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Abstract
Background: Accurate small molecule binding site information for a protein can facilitate studies
in drug docking, drug discovery and function prediction, but small molecule binding site protein
sequence annotation is sparse. The Small Molecule Interaction Database (SMID), a database of
protein domain-small molecule interactions, was created using structural data from the Protein
Data Bank (PDB). More importantly it provides a means to predict small molecule binding sites on
proteins with a known or unknown structure and unlike prior approaches, removes large numbers
of false positive hits arising from transitive alignment errors, non-biologically significant small
molecules and crystallographic conditions that overpredict ion binding sites.

Description: Using a set of co-crystallized protein-small molecule structures as a starting point,
SMID interactions were generated by identifying protein domains that bind to small molecules,
using NCBI's Reverse Position Specific BLAST (RPS-BLAST) algorithm. SMID records are available
for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive
annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein
sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule
ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is
calculated based on E-value, ligand residue identity and domain entropy to assign a level of
confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental
small molecule interactions from the PDB, of which 472 (60%) of predicted interactions identically
matched the experimental small molecule and of these, 344 had greater than 80% of the binding
site residues correctly identified. Further, we estimate that 45% of predictions which were not
observed in the PDB validation set may be true positives.

Conclusion: By focusing on protein domain-small molecule interactions, SMID is able to cluster
similar interactions and detect subtle binding patterns that would not otherwise be obvious. Using
SMID-BLAST, small molecule targets can be predicted for any protein sequence, with the only
limitation being that the small molecule must exist in the PDB. Validation results and specific
examples within illustrate that SMID-BLAST has a high degree of accuracy in terms of predicting
both the small molecule ligand and binding site residue positions for a query protein.
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Background
Finding a protein sequence with small molecule binding
site annotation can be a challenge as these are not consist-
ently well annotated in existing sequence databases,
regardless as to the degree of sequence similarity to pro-
teins of known structure with well characterized small
molecule binding sites. When annotation does exist, it
may come from one of three places: directly from experi-
ment, through mapping to a protein family known to
bind certain molecules, or through homology to a crystal
structure demonstrating small molecule binding.

Experimentally, small molecule ligands for proteins are
often identified using high-throughput screening meth-
ods with chemical libraries. Such libraries may be devel-
oped in either solid or solution phase and can consist of
natural compounds and their derivatives or synthetic mol-
ecules [1]. Chemical libraries are often generated using
combinatorial chemistry, whereby both functional groups
and molecular skeletons of precursor compounds are
sequentially altered [2,3]. High-throughput screening has
proven to be useful, especially in the areas of drug discov-
ery [4,5] and food research [6]. The importance of high
throughput screening is underscored by the fact that
roughly 14% of the total research and development
expenditures of the pharmaceutical industry is devoted to
it [7]. Much of this effort is going towards increasing the
number of molecules that can be screened at a time. How-
ever, the quality of a high throughput screen is likely to be
more important than the quantity of ligands, as the
number of false-positives seems proportional to the size
of the library. The development of more directed screens,
smaller-scale assays that can be run less frequently, is
desired for a number of reasons, not the least of which is
that the cost of a single high throughput screen is approx-
imately US $75,000. [7] To achieve this end, in silico
screening has been developed to search a large virtual
library of compounds for a limited number of candidate
molecules that can be tested further using more tradi-
tional means [8].

In addition to knowing binding partners, having accurate
binding site information can greatly reduce the complex-
ity of computational drug docking, for example. With a
known binding site where a putative drug will bind, the
algorithm need only explore the conformational space of
the ligand in the vicinity of the binding site, and not over
the entire surface of the protein. Protein-small molecule
interaction databases are essential in the development of
more advanced heuristic methods. These databases con-
tain information about binding sites [9-11], electrostatics
at the interface [12] or binding pocket information [13].
The majority of these are generated from data in the Pro-
tein Data Bank (PDB) [14] database of known protein
crystal structures. For many of these interactions, binding

affinity is often available in separate publications, and it is
possible to construct training and test sets for computa-
tional drug docking algorithms.

While a wealth of information on small molecule binding
is available in the PDB and given extensive work on pro-
tein family databases [15-17], the tools do not exist to
make use of this information and map it to annotation of
protein sequences in a consistent and efficient fashion.
UniProt [18] has begun to add small molecule binding
site annotation based on similarity to PDB sequences
bound to small molecules. Only sites of very high confi-
dence are added however, and annotation seems to be
incomplete. For example, a search for human immunode-
ficiency virus 1 (HIV-1) integrase turns up a record
(Q77Y09_9HIV1) including keywords 'zinc' and 'zinc-fin-
ger', and a link to the PDB file 1WJB, which is an NMR
structure of the N-terminal domain of this protein with
two bound zinc ions. However, no zinc binding sites are
indicated in the record itself. Relibase [19] is able to pro-
vide small molecule binding site predictions for given
query sequences based on interactions observed from
PDB. However it makes no attempt to filter out biologi-
cally irrelevant ones (such as those with solvent), and
often gives very lengthy, unranked output. PRECISE [20]
clusters together similar PDB sequences for enzymatic
proteins and maps the ligand binding sites to all members
of each cluster, but does not allow ligand prediction for
molecules not in PDB. Sequences Annotated by Structure
(SAS) [21] uses FASTA [22] to align query sequences to
known structures and add small molecule binding anno-
tation, however it is unable to detect more remote
homologs that can be found with more recent and sensi-
tive methods such as PSI-BLAST [23]. The ability to detect
distant homology allows more small molecule annota-
tion to be added, or allows it to be added when methods
like FASTA or BLAST against PDB return no significant
hits. While all these methods rank the hits found to PDB,
no attempt is made to give confidence values for the indi-
vidual small molecule predictions, often resulting in far
too many hits for a human to sit down and sift through.

One other important flaw these other methods share is
the potential for transitive annotation error, as any mole-
cule found in a PDB file that 'hits' the query is output,
even if it binds in a region outside of the alignment (SAS
does show which regions of the hits align to the query
however). This can be avoided by employing a domain-
based approach. That is, suppose a query with two
domains, A and B, hit a PDB sequence with domains A
and C. Using a domain-based approach, only small mol-
ecules interacting with A are predicted for the query. Using
a strictly sequence-based approach, small molecule anno-
tation from C may also be mapped onto domain B of the
query, even though B and C are not evolutionarily related.
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The construction of protein family or 'domain' databases
makes possible the evaluation of the position-specific
conservation of residues at binding sites. Conserved
domain databases include Protein FAMilies (PFAM) [15]
and Simple Modular Architecture Research Tool (SMART)

[16], derived from seed alignments and Hidden Markov
Models (HMMs), and NCBI's Cluster of Orthologous
Genes (COG) [17], obtained by mutual BLAST best hits
and appearance in at least three disparate organisms.
InterPro [24] attempts to consolidate domain informa-
tion and remove some of the redundancy between them,
assigning a single InterPro identifier to domains that are
considered equivalent. The Conserved Domain Database
(CDD) from NCBI mixes together domains from PFAM,
SMART, COGs as well as their own curated conserved
domain families [25]. CDD can be searched using the
Reverse Position Specific Basic Local Alignment Search
Tool (RPS-BLAST) [26], which compares a given query
sequence to the domain sequence profiles for each of the
domains in CDD. Instead of finding hits to other proteins,
as in standard BLAST, RPS-BLAST returns hits to domain
families, providing a prediction of the domain composi-
tion of a novel sequence.

