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ABSTRACT
Background. Anti-PD1/PDL1 immune checkpoint inhibitors (ICIs) showed promising results in breast 
cancer, and exploration of additional actionable immune checkpoints is ongoing. Inflammatory breast 
cancer (IBC) is an aggressive form of disease, the immune tumor microenvironment (TME) of which is 
poorly known. We aimed at providing the first comprehensive immune portrait of IBCs.  
Methods. From the gene expression profiles of 137 IBC and 252 non-IBC clinical samples, we measured 
the fractions of 22 immune cell types, expression of signatures associated with tertiary lymphoid 
structures (TLS) and with the response to ICIs (T cell-inflamed signature: TIS) and of 18 genes coding for 
major actionable immune checkpoints. The IBC/non-IBC comparison was adjusted upon the clinicopatho-
logical variables.  
Results. The immune profiles of IBCs were heterogeneous. CIBERSORT analysis showed profiles rich in 
macrophages, CD8+ and CD4 + T-cells, with remarkable similarity with melanoma TME. The comparison 
with non-IBCs showed significant enrichment in M1 macrophages, γδ T-cells, and memory B-cells. IBCs 
showed higher expression of TLS and TIS signatures. The TIS signature displayed values in IBCs close to 
those observed in other cancers sensitive to ICIs. Two-thirds of actionable immune genes (HAVCR2/TIM3, 
CD27, CD70, CTLA4, ICOS, IDO1, LAG3, PDCD1, TNFRSF9, PVRIG, CD274/PDL1, and TIGIT) were overexpressed 
in IBCs as compared to normal breast and two-thirds were overexpressed in IBCs versus non-IBCs, with 
very frequent co-overexpression. For most of them, the overexpression was associated with better 
pathological response to chemotherapy.  
Conclusion. Our results suggest the potential higher vulnerability of IBC to ICIs. Clinical trials.
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Introduction

Inflammatory breast cancer (IBC) is a highly metastatic form of 
breast cancer,1 with a poorer prognosis than non-IBC. 
Although its incidence represents only 2–4% of breast cancers, 
it accounts for 8–10% of breast cancer-related mortality. 
However currently, the treatment remains similar to that of 
non-IBC and is based on anthracycline/taxane-based neoadju-
vant chemotherapy (and anti-HER2 agents for HER2+ cases), 
followed by surgery and radiotherapy, and then adjuvant ther-
apy including capecitabine in the case of residual tumor for 
triple-negative tumors, hormone therapy for estrogen receptor 
(ER)-positive tumors and anti-HER2 agents for HER2 
+ tumors.2 Because of this lack of specific treatment, the 
5-year survival remains inferior to 50%. Identification of new 
therapeutic targets is crucial, justifying the biological studies 
published for many decades.3,4 The largest “omics” series 
reported to date is the World IBC Consortium’s series,5–7 in 
which we showed the overrepresentation of high-risk molecu-
lar subtypes (basal, HER2-enriched, luminal B) in IBC, 

underscoring the need to adjust the IBC/non-IBC comparison 
upon the molecular subtypes.7

During the last decade, immunotherapy, based on the tar-
geting of co-inhibitory immune checkpoints such as PD1/ 
PDL1 and CTLA4, has become important in treating many 
cancers, including melanoma, and lung or head/neck carcino-
mas. Immune checkpoint inhibitors (ICIs) are increasingly 
being tested in many other cancers, but despite major 
advances, only a minority of patients benefit from these, and 
most of them develop secondary resistance. The immune 
response is a highly coordinated and complex process invol-
ving numerous specialized cell types and immune regulator 
proteins, including immune checkpoints. Resistance to ICIs 
may be due to the expression of alternative inhibitory immune 
checkpoints that dampen the T-cell responses, leading to 
severe T-cell exhaustion not rescuable by anti-PD1/PDL1 
alone.8,9 Another mechanism is the lack of efficient immune 
cell infiltration, which may be improved by antibodies target-
ing co-stimulating immune checkpoints. These mechanisms 
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led to the testing of the combination of anti-PD1/PDL1 with 
drugs targeting other co-inhibitory and/or co-stimulating 
immune checkpoints. Today, numerous clinical trials of 
immunotherapy are ongoing,10 based on the targeting of co- 
inhibitory and/or co-stimulating immune checkpoints.

Regarding breast cancer, the importance of immunity 
emerged recently. Several immune variables have been asso-
ciated with survival and/or response to chemotherapy in non- 
IBC, including the quantification of tumor-infiltrating lym-
phocytes (TILs), gene expression signatures reflecting the 
abundance and/or the functionality of immune cells, expres-
sion of immune checkpoints such as IDO111 or CD274/ 
PDL1.12–24 In the last few years, anti-PD1/PDL1 ICIs have 
shown interesting results in metastatic BC,25 particularly in 
the triple-negative (TN) subtype, both as monotherapy26 and 
in combination with conventional treatments.27,28The FDA 
recently approved the use of atezolizumab, an anti-PDL1 
antibody, combined with nab-paclitaxel for patients with 
metastatic TNBC. In the neoadjuvant setting, promising 
results have been obtained in TNBC.29,30 Anti-CTLA4 ICIs 
have been more recently assessed in metastatic BC.31,32 

Exploration of additional actionable immune checkpoints is 
ongoing.

To date, no clinical trial has tested ICIs in IBC, although 
pre-clinical data suggest that they deserve particular atten-
tion. The importance of the tumor stroma in IBC has been 
underlined.33,34 Our IBC/non-IBC 79-gene signature was in 
part characterized by a decreased TGFβ pathway and an 
altered immune response program.7 Recent data revealed 
a central role of stroma-derived TGFβ in inducing immune 
evasion and resistance to ICIs.35,36 Inflammatory signaling 
pathways, such as NFkB, COX2, and JAK2/STAT3, are 
active in IBC.37,38 A signature predictive for pathological 
complete response (pCR) to neoadjuvant chemotherapy in 
IBC was mainly composed of genes related to T cytotoxic 
immune response.5 PDL1 expression is higher in IBC than 
in non-IBC at the mRNA39 and protein40 levels, with posi-
tive correlation with pCR to chemotherapy. Finally, IBC 
samples display higher tumor mutational burden (TMB) 
than non-IBC,41–43 which might increase the antigen- 
based attraction of immune effector cells. To date, the 
characterization of immune tumor microenvironment 
(TME) of clinical IBC samples has been limited to the 
quantification of a few cell types including TILs,40,44,45 

CD8 + T-cells,45 CD20 + B-cells,45,46 and analysis of 
PDL1 expression at the mRNA39 and protein40,45,46 levels. 
Very little is known about the relative abundance of 
immune cells and expression of numerous actionable 
immune checkpoints.

