAs abundance is not very high, knowledge about their miRNA tar-
gets can provide us with a specific landscape of molecular changes resulting from tumor
growth or its post-treatment remission. Carefully designed steps of liquid biopsy can help
minimize its challenges, such as sample processing, extraction techniques, quality and
quantity assessment, and data normalization [62]. Moreover, our team previously made
recommendations on how to cope with lncRNA stability and its low copy number [63]. We
have also elucidated that detection of rare cfRNAs during qRT-PCR can be accomplished
with the proper use of stem-loop-specific primers or adding poly(A) tails. Additionally, if
choosing the right reference gene and performing isoform specification will not improve
the efficiency of qRT-PCR, we can replace it with a droplet digital PCR method (ddPCR),
which is sensitive to a very low amount of material [63,64]. It is worth mentioning that
two FDA-approved liquid biopsy methods are already available: one of them is based
on CTCs and dedicated to various types of cancers, and the second one is Cobas EGFR
Mutation Test (Roche Molecular Systems, Inc.), which uses cfDNA isolated from plasma of
individuals with metastatic non-small cell lung cancer (NSCLC) [65,66].

The aforementioned features prove that lincRNAs are promising, specific, easy-to-
access future biomarkers that can revolutionize the process of disease detection and moni-
toring the effects of the applied treatment. However, much research remains to be done to
characterize these molecules in detail, understand their role in cancer biology, and validate
their assay methods.

4. Known lincRNA Biomarkers in HNSCC

The growing number of studies indicates the importance of changing the landscape
of lincRNAs expression levels in different malignancies. Their potential role as biomark-
ers was discussed considering colorectal, gastric, prostate cancer, or HNSCC [38]. The
earliest discovered lincRNA molecules XIST, MALAT1, HOTAIR, and HOTTIP are rarely
distinguished as an intergenic subtype of long non-coding RNAs [26]. Despite the little
information on the role of lincRNAs in HNSCC, we tried to collect and describe molecules
with the potential to become biomarkers of early detection or prognosis in HNSCC below.

X-inactive specific transcript (XIST) is a lincRNA molecule, whose sequence is local-
ized within the XIST gene (Xq13.2) [67]. It has been proven that XIST is up-regulated in
many tumors, including glioblastoma [68], hepatocellular carcinoma (HCC) [69], breast
cancer (BC) [70], NSCLC [71], as well as nasopharyngeal carcinoma (NPC) [72], which
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suggests that it can become a valuable diagnostic biomarker specific for this group of
diseases. Studies carried out on mouse models indicated that silencing or knocking down
XIST caused decreased cell growth and metastasis, which implies an essential role in the
development and progression of malignancies [68–70]. Song et al. proved the prognostic
value of XIST in NPC. Furthermore, they showed that the XIST expression level increased
with tumor size and stage, leading to poor survival in a group of patients with a high level
of this molecule [72]. All of the above underline the diagnostic and therapeutic potential of
XIST in HNSCC.

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has one of the
most conserved primary and secondary structures of all lincRNAs [73]. Its sequence
is localized inside the non-coding nuclear-enriched abundant transcript 2 (NEAT2) [74].
MALAT1 is one of the modulators of pre-mRNA processing, principally by regulating
splicing efficiency, with its ability to sequester splicing factors while being retained in
nuclear speckles [73,74]. The study by Hu et al. showed that this molecule acts as an
oncogene in esophageal squamous cell carcinoma, promoting its growth by regulating the
ATM-CHK2 pathway, which is associated with G2/M transition and processes of DNA
damage response [75]. Oncogenic MALAT1 was also positively correlated with clinical
stage in other malignancies such as glioma, pancreas, prostate, and lung cancer [74–76].
The above lincRNA is overexpressed in all HNSCC localizations [74]. Hu et al. proposed
that a higher level of MALAT1 can be caused by its amplification in tumor tissue [75].
Moreover, Zhou et al. implicated that patients with overexpression of this molecule are
characterized by unfavorable prognosis and significantly shorter overall survival (OS) [74].