In this work, we present the Small Molecule Interaction
Database (SMID), a database of interactions between
small molecules and CDD protein domains, derived from
the data in PDB. Previously, a set of over 23,000 non-
redundant protein-small molecule interactions was gener-
ated from the PDB using a processing tool producing a
structural subset of the Biomolecular Interaction Network
Database (BIND) [27] called the molecular modeling
database BIND (MMDBBIND) [28]. From this initial
structural interaction set, protein domains were identified
that associate with one or more small molecules.

SMID presents a unified interface to view detailed small
molecule binding sites within conserved families and
functional domains while also making available a more
detailed view of the underlying protein-small molecule
binding sites. The additional layer of abstraction from
protein to domain enables SMID to group together all the
similar interactions involving a particular domain for easy
comparison.

Additionally, we present SMID-BLAST, a tool for small
molecule and binding site annotation and prediction.
SMID-BLAST acts in a similar manner to in silico high
throughput screening, yet instead of only searching
through a library of small molecules, it uses the structural
information in the PDB to extrapolate known small mol-
ecule interactions to a protein of interest. In this way,
SMID-BLAST can generate a short-list of potential lead-
compounds that can be used in further analyses. While it
is true that the number of small molecules currently
housed in the PDB is smaller than those in certain high
throughput libraries, the number and diversity of the
small molecule pool in the PDB increases with each new
structure added. SMID-BLAST improves over existing
methods by using domain annotation to avoid transitive

SMID record as viewed from the SMID web interfaceFigure 1
SMID record as viewed from the SMID web interface. 
This record was derived from PDB entry 1HG1, which 
shows an interaction between an Asparaginase domain (resi-
dues 15–322 of chain A, identified by RPS-BLAST with an E-
value of 1.34e-103) and D-Aspartate. The GI for 1HG1 chain 
A is 15825850. For the SMID record shown, seven of the 
eight residues of the binding site are located within the 
Asparaginase domain.
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annotation errors and to retrieve more remote homologs,
giving additional small molecule hits wherever possible,
by providing a confidence score and ranking for each hit,
and by filtering out common solvents and other biologi-
cally irrelevant molecules.

SMID-BLAST may be used to provide automated annota-
tion on newly sequenced genomes and sequences of
unknown function, as small molecule binding can often
imply function. We demonstrate through several exam-
ples how SMID-BLAST may be used to identify candidate
small molecule binding sites on a query sequence of inter-
est that are not found or difficult to identify using similar
existing methods, and deduce protein function and evolu-
tionary relationships.

Utility and discussion
SMID User Interface
The SMID interface is written in PHP [29] and provides a
layer between user queries and the MySQL [30] data
tables. SMID may be queried by supplying either a protein
GI (of a sequence in PDB), domain identifier, small mol-
ecule identifier, PDB ID or SMID ID. All successful queries
to SMID return links to individual SMID records. Records
contain information pertaining to the protein, domain
and small molecule involved in the specific interaction.
Interactions involving non-biological contacts with an
ion or non-biological small molecules are screened out by
default on most queries.

Figure 1 illustrates the structure of a typical SMID record.
Clicking on the small molecule link brings up an informa-
tion page (Figure 2) that contains the molecular structure,
links to other databases, common nomenclature and a list
of physical properties. An MDL molfile for the small mol-
ecule can be obtained by clicking on the ball-and-stick
structure. Viewers such as MarvinView [31] or ISISDraw
[32] can be used to view files of this type. The database
links include other small molecule information pages as
well as the parent MMDBBIND interaction. In addition, a
link is provided to view all SMID records involving the
small molecule of interest. Physical properties listed
include molecular formula, weight and functional groups.

The 'Domain Family Multiple Alignment' link provides a
complete CDD domain alignment with small molecule
binding residues highlighted according to their degree of
conservation, as shown in Figure 3. The PDB sequence
that is the source of the SMID record is added to the align-
ment if not already there, and indicated with its name in
red.

The 'View/Save 3D structure' section provides a means to
view the SMID interaction using Cn3D or RasMol. When
viewed in Cn3D (Figure 4), domain residues are high-

SMID small molecule information page, as viewed from the SMID web interfaceFigure 2
SMID small molecule information page, as viewed 
from the SMID web interface. The small molecule page 
shown here indicates that 8 SMID records involve the mole-
cule D-Aspartate.
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lighted in purple while non-domain residues are in grey.
Residues within the domain contacting the small mole-
cule are highlighted in green.

The 'RPS-BLAST Evalue' in Figure 1 serves as an indicator
of confidence that a particular CDD domain (e.g. Aspara-
ginase), exists in a PDB protein. The bottom section of a
SMID record describes the location of both the CDD
domain and the small molecule binding residues in the
parent PDB protein sequence from which the record is
derived. This is depicted both numerically and graphi-
cally. For the latter, the PDB protein sequence is provided
with domain residues in bold and binding site residues in
red. Finally, the fraction of small molecule binding site
residues found within the domain region is provided, as
sometimes ligand residues lie outside the range of the
CDD domain definition.

Querying SMID using either domain or small-molecule
designations provides the option of viewing either a non-
redundant or redundant set of records. Redundant SMID
records are clustered according to the rules outlined in
Methods. Searching with either a PDB protein GI or

domain identifier designation returns a listing of associat-
ing small molecules along with links to the corresponding
SMID records. A domain query can involve a CDD Posi-
tion Specific Scoring Matrix (PSSM) ID, Interpro ID,
Pfam/Smart ID or a descriptive keyword. To assist in que-
rying, a link is provided on the SMID website that displays
all domains in SMID, along with their PSSM ID, short
name and description. Querying with a small molecule
identifier returns a listing of all associating domains.
Where applicable, an Interpro [24] ID is provided to assist
in identifying redundant domain hits. A small molecule
query may be entered as a PDB HET code (e.g. HEM for
heme) or as a case-insensitive keyword. As with domains,
a link is provided which lists all the small molecules in
SMID. The list includes the HET name 3-letter code or
other short label, which serves as a link to the correspond-
ing small molecule info page (Figure 2), and the full com-
pound name. Querying with a PDB ID returns a listing of
small molecules binding any protein chain in the PDB
structure record. Lastly, individual SMID records may be
obtained by searching with SMID IDs. It should be noted
that SMID IDs are unstable and may change in later ver-
sions of SMID. Therefore they should not be used to keep