To better decipher the immune landscape in IBC, we 
analyzed our World IBC Consortium’s expression dataset 
including 137 IBC and 252 non-IBC samples. We measured 
the fractions of 22 immune cell types, expression of gene 
signatures associated with tertiary lymphoid structures 
(TLS) and with response to ICIs (T cell-inflamed signature: 
TIS) and of 18 genes coding for major actionable immune 
checkpoints.

Materials and methods

Patients and breast cancer samples

We analyzed mRNA expression data of 137 IBC and 252 non- 
IBC clinical samples (N = 389) collected within the World IBC 
Consortium. IBC definition was clinical, as defined according 
to international consensus criteria.1 Collection criteria and 
sample characteristics have been previously described.7 

Briefly, all samples were pre-treatment primary tumor samples 
from patients with invasive breast adenocarcinoma treated at 
the Institut Paoli-Calmettes (IPC: 71 IBC, 139 non-IBC), the 
General Hospital Sint-Augustinus (TCRU: 41 IBC, 55 non- 
IBC), and the University of Texas MD Anderson Cancer 
Center (MDA: 25 IBC, 58 non-IBC). IBC samples correspond 
to diagnostic biopsies taken from consecutively treated 
patients, clinically annotated, and with good-quality tumor 
RNA. Non-IBC samples were either diagnostic biopsies 
(advanced stage disease) or surgical specimen (early stage dis-
ease). Each patient gave written informed consent and the 
study was approved by our institutional review boards. We 
also profiled four normal breast samples that represented 
a pool of samples from 11 healthy women (4 from reduction 
mammoplasty, and 3 commercial pools of, respectively, 1, 2 
and 4 normal breast RNA (Clontech, Palo Alto, CA)).

Neoadjuvant chemotherapy delivered to IBC patients was 
anthracycline-based, often including taxane, and associated 
with trastuzumab in more than 50% of HER2+ cases. 
Chemotherapy was followed by mastectomy and axillary 
lymph node dissection for clinically non-progressive and con-
senting patients, then radiotherapy. The pathological response 
to chemotherapy was defined on the operative specimen (pri-
mary tumor and lymph nodes) using Chevallier grading,47 

grades 1 and 2 (ypT0/Tis ypN0) being considered as pCR, 
and grades 3 and 4 as no-PCR.

We also collected the gene expression and protein expres-
sion data of breast cancer cell lines of the Broad Institute 
Cancer Cell Line Encyclopedia (CCLE)48 and hosted on the 
Cancer Dependency Portal (DepMap).

Gene expression data analysis

Each institution had generated the gene expression profiles of 
its own samples using Affymetrix platforms (Affymetrix®, Santa 
Clara, CA, USA: U133 Plus 2.0 human microarrays for the 
French and Belgium institutions and U133A human microar-
rays for the US institution) as previously described.49 Data 
analysis required pre-analytic processing. We first normalized 
each data set separately using Robust Multichip Average 
(RMA).50 Normalization was done in R using Bioconductor 
and associated packages. The gene annotation of hybridization 
probes was updated using NetAffx Annotation files (www. 
affymetrix.com; release from 01/12/2008). The probes were 
then mapped based on their EntrezGeneID. When multiple 
probes mapped to the same GeneID, we retained the one with 
the highest variance in a particular dataset. We then merged 
the three data sets by using COMBAT (empirical Bayes)51 as 
batch effects removal method, included in the inSilicoMerging 
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R/Bioconductor package.52 ER, PR, and ERBB2/HER2 statutes 
of samples were based on mRNA expression of the 205225_at 
(ESR1), 208305_at (PGR), and 216836_s_at (ERBB2) 
Affymetrix probe sets and defined as discrete values (positive/ 
negative) using a 2-component Gaussian mixture distribution 
model.53 The molecular subtypes of tumors were defined as HR 
+/HER2- (ER- and/or PR-positive and HER2-negative), HER2 
+ (HER2-positive, regardless ER and PR), and TN (ER-, PR-, 
and HER2-negative).

We tested different immune variables from gene expression 
data. First, we applied the CIBERSORT algorithm54 to quantify 
the absolute amount of 22 infiltrating immune cell types in 
each sample in the merged data set. CIBERSORT employs 
deconvolution of bulk gene expression data and 
a sophisticated algorithm for in silico quantification based on 
a leukocyte gene signature matrix, termed LM22, which con-
tains 547 genes that distinguish 22 human hematopoietic cell 
phenotypes. The 22 cell types include naïve and memory 
B-cells, plasma cells, seven T-cell types (CD8, naïve CD4, 
resting memory CD4, activated memory CD4, follicular helper, 
regulatory, and γδ), resting and activated natural killer (NK) 
cells, monocytes, three macrophages types (M0, M1, and M2), 
resting and activated dendritic cells (DC), resting and activated 
mast cells, eosinophils, and neutrophils. We also compared the 
CIBERSORT scores between IBC and 14 solid cancer types 
previously analyzed by others and profiled using Affymetrix 
microarrays.55 In this comparison, the 22 immune cell types 
were aggregated into 11 cell immune classes as reported.55 The 
similarity between samples was assessed using hierarchical 
clustering (hclust function in R with Euclidean distance and 
average linkage). Second, we applied two other immune signa-
tures, TIS and TLS. The TLS signature is a 12-chemokine-gene 
signature56 associated with the presence of TLS in human 
cancers. The TIS signature is an 18-gene signature associated 
with the response to ICIs in different cancer types.57 Both 
signatures were applied as metagenes to IBC and non-IBC 
samples. Finally, we selected 18 genes coding for actionable 
immune checkpoints targeted by immuno-oncology drugs 
FDA-approved (CD274/PDL1, PDCD1, and CTLA4,) and 
under clinical development (CD276, BTLA, CD27, CD40, 
CD70, HAVCR2/TIM3, ICOS, IDO1, LAG3, PVRIG, TIGIT, 
TNFRSF4, TNFRSF9, TNFRSF18, and VSIR). All those immune 
variables were analyzed as continuous values. In order to 
compare the samples with respect to all immune variables 
pooled, we defined a PanImmune score for each sample. 
A z-score transformation was first applied to the 42 immune 
variables tested (22 CIBERSORT estimates, 2 signature scores, 
and expression of 18 genes) to homogenize them; then for each 
sample, the PanImmune score was defined as the mean of the 
42 transformed variables.