HOX transcript antisense RNA (HOTAIR) is expressed from locus HOXC, inter-
acts with polycomb repressive complex 2 (PRC2) and plays a pivotal role in the H3K27
methylation of many genes. This complex is responsible for epigenetic silencing of dif-
ferent sequences during many important cellular processes, even cancerogenesis [77].
lincRNA HOTAIR is significantly overexpressed in several types of malignant tumors,
including esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma
(OSCC) [78–80]. In recent years, many studies have indicated that a high level of HOTAIR
molecules is associated with poor prognosis and overall survival of cancer patients [78–80].
Ge et al. discovered that cell cultures with up-regulation of HOTAIR have abnormally
activated Wnt signaling pathways due to a decrease in Wnt-inhibitory factor 1 expression,
which results in progression, increased migration, and the ability to create metastasis [78].
Analysis by Li et al. described the regulatory function of HOTAIR, which may interact with
a broad range of genes involved in cell differentiation, death, adhesion, and cell cycle [79].
What is more, Tang et al. documented that this lincRNA can be easily detected in saliva,
particularly in more advanced, metastatic stages of the disease [42]. HOTAIR lincRNA has
significant prognostic potential, which after further investigation may lead in the future to
the creation of the specific diagnostic or prognostic molecular test.

The HOXA transcript at the distal tip (HOTTIP) is localized within the HOXA clus-
ter and regulates the activation of multiple HOXA genes by controlling H3K4 methyla-
tion [41,81,82]. Over the years, different studies have implied that up-regulation of this
lincRNA expression is crucial for tumor development, growth, and metastasis in many
cancers, e.g., HCC [82] and tongue squamous cell carcinoma (TSCC) [41]. Zhang et al.
demonstrated that overexpression of HOTTIP is characteristic of TSCC and its high level
is positively associated with several clinicopathological features along with the ability
to create distant lesions of metastasis. Moreover, this correlation allows suggesting that
HOTTIP may become a valuable prognostic biomarker in the future [41]. A few years
later, Yin et al. proved that HOTTIP has the strongest prognostic value within a group of
approximately 1000 lncRNAs differently expressed in HNSCC. The researchers confirmed
the association of the expression of this molecule with the grade, stage, and overall survival
of patients [83]. Additionally, it was characterized as an independent prognostic factor. The
above implies that a high level of HOTTIP is pivotal for cancer development, proliferation,
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and progression, which together with a strong correlation with survival prognosis makes it
a unique, valuably diagnostic biomarker in HNSCC [41,83].

Long intergenic non-coding RNA p21 (lincRNA-p21) was first described as a p53-
dependent apoptotic response repressor in studies investigating this process in mouse
embryonic fibroblasts with wild-type TP53 [84]. These molecules’ impact is especially
interesting due to the fact that 85% of HNSCC patients have mutated versions of the
TP53 gene [85]. Recently, its pivotal role in the development and progression of multiple
cancer was described. Jin et al. observed that a low level of lincRNA-p21 causes drastic
progression of HNSCC due to the lack of induced G1 phase arrest and inhibition of
apoptosis. Interestingly, researchers observed that this lincRNA displays their suppressor
function by decreasing activity of the Janus kinase 2 (JAK2)/signal transducer and activator
of transcription 3 (STAT3) pathway by binding to the latter one. It is worth mentioning
that HNSCC patients with down-regulated expression of lincRNA-p21 had an unfavorable
prognosis [86]. Studying the role and molecular mechanism of lincRNA-p21 interactions
is especially important because of its direct association with TP53 and its targets. Future
research should focus on exploring this subject because it can become a unique predicting
factor for HNSCC patients.

Long non-protein-coding RNA 2487 (LINC02487) is a molecule mostly localized in the
cytoplasm, retained close to the nuclear membrane, where it displays its regulatory func-
tion at the post-transcriptional or post-translational level [87]. Recently, it has been proven
that this lincRNA is dysregulated in OSCC and its characteristic for oral carcinogenic tissue
low expression is correlated with unfavorable clinical outcome and poor survival [88]. Feng
et al. determined that LINC02487 expression is correlated with the OSCC development
stage and its level increases from the amount characteristic for adjacent normal tissue,
through cancer tissue to the highest expression value in samples from patients with metas-
tasis. Part of their study based on cancerous cell cultures resulted in the observation that
overexpression of LINC02487 has an inhibiting impact on OSCC proliferation, migration,
and invasiveness [87]. Additionally, up-regulation of LINC02487 regulates the levels of
EMT markers and causes a decrease in N-cadherin and vimentin, along with an increase in
E-cadherin, through interaction with ubiquitin carboxyl-terminal hydrolase 17 (USP17),
a known EMT regulator [89]. Significant differences between tumor tissue and healthy
oral mucosa, taken together with its proven OSCC suppressor role [86,87], indicate that
LINC02487 can become a unique diagnostic and prognostic biomarker that could lower
the high mortality rate caused by distant metastasis [88,90].