A CDD domain family multiple alignmentFigure 3
A CDD domain family multiple alignment. All sequences from a CDD domain family are listed including the consensus. 
In addition, the sequence for the PDB protein from which the SMID interaction was derived is included, with its PDB code 
highlighted in red. Lowercase residues do not align with the consensus and represent insertions or deletions relative to the 
consensus. Small molecule binding site residues are mapped to the domain family sequences from the parent PDB sequence 
using the following colour-coding scheme: red for conserved residues, blue for similar residues and yellow for non-conserved 
residues. In cases where a binding site aligns to a gap in the consensus, conservation cannot be measured and thus no coloured 
residue is displayed. Note that some binding site residues may be highlighted in addition to those associated with the parent 
PDB sequence if there are redundant interactions from other PDB files with a similar binding site. This alignment has been 
truncated for clarity.
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track of a particular SMID interaction. The PDB ID or
BIND ID, which can be found in a SMID record, are much
more suitable for this purpose.

SMID-BLAST
To enable users to identify putative small-molecule bind-
ing sites in proteins for which a crystal-structure has not
yet been determined, the SMID interface includes the
SMID-BLAST web tool. SMID-BLAST executes NCBI's RPS-
BLAST algorithm on a query protein sequence, identifying
structural domains from CDD that have small molecules
bound, as found in SMID. A SMID-BLAST query may take
the form of an amino acid FASTA formatted sequence,
protein GI, accession from any common sequence data-
base or PDB chain. As with RPS-BLAST, the user can con-
figure the Expect value cutoff, search mode and use of a

low complexity filter. In addition, the user is able filter out
SMID interactions involving non-biological ion contacts
or non-biological small molecules, as detailed in Meth-
ods.

SMID-BLAST hits are represented as a gapped local align-
ment between the query protein and a CDD domain with
small-molecule binding sites mapped to the query from
all small molecule interactions in SMID involving that
domain. For SMID records that are redundant, the union
of the binding sites of all members of the redundant
group is used when mapping the binding site to the query.
Binding site residues are colour-coded based on the total
number of non-redundant interactions they participate
in. Each SMID-BLAST hit also includes a table summariz-
ing all putative binding small molecules along with their

A 3-D SMID interactionFigure 4
A 3-D SMID interaction. The x-ray crystallographic structure of Erwinia chrysanthemi L-Asparaginase associating with D-
Aspartate (PDB ID: 1HG1), as viewed by Cn3D. The structure was annotated by SMID to highlight the domain residues (pur-
ple), domain residues contacting the D-Aspartate molecule (green) and the non-domain residues (grey). The D-Aspartate small 
molecule ligand is shown in space-fill format. The sequence/alignment viewer provides sequences for all chains found in the 
PDB record. For the sequence involved in the small molecule interaction, residues are colour-coded using the same scheme 
seen in the structural model.
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SMID-BLAST validation final ligand score distributionsFigure 5
SMID-BLAST validation final ligand score distributions. a) Distribution of predictions in the validation set as a function 
of final ligand score. The solid line represents percent correct predictions, while dotted line represents predictions that were 
not observed in the PDB validation set; these latter interactions are comprised of both false positives, and true positives that 
simply have not been observed yet. For example, 12% of correct predictions had a final ligand score below 100, while 21% of 
unvalidated predictions had a final ligand score below 100. The dashed line represents an estimate of the distribution of final lig-
and scores for false positives as outlined in the text. b) Coverage as a function of final ligand score, for the predictions which 
were observed in the PDB validation set. Coverage is defined as the percent of true binding site residues which were included 
in the predicted binding site.
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binding sites in the query and the number of redundant
SMID records supporting the interaction. Clicking on the
binding sites displays a domain family multiple align-
ment similar to that found in a SMID record (Figure 3) but
including the SMID-BLAST query sequence. The PDB
sequence from which the SMID record is derived is also
included in the alignment, highlighted in red. In addition,
for redundant interactions, highlighted regions corre-
spond to the union of the domain-binding residues from
all members of the redundant group.

SMID-BLAST also calculates a heuristic ligand score as a
confidence measure to indicate the likelihood that the
query really binds the small molecule at the stated bind-
ing site. The initial ligand score is computed for each puta-
tive binding site of each small molecule hit. After all the
hits have been processed, a final small molecule summary
table for the query is provided. Where possible, similar
binding sites for the same small molecule from different
domain hits are combined into a single binding site by
taking the union of the residue numbers. This often
results in binding sites larger than any one single binding
site, and reflects the variability in the location of the bind-
ing residues between different examples of the domain-
small molecule interaction or uncertainties in the domain
multiple alignment. The table column 'hits' provides the
number of SMID-BLAST hits that were averaged and com-
bined to make each binding site. Molecules in the sum-
mary table are sorted by the final ligand score, which is the
average of the initial ligand score for each similar binding
site that was merged together to form the summary bind-
ing site, multiplied by the binding site occupancy.

The final summary table provides at-a-glance the small
molecules most likely to bind the query sequence, as well
as the most likely binding site(s) for them. It has been
determined empirically that hits with a final ligand score
above 50 tend to be true interactors, and is thus the rec-
ommended threshold value for annotating binding sites.
Values less than 50 may be considered possible interactors
for predictive purposes, and appear greyed out. As this
score is a function of other well-known sequence scores,
the threshold can be easily understood as corresponding
to the default RPS-BLAST E-value cutoff of 0.01 together
with a binding site residue identity of 30%, and a relative
entropy value of 1 for the binding site residues in the con-
text of the conserved domain (see Methods). The score
does not simply recapitulate the RPS-BLAST E-value scores
retrieved. A more thorough statistical analysis of the lig-
and score and its relation to significance will be carried
out in future work.

A command line version of the SMID-BLAST tool is pro-
vided that does not require access to the web-based sys-
tem, for high-throughput sequence annotation

applications. The tool will accept a file of FASTA-format-
ted protein sequences as input and output an ASN.1 for-
matted file containing the final summary table data for
each input sequence. This can then be read in by NCBI's
Sequin program [33] for further analysis and annotation.
The command-line SMID-BLAST will automatically use
Sequin to convert the output file to GenPept format as
well. Command-line SMID-BLAST requires a license and
interested parties should contact the authors.