Statistical analysis

Correlations between sample groups and clinicopathological 
variables were tested using the Student’s t-test for continuous 
variables and Fisher’s exact test for discrete variables. 
Correlation between continuous variables was tested using 
the Pearson correlation coefficient and the Spearman’s rank 
correlation coefficient. Univariate and multivariate 

comparative analyses of gene expression data between IBC 
and non-IBC and between IBC samples with pCR and no- 
pCR were done using a logistic regression analysis (glm func-
tion and significance estimated by specifying a binomial family 
for model with a logit link). Variables tested in univariate 
analyses included the immune variables (CIBERSORT mod-
ules, immune signatures, and gene expression levels) and the 
following clinico-pathological variables: patients’ age at time of 
diagnosis (continuous value), pathological type (ductal vs lob-
ular vs mixed vs other) and grade (3 vs 1–2), molecular sub-
types (HR+/HER2- vs HER2+ vs TN), and presence of dermal 
lymphatic emboli (yes vs no). Variables with a p-value <0.05 in 
univariate analysis were tested in multivariate analysis in the 
IBC versus non-IBC comparison. All statistical tests were two- 
sided at the 5% level of significance. Statistical analysis was 
done in the R software (version 3.5.2; http://www.cran.r-pro 
ject.org/).

Results

Patients’ population

The clinicopathological characteristics of 137 patients with IBC 
and 252 with non-IBC are summarized in Table 1. As expected, 
IBC patients were younger than non-IBC patients, and, com-
pared to non-IBC samples, IBC samples tended to be more 
frequently ductal type, displayed more frequent dermal lym-
phatic tumor emboli, and were more frequently pathological 
grade 3, and HER2+ or TN. In univariate analysis (logistic 
regression), younger patients’ age, presence of dermal lympha-
tic tumor emboli, grade 3, and HER2+ and TN subtypes were 
associated with IBC phenotype (data not shown). Such 
expected differences, as well as the difference in 5-year MFS 
(79% in non-IBC and 53% in IBC; data not shown), confirmed 
the coherence of our data set. The pathological response to 

Table 1. Clinico-pathological characteristics of IBC and non-IBC samples.

All (N = 389) IBC (N = 137) non-IBC (N = 252) p-value

Patients’ age, 
years

54 (24–89) 50 (24–82) 55 (24–89) 2.08E- 
03

Pathological type 0.0981
ductal 325 122 (90%) 203 (81%)
lobular 30 7 (5%) 23 (9%)
mixed 14 3 (2%) 11 (4%)
other 18 3 (2%) 15 (6%)
Dermal lymphatic tumor emboli 4.43E- 

16
absence 123 29 (24%) 94 (76%)
presence 121 91 (76%) 30 (24%)
Pathological grade 5.62E- 

11
1–2 174 30 (23%) 144 (58%)
3 207 101 (77%) 106 (42%)
Molecular subtype 1.75E- 

04
HR+/HER2- 223 60 (44%) 163 (65%)
HER2+** 82 42 (31%) 40 (16%)
TN 84 35 (26%) 49 (19%)
Pathological complete response
no 59 59 (68%) NA*
yes 28 28 (32%) NA

*NA, not available; **; HER2+ positive included 12 HR+ and 30 HR- cases in IBC 
and 20 HR+ and 20 HR- cases in non-IBC
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neoadjuvant chemotherapy was available for 87 IBC samples 
and included 28 cases with pCR (32%).

Immune cell composition in IBC samples

We first studied the landscape of 22 immune cell types infiltra-
tion in the 137 IBC samples. As shown in Figure 1a, the 
different immune cell types showed great variability, the five 
most abundant ones being M2 macrophages, CD8 + T-cells, 
M0 macrophages, M1 macrophages, then plasma cells, while 
the less abundant was eosinophils. Each immune cell type 
showed large variability between samples, the most variable 
types being M0 and M2 macrophages, and the less variable 
being eosinophils. As expected, the total number of immune 
cells (total CIBERSORT absolute score) positively correlated 
with the Rooney’s cytolytic activity score of samples,58 an in 
silico metric of inflammation based on the geometric mean of 
GZMA and PRF1 expression (r = 0.78, Figure 1a).

We then compared the CIBERSORT profile of IBC samples 
to that of the 252 non-IBC samples. The respective distribu-
tions of immune cell types seemed globally similar between 
IBC and non-IBC. However, significant differences existed 
(Figure 1b). In univariate analysis, the γδ T-cells were more 

numerous (OR = 1.20, CI95% 1.09–1.33; p = 2.65E-03) in IBC 
than in non-IBC, as were the memory B-cells (OR = 1.16, 
CI95% 1.06–1.28; p = 1.01E-02), M1 macrophages (Odds 
Ratio: OR = 1.09, CI95% 1.05–1.15; p = 1.18E-03) and plasma 
cells (OR = 1.05, CI95% 1.01–1.09; p = 2.10E-02). In multi-
variate analysis including the variables significant in univariate 
analysis (patients’ age, pathological grade, dermal lymphatic 
tumor emboli, and molecular subtypes), the M1 macrophages, 
γδ T-cells, and memory B-cells remain significantly more 
numerous in IBC (p < .05), whereas plasma cells tended to 
remain significant (p = .107). Of note, CD3E, CD20, and CD68 
mRNA expressions were not different between IBC and non- 
IBC samples, suggesting similar amounts of T-cells, B-cells, 
and macrophages, respectively, whereas the Rooney’s cytolytic 
activity score was higher in IBC samples than non-IBC sam-
ples, even after adjustment in multivariate analysis (Figure 1b).