Long non-protein-coding RNA 2195 (LINC02195) is closely associated with major
histocompatibility complex class I (MHC I) molecules, whose lack of function leads to
the mechanism of escaping immunosurveillance by tumor in HNSCC [91,92]. Analysis of
LINC02195 expression patterns showed significantly higher lincRNA levels in HNSCC
tumor samples than in cell lines derived from dysplastic tissue or normal mucosa. Li
et al. also found out that silencing LINC02195 expression causes a decrease in the level of
MHC I molecules and definitely proved that patients with high expression of this lincRNA
have a better prognosis. Further research indicated that this lincRNA is immune-related
due to its significant correlation with the T cell receptor pathway, chemokines (class I and
II), and cytokines [91]. The discovered association with lymphocytes T suggests better
infiltration of tumor tissue, which leads to the positive response to immunotherapy and
better prognosis, not only in HNSCC but in many different cancers [91–93]. The above
information implies that LINC02195 is a promising prognostic factor and therapeutic target;
however, more research needs to be done in this field.

Long intergenic non-protein-coding RNA 668 (LINC00668) is one of the least character-
ized lincRNAs described in this paper. Its up-regulation in HNSCC—particularly in OSCC
and laryngeal squamous cell carcinoma (LSCC) [94,95]—has been proven. LINC00668
promotes tumor growth in OSCC cells by interaction with miR-297 and VEGFA signaling
pathways. Zhang et al. implied that this lincRNA acts as an oncogene promoting OSCC
tumorigenesis [94]. Furthermore, Zhao et al. showed that this lincRNA’s expression level
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in LSCC is associated with age, stage, and cervical lymph node metastasis. They also
suggest that these molecules can enhance the proliferation, migration, and invasion ability
of the studied cell lines [95]. LINC00668 might become a valuable diagnostic or prognostic
biomarker of LSCC.

Long intergenic non-protein-coding RNA 519 (LINC00519) was first described in lung
squamous cell carcinoma (LUSC) as an oncogene [96]. Localization analysis indicated
that the vast majority of these lincRNA molecules can be found in the cytoplasm where
they act as an miRNA-sequestering sponge [97]. In TSCC, one of those short RNAs is
miR-876-3p, which was earlier widely described as aberrantly expressed and tumorigenic
in many cancers [98]. The study based on TSCC patients with high expression of LINC00519
demonstrated shorter overall survival and unsatisfactory prognosis [97]. Although the
above lincRNA displays the potential to become an HNSCC biomarker, still a lot of work
remains to be done.

Long intergenic non-protein-coding RNA 511 (LINC00511) is up-regulated in differ-
ent malignancies including also HNSCC [99]. This molecule has a variety of functions,
including regulation of the developmental process, apoptosis, programmed cell death,
focal adhesion through hemostasis, and different carcinogenic pathways [100]. It has been
proven that LINC00511 modulates TSCC progression by promoting cell proliferation and
migration [101]. Moreover, a high level of LINC00511 is strongly associated with age, tumor
size, clinical stage, lymph node metastasis, as well as unsatisfactory prognosis [102]. Grow-
ing evidence supports the proposition of these lincRNAs as a potential novel therapeutic
target and biomarker.

Long intergenic non-protein-coding RNA 460 (LINC00460) has in recent years gained
more and more interest as it appears to be an oncogene in different cancers, e.g., NPC,
ESCC, and lung cancer [103–107]. Chaudhary et al. investigated LINC00460 expression
levels in different subgroups of HNSCC patients. Their study proved this lincRNA may
serve in the future as an independent prognostic biomarker of patients’ survival, especially
in a subgroup of individuals who have not undergone HPV infection. Further analysis
associated a high level of LINC00460 with several carcinogenic pathways, indicating its
involvement in cell development, proliferation, the EMT, and adhesion [107]. Additionally,
ESCC-based research showed that this lincRNA not only promotes tumor growth but also
exerts its oncogenic role by apoptosis [104]. Xie et al. investigated the mechanism underly-
ing the tumorigenic impact of LINC00460. They proved that p21, E-cadherin, N-cadherin,
and cyclin D1 are above lincRNA targets, which corroborates the importance of LINC00460
overexpression in cell cycle, migration, the EMT, and invasion [105]. Interestingly, this
lincRNA regulates the activity of miR-162 by acting as a molecular sponge. Inhibition of
miR-612 causes up-regulation of serine/threonine kinase 2 (AKT2), which leads to progres-
sion, metastasis, and unfavorable prognosis [106,108,109]. LINC00460 exhibits the features
of a good prognostic marker in HNSCC.