SMID-BLAST validation
Although it is well known that some proteins may bind
several ligands in the same binding site, the solved protein
structure will only show a single ligand in a particular
binding site. SMID-BLAST may predict several possible
ligands for a site, and thus it is difficult to assess whether
a small molecule predicted to bind that is not the exact
small molecule is in fact a plausible alternative/unknown
or whether it is a bona fide false positive. The validation
approach consisted of determining how many protein
small molecule interactions could be predicted from the
most recent entries in the PDB as well as determining the
binding site coverage from predicted interactions. The
experimental data set for the validation studies consisted
of 793 small-molecule interactions from 581 non-redun-
dant protein chains (the remainder of the 2379 newly
released chains did not have interactions, or were redun-
dant with existing interactions). SMID-BLAST correctly
predicted the ligand in 472 (60%) of the experimentally
determined interactions, of which 315 (66%) obtained
the best final ligand score. For correct molecule predic-
tions, 344 (72%) of the predictions had greater than 80%
of the binding sites correctly identified.

Figure 5a shows the relation between final ligand score
and correct prediction for this validation experiment. We
find that, in general, unvalidated predictions are weighted
more towards lower ligand scores under 200, compared to
correct predictions. Note that not all of the unvalidated
hits are false positives, we simply do not have evidence
supporting them, and so they represent a worst case
number of false positives. The fraction of true positives
with ligand score above 200 is substantially increased over
the fraction of unvalidated predictions in this range.

Further, let us suppose that the 'unvalidated' interaction
curve U in Figure 5a is made up of two components – one
from correct predictions C which were simply not
observed and one from false positives F, where U, C and F
are all normalized to have the same area under the curve.
If we assume that curve C has the same shape as the curve
for the correct observed predictions, and the fraction of
correct predictions in the unvalidated curve is α, then U =
αC + (1 - α)F. If we further assume that at score > 700, all
the unvalidated predictions are correct and set α such that
Page 8 of 19
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F ≈ 0 (i.e. no false positives at score > 700) we obtain α =
0.45. This value provides a rough estimate that at most
45% of the unvalidated interactions may be true positives
across the entire score range. This is important, because
even in the highest final ligand score bin of 900–1000 the
number of unvalidated predictions is about 9 times the
number of validated ones. Recall, that it would take a
large number of co-crystal structures to validate these pre-
dictions.

Figure 5b shows, for the correct predictions, the relation-
ship between final ligand score and percentage coverage
of binding sites predicted. Here we see that most of the
correct ligands have excellent binding site coverage (80–
100%), and this increases with ligand score. The examples
with poor binding site coverage (less than 60%) are
almost exclusively limited to ligand scores below 300.
Taken together, these provide support that the final ligand
score is a discriminating factor in 1) selecting the correct
ligand and 2) realizing the best possible binding site cov-
erage.

As an illustrative example, we considered the interaction
between the protein diaminopimelate dicarboxylase (GI:

29726280, MMDB: 32196, PDB:1HKV chain A) from
Mycobacteria tuberculosis and the pyridoxal-5'-phosphate
(PLP) ligand. A SMID-BLAST prediction for this sequence
identified the PLP ligand using 9 different PDB chains, of
which the Escherichia coli diaminopimelate decarboxylase
protein (GI: 39654106, MMDB: 25220, PDB: 1KNW
chain A) had 27% sequence identity, the highest of all 9
PDB chains. The SMID-BLAST prediction correctly pre-
dicted 11 of the 12 experimentally defined binding site
residues. The prediction also included 6 additional resi-
dues sufficiently close to the observed binding site that
they could have been included if the MMDBBIND algo-
rithm's threshold distance cutoff for identifying residue
interactions had been increased.

SMID-BLAST examples
The following examples illustrate some of the possible
uses for SMID-BLAST, and compare its output to that of
Relibase and SAS. Such examples illustrate the ability of
SMID-BLAST to accurately extrapolate from protein-small
molecule interactions found in the PDB. Figure 6 provides
the structures for a selected set of SMID-BLAST small mol-
ecule hits mentioned below. The default SMID-BLAST
options were utilized for all queries.

Selected chemical structuresFigure 6
Selected chemical structures. Chemical structures of selected SMID-BLAST small molecule hits from query proteins MiaB, 
Phosphoglycerate Mutase, TrpRS and TyrRS.
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Burkholderia pseudomallei K96243 tRNA thiotransferase
The MiaB protein is a tRNA thiotransferase enzyme that is
involved in the post-translational modification of tRNAs.
Specifically, the MiaB protein has been shown to be
involved in the thiolation and methylation steps leading
to the synthesis of the 2-methylthio-N6-isopentenyl-ade-
nosine (ms2i6A) modified tRNA nucleoside [34,35]. MiaB
is an example of a Radical SAM enzyme, a group of pro-
teins that participate in numerous biosynthetic pathways
[36]. All members of this group contain an iron-sulfur
cluster ([4Fe-4S]) coordinated by S-adenosylmethionine
(SAM) and three closely spaced cysteine residues. The
cysteine residues are part of a conserved triad motif, Cys-
XXX-Cys-XX-Cys, found in all Radical SAM enzymes. The
putative MiaB protein (GI 53718317) from Burkholderia
pseudomallei (B. pseudomallei) shares a high degree of
sequence similarity to MiaB proteins found in other bac-
terial organisms and possesses the highly conserved
cysteine triad motif. The MiaB protein was chosen as a
query to SMID-BLAST due to the fact that its crystal struc-
ture has yet to be solved. Furthermore, a BLAST search of
the B. pseudomallei MiaB protein against the PDB returns
only very weak hits. These factors make this protein an
excellent query to highlight the predictive capabilities of
the SMID-BLAST algorithm.

SMID-BLAST identifies one putative small molecule bind-
ing site (Table 1). Both of the hits to this site, [4Fe-4S]
(F4S, score = 181) and SAM (score = 108), had final ligand
scores above the cutoff value and are the known ligands of
the MiaB protein. The predicted binding site for F4S on
MiaB was mapped from sites extracted from crystallized
structures of the Escherichia coli HemN (PDB 1OLT) and
Biotin Synthase (PDB 1R30) proteins, as well as the Sta-
phylococcus aureus protein MoaA (PDB 1TV7 and 1TV8).
All of these proteins are members of the Radical SAM
enzyme group. The cysteine triad motif in the B. pseudoma-
llei MiaB protein occurs at residues 157–164 (CSKYC-
SYC), which overlaps with the predicted F4S binding site
provided by SMID-BLAST (Table 1). Most importantly, all
three cysteine residues in the triad are predicted to be asso-
ciated with F4S.

The SMID-BLAST binding site for SAM was mapped from
the same four PDB structures as F4S. It has been shown
that SAM must be placed in the immediate vicinity of the
F4S in order to mediate catalysis [37]. For example, a dis-

tance of 2.7 Å was identified between SAM and an iron
atom from the F4S cluster in the Radical SAM enzyme
lysine 2,3-amino-mutase [38]. SMID-BLAST correctly pre-
dicts this close association by placing SAM and F4S in the
same binding cleft.