Finally, to compare IBC to other solid cancers, we aggre-
gated these 22 immune cell types into 11 immune cell classes 
and compared their profile with that of 14 solid cancer types 
publicly available.55 There was a similarity between IBC and 
primary melanoma that clustered together, and higher abun-
dance of CD8 + T-cells in IBC and primary and metastatic 
melanoma than in other types (Figure 1c). Altogether, these 

Figure 1. Immune cell composition of IBC samples. A/Bar plots showing the absolute percentage of the 22 CIBERSORT immune cell types in the 137 IBC samples. The box 
shows the correlation between the total number of immune cells (total CIBERSORT absolute score) and the Rooney’s cytolytic activity score. B/Unadjusted IBC/non-IBC 
Odds Ratios (boxes and 95%CI) of the estimates of absolute fraction of the 22 CIBERSORT immune cell types, of the mRNA expression levels of CD3E (T-cells), CD20 
(B-cells), and CD68 (macrophages), and of the Rooney’s cytolytic activity score for the IBC versus non-IBC comparison. Asterisks denote variables significant in 
multivariate analysis. C/Hierarchical clustering of 14 solid cancer types and our IBC class (N = 137) and 11 immune cell classes.
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data suggested that the immune cell microenvironment of IBC 
is different from non-IBC and associated with higher cytolytic 
activity. This difference is not due to different amounts of 
T-cells, B-cells, and macrophages, but results from more subtle 
differences with respect to more specific immune cell sub- 
populations.

Tertiary lymphoid structures in IBC

Independently of the amount of each immune cell type, the 
tissue organization of immune cells in tumors is biologically 
and clinically relevant, as exemplified by the importance of 
TLS59), which have been associated with response to ICIs in 
clinical samples.60–62 We analyzed in silico the presence of TLS 
in IBC samples by applying the 12-gene TLS signature.56 As 
shown in Figure 2a, this signature was heterogeneous across all 
samples, but clearly expressed in a significant subset of cases. 
The comparison with non-IBC samples showed higher TLS 
score in IBC (Figure 2b). In univariate analysis, the OR for 
IBC type was 1.62 (95%CI 1.28–2.03; p = 5.76E-04), which 
remained significant in multivariate analysis (OR = 1.5 (95% 
CI 1.12–2.00), p = 2.20E-02). These results suggested higher 
frequency of TLS in IBC than non-IBC, independently from 
the clinicopathological variables, notably the molecular 
subtypes.

Signature predictive for response to ICI in IBC

In addition to the TLS signature, we tested an immune gene 
signature (TIS) defined as predictive for response to ICIs in 
different cancers.57 This signature was heterogeneous across 
IBC samples and highly expressed in a subset of samples 
(Figure 3a). The comparison of the TIS scores between IBC 
and other cancers from TCGA showed that IBC had relatively 
high median scores, close to that of cancers classically sensitive 
to ICIs, such as lung and cervical squamous cell carcinomas 
(Figure 3b). TIS scores were higher in IBC samples than in 
TCGA breast cancer samples that exclusively included non- 
IBC (p = 1.25E-04). We confirmed this difference in our IBC 

versus non-IBC samples (Figure 3c). In univariate analysis, the 
OR for IBC type was 1.47 (95%CI 1.17–1.86; p = 5.99E-03), and 
higher expression in IBC remained significant in multivariate 
analysis (p = 3.38E-03), suggesting independency with respect 
to clinicopathological variables. Of note, the TIS score varia-
bility in IBC was similar to that observed in TCGA breast 
cancer samples and other cancer types, as previously 
reported.63 Altogether, these data suggested that IBC might 
be more vulnerable to ICIs than non-IBC.

Expression of targetable immune checkpoints in IBC

We thus analyzed the expression of 18 genes coding for action-
able immune checkpoint regulators. As shown in Figure 4a, 
expression in IBC samples showed a great variability between 
the different genes, with higher median expression for VSIR 
and lower expression for TNFRSF4. There was also a great 
heterogeneity in expression of each gene across the different 
samples, with a range of intensities ranging from eight intervals 
in log2 scale for the most variable (IDO1) to one interval for the 
least variable (TNFRSF4). Twelve out of 18 genes (67%) were 
significantly overexpressed (Mann–Whitney test) in IBC sam-
ples as compared to normal breast samples (Table 2).

The range of expression levels of these 18 genes in 
non-IBC samples was close to that observed in IBC sam-
ples (data not shown). However, expression levels were 
significantly different (continuous values) between IBC 
and non-IBC samples (p ≤ 0.05, Student’s t-test; Figure 
4b, Table 3) for 12 out of 18 genes (67%) in univariate 
analysis, with higher expression in IBC for BTLA, CD274/ 
PDL1, TIGIT, VSIR, CD27, CD40, CD70, IDO1, and 
PVRIG, and lower expression in IBC for three co- 
stimulating checkpoints (CD276, TNFRSF18, and 
TNFRSF4). In multivariate analysis adjusted for the clin-
icopathological variables, six genes remained differentially 
expressed between IBC and non-IBC, including notably 
CD274/PDL1, VSIR, and IDO1. Using the available omics 
data of CCLE breast cancer cell lines, we measured the 
correlation between the mRNA and protein expression 

Figure 2. Expression of the TLS signature in IBC samples. A/Hierarchical clustering of the 137 IBC samples and the 12 genes of the TLS signature. The molecular subtype 
of samples is shown above the color matrix and color-coded as follows: blue: HR+/HER2-, pink: HER2+, and brown: TN. B/Box plot comparing the TLS metagene score in 
IBC versus non-IBC. The p-value if for univariate analysis and the asterisk denotes significance in multivariate analysis.
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levels of these six genes. No data was available for CD70. 
For the five other genes, the correlation was very good, 
with Spearman’s rank correlation coefficient (rho) ranging 
from 0.66 to 0.82 and a mean equal to 0.74 (CI95 0.66–-
0.82, p = 1.53E-05) (Supplementary Table S1). Such cor-
relation indirectly suggested that the changes in gene 
expression in tumors likely translate into changes at the 
protein level for these genes. Of note, all other genes 
significant in univariate analysis showed higher odds 
ratios in multivariate analysis than in univariate analysis, 
but did not keep significance likely because of the too 
small sample size. VSIR was the gene showing the highest 
odds ratio. Altogether, these data suggested frequent 
higher expression of genes coding for actionable immune 
checkpoint regulators in IBC, compared to non-IBC.