Long intergenic non-protein-coding RNA 312 (LINC00312) is localized on 3p.25.3 loci
on a chromosome, which is a very common region of allelic loss, especially in NPC [110].
Another name for this lincRNA is a novel putative tumor suppressor, ornasopharyngeal
carcinoma candidate 7 (NAG7). LINC00312 is overexpressed in NPC cell lines, which
leads to an increase of adhesion, motility, and invasiveness and inhibits proliferation,
by arresting progression from G1 to S phase of the cell cycle [110,111]. The study by
Zhang et al. discovered a positive correlation of LINC00312 expression with lymph node
metastasis and negative association with the stages and size of the tumor. Their results
showed that this lincRNA could be a useful biomarker that allows distinguishing healthy
individuals from NPC patients and, within the latter group, determine who developed
distant metastasis [110,111]. Considering the above data, LINC00312 could serve in the
future as a biomarker of NPC, specifically its metastatic stages [110].

Long intergenic non-protein-coding RNA 52 (LINC00052) displays a regulatory func-
tion by acting as a molecular sponge and sequestering different miRNAs [112–114]. Even
though its mechanism of action is not fully known, multiple studies have indicated its
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aberrant expression level in several cancers and corresponding cell lines, e.g., hepatocellu-
lar carcinoma (HCC) [115–117], BC [113], and HNSCC [114]. We have conducted research
analyzing the expression of LINC00052 in HNSCC cell lines and patients’ samples to study
its impact on cancer biology and investigated its potential as a future biomarker; however,
the results obtained have not been published yet. Our team managed to prove that the
level of this molecule is significantly higher in tumor tissue compared to the control sample.
Interestingly, top values of expression were characteristic for patients with a mutated
version of the TP53 gene. We have found out that the LINC00052 level is associated with
gender, cancer, T and N stage, as well as perineural invasion and HPV status. It has been
proven that LINC00052 is negatively correlated with miR-27b-5p, a known modulator of
the EMT process [118], whose targets are involved in several important cellular processes.
Moreover, we have observed that patients with higher expression of miR-27b-5p and lower
LINC00052 have significantly longer survival, higher infiltration of immune cells, and
substantial down-regulation of EMT regulators such as vimentin, MMP16, MMP2, TGFBR2,
TGFBI, ITGB3, PDGFRB, SOX11, ZEB2, and FOXD1. The presented results signify that
LINC00052 could be a very promising prognostic biomarker, especially in combination
with miR-27b; nevertheless, this correlation needs to be further explored. A summary of
these well-described lincRNAs is presented in Table 1.

Table 1. The summary of the well-described lincRNAs in HNSCC and other cancers.

lincRNA Location Possible
Targets Role Ref.

XIST Xq13.2
miR-137,
miR-92b,

mir-34a-5P

- essential role in the development and progression of may
cancers, e.g., glioblastoma, HCC, BC, NSCLC, NPC

- high expression level increased with tumor size and stage;
leads to poor survival of patients with NPC

[68–72]

MALAT1 11q13.1

AIM1, LAYN,
HMMR,

SLC26A2,
CCT4, ROD1,

CTHRC1, FHL1

- modulator of pre-mRNA processing, regulating
splicing efficiency

- oncogene in ESCC, promoting its growth by regulating the
ATM-CHK2 pathway, which is associated with G2/M
transition and processes of DNA damage response

- correlated with the clinical stage in, e.g., glioma, pancreas,
prostate, and lung cancer

- overexpression is associated with unfavorable prognosis
and significantly shorter OS

[73–76]

HOTAIR 12q13.13
PRC2, ZEB1,

SNAIL, MMP13,
MMP9

- interacts with PRC2 and plays a pivotal role in the H3K27
methylation, causes epigenetic silencing during many
cellular processes, e.g., cell differentiation, adhesion, and
cell cycle

- high level is associated with poor prognosis
and patients’ OS

- up-regulation in cell cultures leads to abnormally activated
Wnt signaling pathways, which results in progression,
increased migration, and the ability to create metastasis

[77–80]

HOTTIP 7p15.2

WDR5, UPF1,
PTB, FUS,

IF4AIII, DGCR8,
HOXA10,
HOXA11,
HOXA13

- regulates the activation of multiple HOXA genes by
controlling H3K4 methylation

- overexpression is crucial for tumor development growth,
and metastasis in many cancers, e.g., HCC, TSCC

- expression associated with the grade, stage, and overall
survival of patients; independent prognostic factor

[41,81–83]
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Table 1. Cont.

lincRNA Location Possible
Targets Role Ref.

lincRNA-
p21 6p21.2 STAT3,

CTNNB1, JUNB

- pivotal role in the development and progression of
multiple cancers

- displays their suppressor function by decreasing the
activity of the JAK2/STAT3 pathway

- low level causes drastic progression of HNSCC due to lack
of induced G1 phase arrest and inhibition of apoptosis

[86]

LINC02487 6q27 USP17

- displays regulatory function at the post-transcriptional or
post-translational level