To obtain a closer look at the predicted binding site, the
MiaB sequence was submitted to the SAM-T02 [39,40]
fold recognition server, to obtain a template and sequence
alignment for modeling. The top hit was PDB 1OLT_A
with a template E-value of 3.4e-24. Resdiues 121–404 of
MiaB aligned to 50–286 of the template, so this portion
was modeled using SwissModel [41]. The F4S and SAM
from 1OLT were simply copied with the same co-ordi-
nates into the model. As seen in Figure 7a, the binding site
rapidly predicted by SMID matches well with the binding
pocket on the model, and includes the three critical Cys
residues, with only two residues which are clearly not part
of the binding site.

For comparison purposes, Relibase and SAS were also
queried with the B. pseudomallei MiaB sequence. Relibase
failed to identify any known MiaB ligands. The small mol-
ecules it did return were various ions, DNA strands and
nucleotide phosphates, but all PDB hits had a percentage
sequence identity score less than 25%, and thus do not
have a high degree of confidence associated with them.
The SAS service also did not return any high confidence
structure hits, as the best E-value obtained was 0.2. While
SAS returned a hit to the SAM radical protein MoaA
(1TV8) co-crystallized with SAM and an [4Fe-4S] cluster,
the E-value was very poor, 8 (28.8% identity). It should
also be noted that SAS provided a number of small mole-
cule hits, such as sulfate and dithiothreitol that are not
biologically significant ligands to MiaB.

Mycobacterium tuberculosis CDC1551 Phosphoglycerate Mutase
Phosphoglycerate mutase (PGM) is a ubiquitous enzyme
that is primarily involved in the interconversion of 3-
phosphoglycerate (3PG) and 2-phosphoglycerate (2PG)
in both glycolysis and gluconeogenesis [42]. Two types of
PGMs have been identified, one that is dependent on the
cofactor 2,3-bisphosphoglyceric acid for activity (dPGM)
and one that is not dependent on a cofactor (iPGM). The
PGM from Mycobacterium tuberculosis CDC1551 (M. tuber-
culosis) is a cofactor-dependent enzyme whose three-
dimensional structure has recently been solved [43].

Table 1: SMID-BLAST hits for Burkholderia pseudomallei K96243 tRNA thiotransferase. For clarity, only small molecule hits with a final 
ligand score above the cutoff value of 50 are included. Molecule 3-letter names were obtained from PDBSum [71].

Molecule Identifier Binding Site Residues On Query Final Ligand Score

F4S 157,159,161,163–165,167–168,200–202,207–208,242–244,281 181.641
SAM 151,153,163–166,199–202,205–208,240–244, 267,269,281,288,307,309–310,338–341,350 108.434
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While this structure was not co-crystallized with any
known dPGM ligands, other dPGM structures exist in the
PDB with ligands such as 3PG (3PGM) and vanadate
(1E59). Thus, this particular query is not meant to high-
light the predictive powers of SMID-BLAST. Rather, the M.
tuberculosis dPGM query illustrates the importance of

using protein domain information to avoid transitive
annotation errors in ligand assignment as will be seen
below.

Querying Relibase with the M. tuberculosis dPGM
sequence (GI 15839880) returns hits including dPGM
structures such as 1BQ4, 3PGM and 1E59, as well as struc-
tures of proteins that are homologous to dPGM, such as
rat fructose-2,6-bisphosphatase (F26BPase) in 2BIF. A
strong evolutionary relationship has been established
between dPGM and F26BPase using both structural and
sequence analysis [44-46]. In the SCOP database [47],
both dPGM and F26Bpase cluster together at the 'family'
level. In addition, both the M. tuberculosis dPGM and the
rat F26Bpase contain the same domain, the phosphoglyc-
erate mutase family domain (pfam00300). However,
while dPGM is a single domain protein, the F26BPase pro-
tein in 2BIF consists of two domains: a 6-phosphofructo-
2-kinase domain (pfam01591) at the N-terminus and
pfam00300 at the C-terminus.

Figure 7b shows a structural alignment between the query
protein, PDB 1RII chain A, and 2BIF, chain A. The crystal
structure of F26BPase in 2BIF depicts the N-terminal
domain (on the right of Figure 7b) associating with mag-
nesium, phosphoaminophosphonic acid-adenylate ester
(ANP) and succinic acid (SIN) while the C-terminal
domain associates with beta D-fructose-6-phosphate (B-
D-Fructose-6-P). Thus, while B-D-Fructose-6-P would be
considered a possible ligand for dPGM, which shares the
phosphoglycerate mutase domain, all small molecules
associating with the N-terminal domain of F26Bpase
would not be possible ligands since dPGM lacks this
domain. Relibase, by virtue of dPGM and F26BPase shar-
ing a significant degree of global sequence identity makes
a significant transitive error by listing all ligands of
F26BPase as possible ligands to dPGM.

In contrast, SMID-BLAST does not recognize magnesium,
ANP or SIN as small molecule ligands to the M. tuberculo-
sis dPGM protein (Table 2). The only small molecule
SMID-BLAST hit from structure 2BIF is B-D-Fructose-6-P,
which associates with the pfam00300 domain found in
both dPGM and F26Bpase. The BOG crystallization buffer
molecule found by Relibase was explicitly filtered out by
our non-biological small molecule filter (see Methods).
While B-D-Fructose-6-P does not appear to associate with
dPGM in vivo, the two could possibly associate in vitro
given the fact that a number of key catalytic residues in the
pfam00300 domain of F26Bpase are conserved in the
dPGM protein [44]. SMID-BLAST also identifies known
dPGM ligands such as the substrate 3PG and inhibitor
molecules such as inositol hexaphosphate (IP6) and ben-
zene hexacarboxylate [48] as well as tetrametavanadate
(VO3) [49].

Binding sites predicted by SMID-BLASTFigure 7
Binding sites predicted by SMID-BLAST. a) Shown is a 
comparative model of the predicted Elp3 domain of MiaB. 
The iron-sulfur cluster (orange) and SAM (CPK stick model) 
have had their co-ordinates transferred from the modelling 
template, PDB 1OLT chain A to illustrate how they might 
bind. The predicted Fe-S binding site residues are indicated in 
red, the predicted SAM binding residues are shown in purple, 
and the three cysteine residues which interact with the Fe-S 
cluster are indicated in yellow. A mixture of red and purple 
was used for residues common to both binding sites. b) 
Structural alignment of PDB 1RII chain A (phosphoglycerate 
mutase from M. tuberculosis, blue) and 2BIF chain A (6-phos-
phopructo-2-kinase/fructose-2,6-bisphosphatase from Rattus 
norvegicus, yellow). The small molecules from 2BIF are also 
shown along with their PDB short labels. Purple molecules 
associate with the N-terminal domain of 2BIF chain A, while 
blue molecules associate with the C-temrinal domain. Note 
that BOG was part of the crystallization buffer in this exam-
ple. Structures were aligned with Swiss PDBViewer.
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Tyrosyl and Tryptophanyl tRNA synthetases
Tryptophanyl tRNA synthetase (TrpRS) and Tyrosyl tRNA
synthetase (TyrRS) are known to share a similar structural
core and are paralogous enzymes. This is illustrated in
CDD with the TyrRS_core family (cd00805), TrpRS_core
family (cd00806) and their parent family
Tyr_Trp_RS_core (cd00395). It is likely that Tyr vs. Trp
discrimination developed late in the evolutionary origin
of the genetic code [50,51] compared to other tRNA syn-
thetases, and both may have originated from a hypotheti-
cal non-specific Phe -Tyr(Trp)RS progenitor synthetase.
Thus the pair serve as a good test for SMID-BLAST's sensi-
tivity in identifying the true targets of enzymes.