Correlations between immune variables in IBC

Figure 5 shows the matrix of pairwise correlations of all 
immune variables in IBC samples. Expression of most immune 
actionable genes was positively correlated to different types of 
T-cells, B-cells and macrophages: the top five cell types 
included the three types significantly enriched in IBC (M1 
macrophages, memory B-cells, and γδ T-cells) and memory 
activated CD4 + T-cells and CD8 + T-cells also more abundant, 
although not significantly, in IBC. A positive correlation also 
existed between the expression of several immune genes, sug-
gesting frequent high co-expression. For example, there was 
a strong correlation between expression levels of CD274/PDL1, 
CTLA4 and of the four immune genes targeted by major 
immunotherapies under development (LAG3, HAVCR2/ 
TIM3, TIGIT, and IDO1) and the 112 IBC samples informative 
for these four genes, with a mean correlation coefficient equal 
to 0.61 (95%CI 0.55–0.67; p = 5.37E-12). Interestingly, the TIS 
signature score was strongly associated with high expression of 

Figure 3. Expression of the TIS signature in IBC samples. A/Hierarchical clustering of the 137 IBC samples and the 18 genes of the TIS signature. The molecular subtype of 
samples is shown above the color matrix and color-coded as follows: blue: HR+/HER2-, pink: HER2+, and brown: TN. B/Box plots of the TIS scores between IBC (orange 
box), non-IBC (green box) and 33 cancer types from TCGA (gray boxes). ACC: adrenocortical carcinoma; BLCA: bladder urothelial carcinoma; BRCA: breast invasive 
carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL: cholangiocarcinoma; COAD: colon adenocarcinoma; DLBC: lymphoid 
neoplasm diffuse large B-cell lymphoma; ESCA: esophageal carcinoma, GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH: kidney 
chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LAML: acute myeloid leukemia; LGG: brain lower grade glioma; LIHC: 
liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma, MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: 
pancreatic adenocarcinoma; PCPG: pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum adenocarcinoma; SARC: sarcoma; SKCM: 
skin cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell tumors; THCA: thyroid carcinoma; THYM: thymoma (THYM); UCS: uterine 
carcinosarcoma; UCEC: uterine corpus endometrial carcinoma; UVM: uveal melanoma. C/Box plot comparing the TIS metagene score in IBC versus non-IBC. The p-value if 
for univariate analysis and the asterisk denotes significance in multivariate analysis.
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most of the genes coding for immune checkpoints targeted by 
current and emerging immuno-oncology drugs.

To what extent are IBC and non-IBC immune portraits 
different?

We thus assessed the extent of the IBC/non-IBC differences 
with respect to immune portrait comparatively to the same 
differences that exist between the molecular subtypes of breast 
cancer. Analysis concerned the 42 immune variables tested 
assessed both as individual variables and as a combined 
PanImmune score. This score corresponded to the mean of 
all 42 z-transformed variables. In the whole series of 389 
samples, more differences were evidenced between the mole-
cular subtypes than between IBC and non-IBC: 28/42 variables 
were significantly different between the molecular subtypes 
versus 18 between IBC and non-IBC (Supplementary Table 
S2), and the PanImmune score was also more significantly 
different (Supplementary Figure S1).

We then assessed and compared the degree of differences 
between IBC and non-IBC in each molecular subtype. We 
found more differences (Supplementary Table S2; 
Supplementary Figure S2) in the HR+/HER2- subtype (17 
variables significant, PanImmune score significant) than in 
the TN subtype (3 variables significant, PanImmune score 
not significant) and the HER2+ subtype (3 variables significant, 
PanImmune score not significant).

Conversely, we compared the degree of differences between 
the molecular subtypes in IBC and in non-IBC. In non-IBC 
samples, many differences were evidenced: 30/42 variables 
were significantly different, including 26 higher in TN samples, 

4 higher in HER2+ samples, and only 1 in HR+/HER2 samples 
(Supplementary Table S2). The PanImmune score was also 
significantly higher in TN samples, followed by HER2+ samples 
and then HR+/HER2- samples (Supplementary Figure S3). 
Such result, in agreement with the literature, further validated 
the coherence of our expression data. By contrast, less differ-
ences were observed in IBC samples, with only 10/42 variables 
significantly different (8 higher in TN samples, 1 higher in 
HER2+ samples, and 1 in HR+/HER2 samples; 
Supplementary Table S2), whereas the PanImmune score, 
although higher in TN versus HER2+ versus HR+/HER2- sam-
ples, was not significantly different (Supplementary Figure S3). 
For example, regarding the PD1/PDL1 axis, PDL1 (CD274) and 
PD1 (CD279) expressions were strongly associated with the 
molecular subtypes in non-IBC (higher in TN, followed by 
HER+, then HR+/HER2-; p = 2.96E-07 and p = 1.85E-04, 
respectively), as reported at the protein level (for PDL1 and 
PD1) in a series of 1,318 non-IBC64 and at the mRNA level in 
a series of 5,454 non-IBC for PDL124 and in the UALCAN 
database for PD1.65 By contrast, in IBC, PDL1 (CD274) expres-
sion was not significantly associated with the molecular sub-
types (higher in TN, followed by HER2+, then HR+/HER2-; 
p = .082) as reported at the protein level in a series of 143 
patients40 and PD1 (CD279) expression was not associated 
(p = .912; Supplementary Table S2).

Altogether, these results suggested that the immune differ-
ences between IBC and non-IBC are less important than the 
differences between the molecular subtypes of breast cancer, 
and that these latter are less important in IBC than in non-IBC.
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Correlations of immune variables with response to 
chemotherapy in IBC

We then searched for correlations between these immune 
variables and the pathological response to neoadjuvant che-
motherapy in patients with IBC. The CIBERSORT analysis 
suggested that higher levels of follicular helper T-cells (Tfh 
cells), naïve B-cells, M1 macrophages, and CD8 + T-cells 
were associated with higher pCR rate (p < .05) (Figure 6a), 
whereas higher levels of memory B-cells and activated mast 
cells tended to be associated with higher (p = .07) and lower 
pCR (p = .08) rate, respectively. Higher TLS score was asso-
ciated with more frequent pCR with an OR for pCR equal to 
2.52 (95%CI 1.54–4.12; p = 2.07E-03, logit link function; Figure 
5b), as was higher TIS score (OR = 3.41, 95%CI 1.95–5.86; 

p = 3.10E-04, logit link function; Figure 6b). Twelve out of 18 
tested genes (67%) were significantly upregulated in samples 
with pCR. The three genes with highest OR were TNFRSF9, 
BTLA, and TIGIT (Figure 6c). All these immune variables 
remained significant in multivariate analysis including the 
pathological type and grade and the molecular subtypes (data 
not shown).