- dysregulated in OSCC and correlated with development
stage, unfavorable clinical outcome, poor survival

- overexpressed in cell cultures, inhibits OSCC proliferation,
migration, and invasiveness, and regulates
levels of EMT markers

[87,88]

LINC02195 16p12.1 HLA-A, HLA-B,
HLA-C

- closely associated with MHC I molecules, whose lack of
function leads to the mechanism of escaping
immunosurveillance

- silencing causes a decrease in the level of MHC I
- correlation with the T cell receptor pathway, chemokines

(class I and II), and cytokines
- high expression correlated with better prognosis and

positive response to immunotherapy in different cancers

[91–93]

LINC00668 18p11.31
ABL2, RAB3B,

ENAH,
HMGA2

- oncogene; promotes tumor growth in OSCC cells by
interaction with miR-297 and VEGFA signaling pathways

- expression level in LSCC is associated with age, stage, and
cervical lymph node metastasis; enhances the proliferation,
migration, and invasion ability of LSCC cell lines

[94,95]

LINC00519 14q22.1

miR-450b-5p,
miR-515-5p,

YAP1,
miR-876-3p

- a known oncogene in LSCC
- acts as an miRNA-sequestering sponge
- binds miR-876-3p, which is aberrantly expressed and

tumorigenic in many cancers
- high expression associated with shorter OS and

unsatisfactory prognosis in TSCC

[96–98]

LINC00511 17q24.3 miR-765,
LAMC2

- regulates the developmental process, apoptosis,
programmed cell death, focal adhesion through
hemostasis, and different carcinogenic pathways

- modulates TSCC progression by promoting cell
proliferation and migration

- associated with age, tumor size, clinical stage, lymph node
metastasis along with unsatisfactory prognosis

[100–102]

LINC00460 13q33.2

p21, E-cadherin,
N-cadherin,
cyclin D1,
miR-162,

miR-149-5p,
miR-612

- oncogene in different cancers, e.g., NPC, ESCC, and lung
cancer

- high level associated with several carcinogenic pathways;
involvement in cell development, proliferation, the EMT,
and adhesion

- promotes tumor growth, affects cell cycle, migration, the
EMT along with invasion

- regulates the activity of miR-162 by acting as a molecular
sponge, which leads to progression, metastasis, and
unfavorable prognosis

[103–105,108,109]
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Table 1. Cont.

lincRNA Location Possible
Targets Role Ref.

LINC00312 3p25.3
JNK2, c-Jun,
c-Fos, H-Ras,

ER-alpha

- overexpression in NPC cell lines leads to an increase of
adhesion, motility, invasiveness and inhibits proliferation,
by arresting progression from G1 to S phase of the cell
cycle

- expression positively correlated with lymph node
metastasis and negatively associated with stages and size
of the tumor

- allows distinguishing healthy individuals from NPC
patients and, within the latter group, determine who
developed distant metastasis

[110,111]

LINC00052 15q25.3
SMYD2,

NTRK3, HER3,
miR-608

- displays regulatory function through acting as a molecular
sponge and sequestering different miRNAs [112–114]

Previously, our team performed a liquid biopsy on HNSCC patients and healthy
individuals to analyze lncRNA plasma expression differences between these two groups
and to determine their diagnostic potential. In agroup of 90 lncRNA transcripts, 20 lincR-
NAs, including ANRIL, Dios3os, Emx2os, GAS5, H19, HAR1B, HULC, Jpx, lincRNA-RoR,
MALAT1, MEG9, ncR-uPAR, NEAT1, NRON, RNCR3, SNHG1, SNHG6, Tsix, UCA1,
and Zfas1, had significantly higher expression levels in metastatic and/or recurrent pa-
tients’ samples in comparison to healthy individuals [52]. We checked whether lncRNA is
lincRNA in the LNCipedia database (version 5.2) [119].