TrpRS aminoacylates tRNA with the activated intermedi-
ate tryptophanyl adenylate (TYM) while for TyrRS it is
tyrosyl adenylate (TYA). While both synthetases may be
expected to have some affinity for both these molecules,
they should show preferential binding to their cognate
substrate molecules (i.e. TrpRS to TYM, TyrRS to TYA). To
test this, 82 TrpRS sequences [see Additional file 1], and
83 TyrRS sequences [see Additional file 2] from a diverse
set of organisms from all kingdoms of life, were submitted
to SMID-BLAST. The top scoring two ligands were
recorded for each sequence, and the results are summa-
rized in Table 3.

Since all tRNA synthetases bind ATP [52], we looked at the
top hit ignoring ATP and magnesium ions. The results
indicate that the TrpRS enzymes almost all had a higher
final score for the expected substrate, TYM, than for TYA
and its analogues. The only exceptions were Methanosa-
rcina acetivorans C2A and Picrophilus torridus DSM
9790, both of which identified tyrosinol, a tyrosine ana-
logue, as the most likely ligand.

TyrRS had TYA in first place only 37 of 83 times. Another
32 sequences had one of three potent bacterial TyrRS
inhibitors, discovered through high-throughput screening

of natural products [53] as their top hits. Of these 32, 23
were bacterial TyrRS's. Of the remaining TyrRS sequences,
thirteen hit TYM, the cognate substrate of TrpRS – three
eukaryotic and ten archaeal extremophiles. Lastly, Meth-
anothermobacter thermautotrophicus str. Delta H found D-
tyrosine as the strongest hit.

SMID-BLAST was able to identify the preference of TrpRS
for TYM over TYA and related analogues 80 out of 82
times in a wide variety of species. It did not perform as
well on TyrRS, but still gave remarkable results, since the
three TyrRS inhibitors in PDB would be expected to have
higher affinity than TYA in many bacterial species [53].
Only 13 out of 83 sequences were misassigned as being
more favourable towards TYM binding.

Upon inspection of our heuristic score, the main contri-
bution to the 13 mis-ranked TyrRS binders was from the
occupancy component of the final ligand score. Given two
molecules of different size, and a binding site large
enough to accommodate either one (as is the case here),
the larger one is more likely to better fill the binding site
and generate a higher occupancy score. Thus in 13 cases
this difference is enough to push the final ligand score for
TYM above that for the smaller TYA. To demonstrate this,
we repeated the computation without the occupancy
component, also shown in Table 3, and indeed all the hits
to the TyrRS's were TYA, Tyrosinal, D-tyrosine, or SB-
239629 (TyrRS inhibitor). However, without the occu-
pancy component of the score, the TrpRS small molecule
hit list becomes intermingled with smaller molecules like
L-tryptophan, D-tyrosine and SB-239629 as well. Clearly
the binding site occupancy plays an important role in
binding site scoring, and this component is critical to the
performance of the overall final ligand score in ranking
small molecule hits.

These observations demonstrate that while the final lig-
and score is by no means perfect and may not correspond

Table 2: SMID-BLAST hits for Mycobacterium tuberculosis CDC1551 Phosphoglycerate Mutase. For clarity, only small molecule hits 
with a final ligand score above the cutoff value of 50 are included. Molecule 3-letter names were obtained from PDBSum [71].

Molecule Identifier Binding Site Residues on Query Final Ligand Score

IP6 11–12,14–15,17–18,22–24,93,101,117–118,206 897.76
VO3 11,18,23–25,90–91,93,101,117–118,185 804.199
3PG 11–15,18–19,24,63,90,183,209 799.119
Citric acid 11,18,22–25,63,90,93,101,117 690.171
FDQ 11–12,18,23,63,90,153,183–184,188 555.168
VA3 11–12,18,24,63,90,183–185 528.282
benzene hexacarboxylic acid 11,18,93,117–118,185,206 437.423
SO1 12,14–15,18–19,24 257.242
B-D-Fructose-6-P 23–24,90,101,115,119,153,184,188 134.283
GTP 23,90–91,101,112,115,119,124,153,184–185,188 124.075
G3P 101,115,119,153,184–185,188 62.337
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directly to binding constants, it does give some reliable
indication of what small molecules are most likely to bind
the target. This information can be used to prioritize fur-
ther experiments and tests. The fact that the TrpRS pro-
teins generally only hit Trp and its analogues, and not Tyr,
while some TyrRS query sequences seem to hit Trp and its
analogues, may indicate that TrpRS is more specific.
Hence TyrRS may be closer to the non-specific Phe-
Tyr(Trp) precursor enzyme, while TrpRS has evolved suf-
ficiently away to uniquely identify its larger, bulkier target.

Conclusion
SMID provides an extremely useful extrapolation of the
small molecule interaction information implicitly stored
in the PDB database. By generalizing from protein-ligand
interactions to domain-ligand interactions, SMID is able
to cluster similar interactions and detect subtle binding
patterns that would not otherwise be obvious. Using
SMID-BLAST, likely small molecule targets can be pre-
dicted for an arbitrary protein sequence, with the only
limitation being that the small molecule must exist in the
PDB in order to be predicted. There are presently over
5000 unique small molecules represented in the PDB,
many being drug-like molecules, and so SMID-BLAST
could be used at least as a starting point to suggest what
small molecules may bind to a protein of interest. More
importantly, SMID-BLAST can suggest where specific
small molecules are likely to bind the protein.

The SMID-BLAST validation results, coupled with the spe-
cific examples listed in the results section, illustrate that
SMID-BLAST has a high degree of accuracy in terms of
both identifying a small molecule ligand and predicting
the binding site residue positions for a query protein. This
level of accuracy will only increase as more protein struc-
tures are deposited into the PDB and hence more interac-
tions are computed for SMID. SMID-BLAST on average

overestimates both the number of possible small mole-
cule ligands for a given binding site as well as the number
of residues in a binding site. This latter observation
reflects the variability in the binding site between different
examples of the domain-small molecule interaction or
uncertainties in the domain multiple alignment.