Discussion

We aimed at documenting on a relatively large scale the 
immune landscape of IBC to improve our understanding of 
the nature and diversity of immune response, and eventually to 
provide further rationale for immunotherapy. We show that 
the immune profile of IBC is heterogeneous between patients 
and rich in macrophages and CD8 + T-cells, is enriched, when 
compared with non-IBC, in M1 macrophages, γδ T-cells, and 
memory B-cells, in high co-expression of several genes coding 
for actionable immune checkpoints, and in signatures predic-
tive for response to ICIs (TIS and TLS). To our knowledge, 
these are novel results for IBC.

Study at the mRNA level allowed the simultaneous analysis 
of many genes while avoiding the limitations of immunohis-
tochemistry (lack of specificity and reproducibility of antibo-
dies, optimal cutoff definition). It allowed the application of 
deconvolution algorithm (CIBERSORT) and relevant gene sig-
natures (TIS, TLS, and Rooney’s signatures), the coherence of 
which was confirmed by the expected association of immune 
variables with the molecular subtypes in the non-IBC samples. 
Analysis was based upon the largest gene expression dataset 
reported in the literature we had generated within the World 
IBC Consortium. Importantly, the number of 137 IBC samples, 
relatively high given the scarcity of the disease and the difficulty 
to obtain pre-therapeutic samples, allowed adjusting the IBC/ 
non-IBC comparison upon the clinicopathological variables 
including the molecular subtypes.

To our knowledge, the quantification of immune cell types 
of IBC has been limited in the literature to only one to three 
immune types simultaneously.40,44–46 One study only com-
pared the stromal TILs infiltration between IBC and non-IBC 
and showed no significant difference.40 Such observation was 
confirmed in our series with similar expression for CD3 
(T-cells), CD20 (B-cells), and CD68 (macrophages). However, 
CIBERSORT analysis revealed more subtle differences. The 
TME of IBC was rich in macrophages, CD8+ and 
CD4 + T-cells, with remarkable similarity (as assessed using 
hierarchical clustering) with that of melanoma, known to har-
bor a peculiar immunogenic profile and high sensitivity to 
ICIs. The reasons of such stronger similarity of IBC (versus 
non-IBC) with melanoma are unknown, and of course, it does 
not automatically mean that IBC will be as sensitive as mela-
nomas to ICIs. The comparison with non-IBC showed signifi-
cant enrichment in M1 macrophages, γδ T-cells, and memory 
B-cells. Previous studies in non-IBC revealed the high varia-
bility in the composition of immune TME across tumors, 
partly associated with molecular status of tumors and clinical 
outcome.66,67 CD20 + B-cells were observed in 62% of IBC 
samples and were associated with better survival and higher 
pCR,46 as reported in our study. The higher abundance of 

Table 2. mRNA expression of 18 actionable immune genes in IBC versus normal 
breast.

Genes

IBC versus normal breast comparison

Univariate

N
Normal (med-

ian, log2)
IBC (med-
ian, log2)

IBC vs. Normal Breast 
(log2-ratio) p-value*

BTLA 118 3.5 
(3.22–4.18)

3.54 (2.71–6.43) 0.04

0.946
CD274 118 5.32 (5–5.48) 5.51 (3.23–8.66) 0.19
0.768
CD276 118 5.55 

(5.49–5.91)
4.93 (3.52–6.81) −0.62

0.052
HAVCR2 118 5.94 

(5.61–6.55)
7.07 (5.27–9.20) 1.13

7.57E-03
TIGIT 118 3.96 

(3.64–4.17)
4.48 (2.91–7.06) 0.52

0.056
TNFRSF18 118 4.59 

(3.94–4.72)
4.45 (3.21–8.17) −0.14

0.958
VSIR 118 8.09 

(7.85–8.78)
7.80 (5.66–9.68) −0.29

0.293
CD27 141 5.42 

(4.64–7.06)
6.80 (4.63–12.4) 1.38

2.84E-02
CD40 141 5.33 

(5.05–5.97)
6.05 (4.71–9.06) 0.72

3.53E-02
CD70 141 3.32 (3–4.05) 5.55 (4.57–8.73) 2.23
6.82E-04
CTLA4 141 2.26 

(2.07–2.32)
4.35 (3.33–6.73) 2.09

6.69E-04
ICOS 141 2.21 

(1.99–2.36)
3.76 (2.97–8.44) 1.55

6.82E-04
IDO1 141 4.51 

(2.75–6.06)
6.08 (3.11–10.8) 1.57

4.49E-02
LAG3 141 2.14 

(1.85–2.31)
3.91 (2.45–7.17) 1.77

6.69E-04
PDCD1 141 2.48 

(1.96–3.04)
4.76 (4.01–6.59) 2.28

6.43E-04
TNFRSF4 141 2.15 

(1.77–2.42)
3.48 (2.92–3.96) 1.33

6.09E-04
TNFRSF9 141 3.21 

(2.17–3.53)
4.80 (2.69–8.43) 1.59

9.35E-04
PVRIG 141 4.65 

(4.21–5.43)
5.87 (3.8–10.27) 1.22

6.41E-03

*, Mann-Whitney test
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memory B-cells in IBC versus non-IBC might contribute to 
enhance efficiently the T-cell anti-tumor response in IBC, 
notably by organizing the formation of TLS. In patients with 
melanoma, single-cell studies of TME showed that higher 
infiltration of memory B-cells was associated with response to 
PD1/PDL1 blockade.68 The γδ T-cells also represent a small 
component of TME dedicated to infectious and intracellular 
stresses recognition. They are cancer-killing effector T-cells 
endowed with both innate and adaptive functions, since they 
harbor both NK receptors (such as NK group 2 member 
D (NKG2D) or natural cytotoxicity receptors (NCRs)), growth 
factor receptors, and γδ TCRs, which recognize MHC-like 
molecules that are upregulated in cancer cells. Consequently, 
they are often the target for tumor escape mechanisms. In 
clinical breast cancer samples, some studies showed poor- 
prognosis value of high tumor γδ T-cells count measured 
using IHC,69,70 whereas others showed favorable prognostic 
value of high fraction estimated using CIBERSORT.55,67 The 
explanation and role of their higher amount in IBC remain to 
be investigated, but may open new promising therapeutic 
avenues.71 Regarding macrophages, their role in breast cancer 
is known since many years.72 Tumor-associated macrophages 
(TAMs) are the major inflammatory cells that infiltrate breast 
cancers,73 and M2 macrophages are known to contribute to 
tumor progression and invasion.74 In our series, CIBERSORT 
analysis showed that TAMs were the most abundant immune 
cells in IBC and M2 macrophages were more numerous than 
M1 macrophages. Previous studies reported that IBCs show 
high infiltration of macrophages secreting cytokines such as 
TNFα, CCL2, IL6, IL8 and IL10 to which IBC cells are more 
sensitive than non-IBC cells, thus likely contributing to higher 
IBC invasion and motility, high angiogenic nature, and local 
immune suppression.75,76 Reciprocally, TME macrophages 
polarize into heterogeneous subpopulations depending on the 
type of external stimuli they receive.77 In IBC, the cytokines 
secreted by TME cells and tumor cells that induce the M2 
polarization include CSF1, TGFβ, IL8, IL10 and IL6.78 In fact, 