The up-regulation of lincRNA ANRIL, also called CDKN2B antisense RNA 1 (CDKN2B-
AS1),has been described in many different cancers and correlated with tumor progres-
sion [120–122]. The study by Zhang et al. indicated that this lincRNA promotes HNSCC
tumorigenesis by regulating EGFR1 expression through sponging mir-125a-3p [120]. The
Dio3os overexpression has been described as an oncogenic molecule in pancreatic [123]
and thyroid cancer, and as a risk factor for the latter patients’ overall survival [124]. Our
recent study indicated that this lincRNA level in cell cultures is sensitive to radiation and
tends to decrease after irradiation [125]. The Emx2os molecule is an antisense transcript of
homeobox protein Emx2os, a known transcription factor with tumor suppressor abilities,
e.g., in LSCC [126]. Its up-regulation is associated with intensified tumor proliferation and
migration along with a poor prognosis for ovarian cancer patients [127]. Moreover, we
have also proved that high Emx2os expression levels can negatively affect progression-free
survival (PFS) of individuals with HNSCC [52]. Growth arrest-specific 5 (GAS5) lincRNA
was identified as a poorly conserved tumor suppressor that also acts as a decoy for the
glucocorticoid receptor (GR) [47,128,129]. The study by Fayda et al. proposed that this
lincRNA could become a useful biomarker of chemotherapy treatment response in head
and neck cancer [130]. H19 is up-regulated in many different malignancies and promotes
oncogenesis along with drug resistance by regulating DNA methylation genome-wide
through interactions with S-adenosylhomocysteine hydrolase [131]. Guan et al. proved
that high expression levels of this lincRNA together with up-regulation of miR-675 promote
tumor growth in HNSCC patients [132]. Additionally, H19 induces EMT and promotes
invasion in NPC by regulating the miR-630/EZH2 axis [133]. HAR1B (HAR reverse) is
an antisense lincRNA transcribed from the opposite strand of the “human-accelerated”
region 1 (HAR1) [134]. Our previous studies indicated that these molecules’ expression
level decreases after radiation, which can lead to disruption of many important processes
and pathways, e.g., cell cycle, cadherin, Wnt, and angiogenesis signaling pathways [125].
Interestingly, Yamada et al. proved that HAR1B could be a useful biomarker of pazopanib
therapy response in patients with bone or soft-tissue sarcomas [135]. The lncRNA highly
up-regulated in liver cancer (HULC) is associated with tumor progression not only in, as
the name suggests, hepatic cancer but also in gastric and pancreatic cancer, liver metastasis
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of colorectal cancer, and OSCC [136–140]. Su et al. indicated that suppression of this
lincRNA expression in OSCC cell lines increases their apoptosis rate and inhibits their
proliferation, migration, and invasion [140]. The just proximal to XIST lncRNA (JPX)
overexpression is known to promote tumorigenesis and metastatic lesion development
in lung cancer by targeting miR-33a-5p, which causes up-regulation of its downstream
gene Twist1, leading to activation of the Wnt/β-catenin signaling pathway [141]. The
lincRNA regulator of reprogramming (lincRNA-RoR) is an oncogene involved in EMT
along with drug resistance in different malignancies, e.g., NPC, BC, and HNSCC [142–144].
Interestingly, we have observed that its expression level increases after exposure to cis-
platin [52]. One of the most poorly studied lincRNA is maternally expressed 9 (MEG9),
speculated to be induced by hypoxia in a mouse model by Voellenkle et al. [145]. We have
found that lincRNA upstream of the PAR-1 (ncR-uPAR) is down-regulated after cisplatin
administration compared to non-treated controls [52]. The aberrant expression of lincRNA
nuclear paraspeckle assembly transcript 1 (NEAT1) in different cancers has been widely
described. Previously, we conducted a study regarding its still pending role in HNSCC
biology [146]. The non-coding RNA repressor of NFAT (NRON) acts as a part of a scaffold
that binds the nuclear factor of activated T cells (NFAT) and subsequently could affect
the T cell activation and immune system response to cancer [147]. Shang et al. proved
that the lincRNA retinal non-coding RNA3 (RNCR3) is significantly up-regulated in an
inflammatory and tumor microenvironment, promotes myeloid-derived suppressor cells
(MDSCs) differentiation, and functions as a sponge for miR-185-5p in a mouse model [148].
The lincRNA small nucleolar RNA host genes (SNHGs) such as SNHG1 and SNHG6 are
also aberrantly expressed in HNSCC [52]. In LSCC, up-regulation of SNHG1 was proved
to promote proliferation, EMT, and metastasis and was connected with patients’ poor
survival [149]. Interestingly, we have indicated that high expression of this lincRNA is
correlated with better OS in HNSCC patients [52]. The SNHG6 lincRNA has been described
as an oncogene in tongue cancer and OPSCC [150,151]. In our study, we proved its aberrant
expression in HNSCC patients, especially in the group with the progressive disease [52].
Additionally, we observed an increase in its level after cisplatin treatment, which could
disrupt the mechanism of different molecular pathways, such as cadherin, Wnt signaling
pathway, or TP53 pathway [125]. The lincRNA Tsix is a negative regulator of lincRNA
XIST that inhibits its function, which in this case can lead to tumor progression [152,153].
Salama et al. suggested that lincRNAs XIST and Tsix could become stable non-invasive
immune biomarkers for BC patients [154]. The lincRNA urothelial cancer-associated 1
(UCA1) is described as an oncogene associated with cancer progression [24]. It was proved
that elevated levels of the above lincRNA can induce cell migration and are correlated with
lymph node metastasis in TSCC [155]. The ZNFX1 antisense RNA 1 (Zfas1) was described
as an oncogenic lincRNA in a multitude of different cancers, e.g., NSCLC [156], HC [157],
ESCC [158], and HNSCC [159]. We have elucidated its role in HNSCC biology and proved
its diagnostic potential in previous research [159].