Regarding the overestimation of binding site ligands, it
may be the case that some of the extra ligands predicted
for a given binding site are true interactants but have sim-
ply not been crystallized with the protein of interest. The
observed overestimation of binding site ligands may also
involve the identification of one or more false ligands. For
example, a small molecule that is known to bind to a
domain in one protein may not bind to the same domain
in a different protein. This could result from structural var-
iations between the two domains, point mutations or var-
iations in total protein structure. While the final ligand
score does not correlate perfectly with binding affinity, lig-
ands such as synthetic transition state analogues will often
have a higher score. For example, the top scoring SMID-
BLAST hit for 32 out of 83 TyrRS enzymes analyzed was an
inhibitor compound and not the endogenous substrate
TYA (Table 3). In some cases, the existence of multiple
false ligand predictions for a protein can result in lower
final ligand scores for true interactants. This can happen,
for instance, if a false ligand prediction fills more of the
predicted binding site than the true ligand(s), thus giving
it a higher occupancy score. The PDB identity score may
also be higher for the false versus the true small molecule
ligand. The existence of un-validated ligand predictions
for a given query protein does not discredit the usefulness
of the final ligand score for identifying small molecule
interactants however. SMID-BLAST can save researchers a
great deal of time by providing a short-list of probable lig-
ands, ranked by a confidence measure, that can be verified
experimentally.

Table 3: Top scoring SMID-BLAST ligand hits for TrpRS and TyrRS across a wide range of organisms. 82 TrpRS sequences and 83 
TyrRS sequences were employed. The expected best ligand is shown in bold.

Ligand to TrpRS Hits Ligand to TyrRS Hits

Top scoring ligand, ignoring ATP and Mg++ Tryptophanyl Adenylate 80 Tyrosinal Adenylate 37
Tyrosinal 2 SB-239629 18

Tryptophanyl Adenylate 13
SB-243545 9
SB-284485 5
D-tyrosine 1

Top scoring ligand, ignoring ATP, Mg++ and binding site occupancy Tryptophanyl Adenylate 36 SB-239629 50
L-tryptophan 22 D-tyrosine 31
D-tyrosine 10 Tyrosinal Adenylate 1
SB-239629 7 Tyrosinal 1
Tyrosinal 6
L-tryptophanamide 1
Page 13 of 19
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:152 http://www.biomedcentral.com/1471-2105/7/152
Possible uses of SMID-BLAST include prioritizing drug
docking experiments, selecting structure templates for
homology modeling, or annotating complete genomes.
Computational methods such as docking could be used to
establish whether the top scoring SMID-BLAST hits really
do bind at the sites indicated. The number of molecules
that would have to be screened would be very small,
allowing detailed, more complex docking algorithms to
be used for more accurate results. The small molecule
binding sites predicted by SMID-BLAST would also serve
as an efficient means of selecting a small pool of drugs for
experimental analysis in the lab.

In homology modeling, selecting the best structure tem-
plate is critical for generating an accurate protein structure
prediction. Since small molecule binding sites are gener-
ally highly conserved among members of a given protein
family, structure templates can be chosen that possess a
high degree of sequence similarity with the SMID-BLAST
predicted binding site residues. Of course, any knowledge
about which small molecules the protein being modelled
interacts with could be used to improve discrimination
between templates even further.

Finally, the command-line SMID-BLAST tool (see Meth-
ods) can be used to rapidly annotate protein sets from
entire genomes. The tool will take an arbitrary set of
sequences and add annotation, in GenPept format, indi-
cating what small molecules are predicted to bind, with
the final ligand score provided as a confidence measure.
Additionally the PDB and BIND records the prediction is
based on will be provided as a cross-reference automati-
cally. This can provide a wealth of information to
researchers eager to investigate new proteins and can serve
to direct experimentation.

We hope that in the future SMID will serve as a useful
resource for interaction prediction, and annotation of
new protein sequences.

Construction and content
MMDBBIND database
The source for SMID was the small molecule division
(3DSM) of MMDBBIND [28], a database of high quality
protein-small molecule interactions generated from
NCBI's MMDB [54]. The MMDB currently houses over
27,000 molecular structures from the PDB. Protein-small
molecule interactions were identified using an intera-
tomic distance cutoff of the van der Waals radii [55,56]
plus 0.5Å. For most atom types this results in a distance
cutoff of 3.5–4.0Å, typical for a hydrogen bond [57]. A
subsequent filtering process identifies and tags those
interactions in MMDBBIND which involve i) a single
atomic contact ii) a protein with an unknown sequence
(i.e. only alpha carbon trace is present in the structure) iii)

a biologically irrelevant small molecule (see below) iv)
one or more false contacts with a biologically relevant ion.
The former two are removed altogether from the database,
and will not be considered further.

Protein structures in the PDB often contain agents, such as
buffers, salts, detergents, solvents and ions, which aid in
the purification and/or crystallization processes, but are
not involved in the biological function of the protein [58].
Biologically irrelevant molecules were determined manu-
ally to form a curated subset of small molecules consisting
of known buffers, detergents, solvents and non-biological
ions [see Additional file 3]. A complete list can be viewed
through the SMID web interface [59]. It should be noted
however that a number of interactions involving a protein
and a biologically relevant ion are the result of crystal
packing artefacts. For example, two of the three calcium
ions in 1OMD (Oncomodulin) [60] are bound to the CD
and EF loops while the third calcium ion is found on the
surface. This latter calcium ion is co-ordinated to oxygens
belonging to three different protein molecules and helps
stabilize the crystal structure. Crystal artefacts like this
one, involving a potentially biologically relevant ion,
were removed using a trained Support Vector Machine
(SVM) [61,62].

The ion filtering SVM was trained on 11 attributes as fol-
lows. Burial was defined as the fraction buried surface area
(inaccessible to water) of the ion compared with the sur-
face area of a perfect sphere of the same radius. N, O, S
and total neighbours count the number of contacting
nitrogen, oxygen, sulphur, and total atoms, respectively,
using a cutoff distance of the sum of the van der Waals
radii plus 0.5Å. Only sulphur atoms from Cys residues are
included as S neighbours, since these are the only ones
likely to form associations with metals. For the remaining
six training attributes, the number of atoms within several
distance bins from the ion were recorded: from 0–5Å, 5–
6Å, 6–7Å, 7–8Å, 8–9Å and 9–10Å. Training sets ranging in
size from 20 to 100 examples, of both biological and non-
biological ions in crystal structures, were created by
human experts for bromine, calcium, chloride, cobalt,
copper, iron, potassium, magnesium, manganese, molyb-
denum, sodium, nickel and zinc. All ions used a radial
kernel with gamma and C chosen to produce optimal 10-
fold cross-validation, except potassium which used a pol-
ynomial kernel of degree 5. All had epsilon = 0.01. The fil-
ter removed a total of 12,582 interactions with these ions
out of a total of 35,165 in the MMDBBIND set. Addition-
ally, 3,652 interactions with other non-biological ions
were removed. Training sets will be made available upon
request.