a complex chemokine network involving IL8 and GRO che-
mokines exists in IBC in which IBC cells command macro-
phages to become tumor-promoting (M2), which in turn drive 
IBC cells to be more cancer stem-like, mesenchymal, and 
aggressive.79 Importance of macrophages in IBC was further 
underlined by enrichment in macrophage markers of the nor-
mal mammary tissue adjacent to the tumor.45

Another interesting result is the higher expression in IBC 
than in non-IBC of two gene signatures directly (TIS signature) 
and indirectly (TLS signature) associated with response to ICIs 
in different cancers, independently from the clinicopathologi-
cal variables. The TIS signature reflects an efficient adaptive 
immune response by quantifying expression of genes asso-
ciated with cytotoxic cells, antigen presentation, and inter-
feron-gamma activity. The TIS score in IBC was close to that 
of other cancer types classically sensitive to anti-PD1/PDL1 
ICIs, such as lung, cervical, and head and neck squamous cell 
carcinomas. Because a correlation exists between higher aver-
age TIS score and higher sensitivity to anti-PD1/PDL1 ICIs 
across multiple cancer types,63 our results suggest higher vul-
nerability of IBC than non-IBC to ICIs.

This observation is important since many actionable 
immune checkpoints were overexpressed in IBC. We analyzed 
the expression of 18 genes coding for therapeutic targets of 
ICIs, marketed (such as CD274/PDL1 and CTLA4) or under 
clinical development, the most advanced being those targeting 
LAG3, TIM3, TIGIT, and IDO1. Expression was heteroge-
neous between patients and genes, the majority of samples 
simultaneously expressing several of the tested genes. Two- 
thirds of the genes were overexpressed in IBC samples as 
compared to normal breast. The comparison with non-IBC 
identified nine genes with higher expression in IBC, and 
three genes coding for co-stimulating checkpoints with lower 
expression. The most differentially expressed gene was VSIR, 
with an Odds Ratio of expression superior to 2 in IBC versus 
non-IBC. Its expression has never been assessed in IBC, but 
a recent study in non-IBC using IHC identified expression on 

Table 3. mRNA expression of 18 actionable immune genes in IBC versus non-IBC.

Genes

mRNA expression levels IBC versus non-IBC comparison

N non-IBC (median, log2) IBC (median, log2)

Univariate Multivariate

N Odds ratio [95%CI] p-value* N Odds ratio [95%CI] p-value*

BTLA 306 3.32 (2.45–6.31) 3.54 (2.71–6.43) 306 1.46 [1.12–1.9] 2.05E-02 172 1.57 [0.89–2.76] 0.188
CD274 306 5.1 (3.06–8.86) 5.51 (3.23–8.66) 306 1.26 [1.07–1.48] 2.01E-02 172 1.68 [1.14–2.47] 2.86E-02
CD276 306 5.46 (3.39–7.66) 4.93 (3.52–6.81) 306 0.62 [0.49–0.79] 8.38E-04 172 0.53 [0.33–0.84] 2.50E-02
HAVCR2 306 7.03 (4.59–9.24) 7.07 (5.27–9.2) 306 1.06 [0.83–1.35] 0.692 172 1.65 [0.97–2.79] 0.120
TIGIT 306 4.06 (2.8–7.41) 4.48 (2.91–7.06) 306 1.44 [1.16–1.80] 6.64E-03 172 1.69 [1.05–2.71] 0.069
TNFRSF18 306 4.7 (2.92–8.29) 4.45 (3.21–8.17) 306 0.77 [0.63–0.95] 4.12E-02 172 0.75 [0.51–1.09] 0.198
VSIR 306 7.52 (6.03–8.97) 7.8 (5.66–9.68) 306 2.02 [1.49–2.74] 1.41E-04 172 2.55 [1.36–4.78] 1.43E-02
CD27 389 6.49 (4.78–9.76) 6.8 (4.63–12.41) 389 1.40 [1.19–1.66] 9.28E-04 239 1.46 [1.11–1.92] 2.33E-02
CD40 389 5.82 (4.19–7.96) 6.05 (4.71–9.06) 389 1.55 [1.2–1.98] 4.09E-03 239 2.09 [1.32–3.32] 8.76E-03
CD70 389 5.36 (4.19–7.03) 5.55 (4.57–8.73) 389 1.71 [1.2–2.44] 1.26E-02 239 1.5 [0.82–2.73] 0.269
CTLA4 389 4.36 (3.09–5.95) 4.35 (3.33–6.73) 389 1.08 [0.72–1.62] 0.757 239 1.23 [0.66–2.29] 0.580
ICOS 389 3.81 (3–6.53) 3.76 (2.97–8.44) 389 1.21 [0.96–1.54] 0.185 239 1.3 [0.88–1.93] 0.274
IDO1 389 5.5 (2.96–10.88) 6.08 (3.11–10.76) 389 1.26 [1.12–1.42] 1.32E-03 239 1.43 [1.15–1.79] 7.76E-03
LAG3 389 3.9 (2.63–6.43) 3.91 (2.45–7.17) 389 1.26 [0.98–1.62] 0.132 239 1.38 [0.92–2.07] 0.194
PDCD1 389 4.76 (4–5.72) 4.76 (4.01–6.59) 389 1.45 [0.84–2.51] 0.265 239 0.95 [0.41–2.21] 0.926
TNFRSF4 389 3.48 (3.02–4.52) 3.48 (2.92–3.96) 389 0.24 [0.09–0.63] 1.30E-02 239 0.30 [0.07–1.29] 0.173
TNFRSF9 389 4.72 (3.28–8.2) 4.8 (2.69–8.43) 389 1.09 [0.90–1.33] 0.469 239 1.14 [0.82–1.57] 0.524
PVRIG 389 5.67 (3.58–9.61) 5.87 (3.8–10.27) 389 1.28 [1.08–1.53] 1.96E-02 239 1.31 [0.98–1.74] 0.125