Additionally, our lncRNA-based study indicated that lincRNAs HAR1B, Jpx, and
NEAT1 levels differ between localizations of HNSSC tumors. As we mentioned above,
some of the lincRNAs are correlated with treatment response and can become biomarkers of
primary chemotherapy resistance in the future. We have indicated that lncRNAs can serve
as diagnostic biomarkers that will help to distinguish healthy individuals from HNSCC
patients [52].

According to the UALCAN database presenting results based on available TCGA
data [160], additional significantly (p<0.05) changed lincRNAs, which were not previously
described in HNSCC, were indicated. Among the changed lincRNAs, expression levels of
24 are up-regulated, 4 down-regulated, and 5 not changed compared to normal samples.
These changed lincRNAs were connected in different ways with stages and cancer grades.
Moreover, only 4 of 29 lincRNAs are associated with patients’ survival time: higher levels of
LINC00115 (p = 0.049), LINC00158 (p = 0.0076), and LINC00167 (p = 0.042), as well as a lower
level of LINC00460 (p = 0.00074) were connected with significantly better patients’ survival.
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A schematic representation of UALCAN results is shown in Figure 2A. The detailed results
are freely available on the UALACAN database: http://ualcan.path.uab.edu (accessed on
15 April 2021).

5. lincRNAs in HPV-Positive HNSCC

As mentioned above, HPV infection is a well-known predictive factor for HNSCC
patients [7,10]. HPV infection causes differences in the cellular program, which is mani-
fested by changes in protein-coding and non-coding RNA transcripts [161,162]. More and
more studies are focusing on the role of lncRNAs in HPV infection, e.g., TCGA analysis
revealed differences in 177 lncRNAs between HPV(+) and HPV(−) HNSCC patients in-
cluding 75 up- and 102 down-regulated [163]. However, the function of different lincRNAs
is not fully understood. In the case of lncRNAs, our results indicated the role of lncRNA
EGOT, PRINS, and CDKN2B-AS1 (ANRIL) [164,165]. Moreover, in our published work,
we observed changes in lincRNAs including up-regulation of TTTY14, and TTTY15, and
down-regulation of MEG3 and H19 in HPV(+) patients in comparison to HPV(−). We
also observed that TTY14, TTY15, and MEG3 showed the high discrimination potential
of HPV(−) and HPV(+) patients. However, no differences in the case of MALAT1 and
CYTOR (LINC00152) depending on the HPV status based on TCGA data were noticed [165].
Tomar et al. study based on HNSCC samples indicated changes of TTTY14, TTTY15, XIST,
and CYTOR (LINC00152) depending on the HPV infection and activity status [166]. A
previous publication indicated that MALAT1, MEG3, and H19 are associated with HPV
infection in the case of cervical cancer and probably it could take some function in HPV(+)
HNSCC cases but there was no fully described experimental evidence based on the HNSCC
model [167]. However, in the doctoral dissertation of Tomar (2013), changes associated
with HPV infection in HNSCC for MALAT1 as well as other lincRNAs, such as LINC0002,
LINC00028, LINC00087, LINC00152, LINC00173, LINC00174, LINC00230A, LINC00240,
LINC00263, LINC00319, LINC00426, LINC00472, LINC00487, LINC00277, LINC00339, and
LINC00476, were presented [168] and are summarized in Figure 2B. We postulate that the
biological role of these lincRNAs needs to be verified based on the in vitro model and that it
should be established whether they may be used as potential biomarkers. Song et al. iden-
tified that lincRNA lnc-IL17RA-11 had the highest correlation with HPV infection among
those analyzed using TCGA data. The authors observed that lnc-IL17RA-11 expression
is up-regulated by transcription factor ER-alpha, which is associated with HPV infection.
High levels of lnc-IL17RA-11 and co-expressed genes are involved in the cell cycle, DNA
replication, and base excision repair pathways, which influences the cellular phenotype.
Moreover, patients with a higher level of lnc-IL17RA-11 displayed better survival, and
the expression level of this lincRNA was higher in the group of HPV(+) than HPV(−).
However, it is difficult to clearly say that only lnc-IL17RA-11 influences the obtained results
because in high- and low-expression groups of patients, we could find HPV(+) and HPV(−)
patients. Moreover, no evidence was presented by Song et al. about the direct or indirect
regulation of lnc-IL17RA-11 on co-expressed genes and the role of lincRNA in potential
sensitivity to radiotherapy [163].
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6. Conclusions and Future Perspectives

HNSCC is one of the most common cancers, with a very high mortality rate at the
same time. Moreover, the proposed standard treatment often leads to serious side effects,
acquired resistance, subsequent relapse, and distant metastasis. Despite several clinical
trials testing novel therapy solutions, there is still tremendous demand for personalized
medicine and a panel of unique, specific biomarkers detecting the early stage of HNSCC or
implicating its prognosis.