*, glm
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immune cells in ~29% of samples and on tumor cells in ~8% of 
samples.80 Its expression correlated with PDL1 expression, as 
observed in our study, and was associated with longer survival 
in TN samples. Numerous clinical trials testing combinations 
of ICIs are ongoing in oncology. In this context, the frequent 
high co-expression of the actionable immune checkpoints 
tested in IBC calls for such combinations. Expression of action-
able immune checkpoints in IBC was also associated with 
expression of signatures predictive for response to ICIs such 
as TIS, and such association has been reported in other cancers 
sensitive to ICIs such as lung and head and neck cancers and 
melanoma.63 In addition to the frequent overexpression of 

actionable immune checkpoints, these associations clearly sup-
port assessment of ICIs in IBC.

We also showed that the extent of immune differences 
between IBC and non-IBC was inferior to those observed 
between the molecular subtypes of breast cancer. Such result 
has already been observed in pan-genomics/transcriptomics 
studies showing IBC/non-IBC differences much more subtle 
than the strong differences observed between the molecular 
subtypes,81 that result from a combination of numerous and 
diverse influences including specific molecular alterations, cell- 
of-origin (stem cell, progenitor or lineage-committed cell), and 
various regulations such as microRNA expression and stromal 
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interactions. Interestingly, these IBC/non-IBC immune differ-
ences were more numerous within the HR+/HER2- subtype, 
suggesting more similarities between IBC and non-IBC in the 
TN subtype, and the differences between the molecular sub-
types were less pronounced in IBC than in non-IBC. The 
reasons for such disparity remain unknown. They may be 
related to the overall higher immune profile of IBC versus non- 
IBC and of TN versus HR+/HER2- subtypes, as if the higher 
immune response observed in IBC versus non-IBC would 
make the differences between the molecular subtypes less 
important in IBC than in non-IBC. Associated with the results 
of TIS and TLS signatures that might suggest that the differ-
ences in response to ICIs should be less marked in IBC than in 
non-IBC. However, clinical trials only will be able to address 
this issue.

Finally, we showed that most of the immune variables 
were associated with a better response to chemotherapy of 
IBC patients. Regarding the immune cell types, the Tfh cell 
type was the most strongly associated with higher pCR rate, 
followed by naïve B-cells, M1 macrophages, and 
CD8 + T-cells. These results confirm the correlations pre-
viously reported in IBC for CD20 + B-cells45,46 and 
CD8 + T-cells,45 and their independent predictive value 
highlights their biological complementarity for governing 
the response to chemotherapy. M1 macrophages and naïve 
B-cells are associated with pCR in ER-positive non-IBC.65 

Tfh cells have been little investigated in solid cancers. They 
play a role in cooperation with B-cells in organization of 
TLS and response to chemotherapy:82 in this context, it is 
notable that the two cell types most strongly associated 
with pCR were Tfh and B-cells, as previously reported in 
ER-negative non-IBC.66 Because the expression of most of 
the tested immune checkpoints and high TIL and TLS 
scores were also associated with a better sensitivity to 
chemotherapy – based on drugs able to induce the 

immunogenic cell death83 -, it is reasonable to hope that 
IBC patients could be more sensitive to both ICIs and 
chemotherapy. This observation further feeds the strategy 
of combining ICIs with chemotherapy in IBC, recently 
reported as effective in breast cancer.84

In conclusion, our study provides the first comprehensive 
immune portrait of IBC. IBC samples display an immune 
infiltrate rich in macrophages and CD8 + T-cells, along with 
frequent high co-expression of genes coding for actionable 
immune checkpoints and of signatures predictive for 
response to ICIs (TIS and TLS). Such correlations suggest 
the existence of a preexisting active immune TME suppressed 
by the expression of inhibitory checkpoints. Differences with 
non-IBC include an enrichment in M1 macrophages, γδ 
T-cells, and memory B-cells, higher expression of predictive 
signatures, and more frequent overexpression of genes coding 
for actionable immune checkpoints. IBC displays more simi-
larities than non-IBC with other cancer types classically sen-
sitive to ICIs, such as melanoma or lung cancer. Furthermore, 
we show more immune differences between IBC and non-IBC 
in the HR+/HER2_ subtype than in the TN subtype. The 
strengths of our study include: i) its originality: to our knowl-
edge, it is the first study describing the immune landscape of 
IBC in terms of specific immune cell types, signatures pre-
dictive for response to ICIs and expression of numerous ICIs 
targets; ii) the relatively high number of samples, allowing us 
to adjust the IBC/non-IBC comparison upon relevant vari-
ables such as the molecular subtypes; and iii) a widely repre-
sentation of different ethnicity groups from Europe and USA. 
The two main limitations include the retrospective nature and 
associated biases, and the use of DNA microarrays that quan-
tify mRNA expression level of both tumor and immune cells; 
such approach does not provide the protein expression level, 
nor a spatial information of immune cells that could be 
obtained by using multicolor immunohistochemistry. Even 
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if we show good correlation between mRNA and protein 
expression levels for the immune checkpoint genes tested in 
breast cancer lines, further validation at the protein level 
directly on clinical samples remains warranted. But yet, alto-
gether and coupled with higher TMB in IBC, our results 
suggest higher sensitivity to ICIs in IBC than in non-IBC, 
and call for assessment in clinical trials. We have recently 
launched the PELICAN trial, a prospective, multicenter, 
open-label, randomized, phase II study of pembrolizumab in 
combination with neoadjuvant chemotherapy in HER2- 
IBC.85 To our knowledge, this is the first clinical trial of 
ICIs in IBC: we focused on the HER2-population because 
we did not want to include anti-HER2 drugs with pembroli-
zumab and chemotherapy. But the testing of new ICIs alone 
or in combination is also warranted and might be prompted 
by these new data.
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