In recent years, RNA molecules have gained great interest due to their broad range
of functions and crucial impact on every molecular pathway and process. However, their
ability to create complex networks of interactions does not make it easy to understand and
characterize their role, mechanism of action, and influence on human biology. lincRNAs
belong to one of the least described subgroups of RNA molecules. Even though nowadays
we can identify particular molecules in a large group of aberrantly expressed ones, still



Cancers 2021, 13, 2949 15 of 23

much work in the field of functional studies remains to be done. The lincRNAs discussed
in this review are promising diagnostic and predicting biomarkers of the whole group
of HNSCC tumors. Additionally, some of them act as tumor suppressors, e.g., lincRNA-
p21 or LINC02487, Emx2os, and GAS5, but others play an oncogenic role, e.g., MALAT1,
LINC00668, LINC00519, LINC00460, Dio3os, H19, SNHG6, UCA1, or Zfas1, and can be
used as a therapeutic target in the future. Nevertheless, each one of them needs to be
studied in a cohort of patients and to pass the validation process. This can be very challeng-
ing due to the carefulness required in designing sample processing, extraction techniques,
quality and quantity assessment, and data normalization. It is worth mentioning that
more and more publications describe the interactions between different groups of RNA
molecules with proteins or transcription factors, but very few address the impact of the
chemotherapy or radiation phenomenon on the function of the lincRNAs network. How-
ever, the use of TCGA data such as those in the UALCAN database is the best solution for
further extension of lincRNA knowledge in HNSCC, especially for selection and validation
of predicted transcripts. In our opinion, it is the best solution and brings new discoveries
in the biology of HNSCC, especially in the diagnostics field as well as in personalization
of therapy.

Although considered “junk DNA,” long intergenic non-protein-coding RNAs became
valuable and significant players in the field of cancer research. Even though there is still
much work ahead of us, we can confidently say that lincRNAs will revolutionize the
diagnostics and understanding of cancer biology.
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Abbreviations

linc-RoR long intergenic non-protein-coding RNA, regulator of reprogramming
TINCR tissue differentiation-inducing non-protein-coding RNA
ANCR Angelman syndrome chromosome region
PNKY long intergenic non-protein-coding RNA
lincRNA-EPS erythroid prosurvival lincRNA, also known as Ttc39aos1
miscRNA miscellaneous RNA
piRNA piwi-interacting RNA
tRFs tRNA-related RNA fragments
XIST X-inactive specific transcript
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MALAT1 metastasis-associated lung adenocarcinoma transcript 1
HOTAIR HOX transcript antisense RNA
HOTTIP HOXA transcript at the distal tip
NEAT2 nuclear-enriched abundant transcript 2
lincRNA-p21 long intergenic non-coding RNA p21
ANRIL CDKN2B-AS1-CDKN2B antisense RNA 1
Dios3os DIO3 opposite strand upstream RNA
Emx2os EMX2 opposite strand/antisense RNA
GAS5 growth arrest-specific 5
H19 H19 imprinted maternally expressed transcript
HAR1B highly accelerated region 1B
HULC hepatocellular carcinoma up-regulated long non-coding RNA
Jpx JPX transcript, XIST activator
MEG3/9 maternally expressed 3/9
ncR-uPAR non-coding RNA upstream of the PAR-1
NEAT1 nuclear paraspeckle assembly transcript 1
NRON non-coding repressor of NFAT
RNCR3 retinal non-coding RNA3
SNHG1/SNHG6 small nucleolar RNA host gene 1/6
Tsix XIST antisense RNA
UCA1 urothelial cancer-associated 1
Zfas1 ZNFX1 antisense RNA 1
EGOT eosinophil granule ontogeny transcript
PRINS psoriasis-associated non-protein-coding RNA induced by stress
TTTY14 testis-specific transcript, Y-linked 14
TTTY15 testis-specific transcript, Y-linked 15
CYTOR cytoskeleton regulator RNA
lnc-IL17RA-11 long, non-coding interleukin 17 receptor A-11
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