Aside from protein-small molecule interactions, MMDB-
BIND also contains interactions between protein and
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small polymers. These include cyclic peptides (antibiot-
ics), oligopeptides consisting of mostly non-standard
amino acids, and branched and cyclic polysaccharides, all
of which are found in the PDB. For the purposes of this
work, these are all considered to be 'small molecules' as
well. It is important to note that special care has been
taken to include only true polymers. For example, because
sugar monomers can attach in several different ways, and
PDB files do not always contain explicit or correct bond
information [63], connectivity was inferred based on the
rules of chemistry. Similarly, some crystal structures may
contain multiple conformations of the same molecule
(sometimes with different occupancies). The molecules
hexane and octane in the structure 1CWQ is an example
of this. Special checks were done to avoid making a dimer
molecule out of such cases.

MMDBBIND protein-small molecule records serve as a set
of fully annotated interactions (3DSM division) in the
BIND database [27], and can be accessed through the
BIND interface [64] or downloaded [65] through FTP. The
BIND records contain short labels, aliases and descrip-
tions for both interactants from such database sources as
Entrez Gene, PDB and PubChem. In addition, the records
include a listing of small molecule contacting residues in
the protein along with a structural model, which can be
viewed using Cn3D [66,67]. Cn3D will automatically
highlight binding residues in the protein.

Generation of SMID records
An outline of the process for generating SMID records is
shown in Figure 8. RPS-BLAST [26] was run on all proteins
in the MMDBBIND 3DSM division with a known
sequence. RPS-BLAST was performed against CDD v2.01
using a two-pass search mode and an Expect value cutoff
of 0.03. All other parameters were left at their defaults.
Instances of PFAM, SMART or CD domains in the query
including one or more residues contacting a small mole-
cule are selected for SMID record generation. Addition-
ally, a minimum of two atomic contacts with the small
molecule are required and a minimum of 30% of all the
residues contacting the small molecule must lie within the
domain in question so as to avoid interactions at the
domain periphery.

Detailed information pertaining to the domain hits is
extracted from the RPS-BLAST result set and stored in
MySQL tables along with data on the corresponding pro-
tein and small molecule extracted from MMDBBIND.
Each SMID record includes the structure from the parent
MMDBBIND record, highlighting the specific domain
small-molecule interaction. Interactions involving a non-
biological small molecule or non-biological contacts with
an ion are tagged in SMID, to enable efficient filtering of
these through the interface if desired.

Redundant SMID records are clustered based on the crite-
ria that they involve i) the same small molecule ii) the
same domain and iii) a 50% or greater overlap of domain
binding site residues. For example, if one interaction had
a binding site on domain residues 12,13,14,15,26 and
another had a binding site of 13,14,15,16, then the over-
lap is three residues out of five (the larger binding site is
always used), or 60%. Thus these two binding sites would
be considered redundant, provided the domain and small
molecule are identical. Note that the overlap is always
computed between the prospective redundant group
member, and the parent of the redundant group (which is
simply the first member of the group). Thus it is not nec-
essarily the case that all group members mutually share
50% or greater overlap. The clustering process identified
48,886 non-redundant interactions out of a total set of
182,301.

Ligand score
The ligand score was computed as follows:

where ILS is the initial ligand score, E is the RPS-BLAST E-
value of the domain hit, I is the PDB identity score, and S
is the relative entropy score. The latter two quantities are
defined as follows.

The PDB identity score I is computed for each putative
binding site by aligning the query to the PDB sequence
from which the binding site was inferred, through the
domain consensus. The number of exact residue matches
between the query and PDB sequence for all binding site
residues is computed and divided by the actual number of
the PDB binding site residues to arrive at a percent iden-
tity. This gives an idea of how well the query conserves the
PDB binding sites. If there is more than one example of
this interaction in PDB, the score is computed for all of
them, and the best (highest) one is used.

The relative entropy score was determined by computing
the Shannon entropy [68] of each column of the multiple
alignment for the domain family. This is then averaged
across the whole alignment, and additionally over just the
binding site residues (mapped from the PDB example to
the domain multiple alignment). The relative entropy Ŝ is
the average entropy of the binding site residues in the
alignment divided by the average entropy of the full align-
ment. Thus a value of 1.0 indicates that the binding site
residues are as well conserved as the rest of the domain
sequence. A value above 1.0 means the binding site resi-
dues are less conserved than the rest of the domain, and a
value below 1.0 indicates the binding site residues are
more conserved on average that the rest of the domain.
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Page 15 of 19
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:152 http://www.biomedcentral.com/1471-2105/7/152
The latter case implies that these residues serve some
important function in this domain, such as being a small
molecule binding site or active site. It is important to note
that the absolute value of the entropy is not considered
here – the domain may or may not be well-conserved. The
score only measures whether the binding site is more con-
served than the rest of the sequence for this particular
domain, and thus behaves as a domain-specific term with
respect to the ligand. Also note that this value is independ-
ent of the query and only a function of the binding site on
the domain. This term accounts for the fact that catalytic
sites are under evolutionary constraints and often more
highly conserved [69].

The final ligand score is computed by incorporating what
we have termed the binding site occupancy. The occu-
pancy is calculated by first grouping small molecules that

appear to bind the same site on the query protein. From
this listing, an occupancy value of 1 is given to the small
molecule hit with the greatest number of binding site res-
idues. The occupancies for all other small molecules in a
group is determined by calculating the ratio of the
number of binding site residues for a hit by the maximum
number of binding site residues. For example, a particular
binding site group might have a maximum number of
binding site residues equal to 40 and a small molecule hit
with 32 binding site residues. The occupancy for this hit
would therefore be 0.8.

The final ligand score appears as a column in the sum-
mary table together with the occupancy. The score is the
mean of the 'n' initial ligand scores of the hits that were
clustered together to form a given entry in the summary
table, multiplied by the occupancy as given in Eq. 2:

Thus the occupancy factors linearly into the final com-
puted ligand score for each binding site. This accounts for
the fact that true binding pockets are often completely
filled by their intended ligands. Given two small mole-
cules with a common binding site, and all other things
being equal, the one making more contacts with the pro-
tein is filling more of the binding site and so is probably
a preferred ligand. Including this term in the ligand score
tends to maximize the interaction surface.

SMID-BLAST validation
In an effort to quantify the predictive power of SMID-
BLAST, a validation procedure was implemented using
crystal structures, MMDB ids 29251 to 32708, released
after the last SMID update. A set of 2379 unique protein
chains was identified for analysis using NCBI's non-
redundant PDB chain file [70]. The identity tolerance level
was used so that only chains identical in sequence were
considered redundant. Groups involving one or more
chains from structures outside the MMDB range 29251–
32708 were not considered in an effort to avoid trivial
interaction predictions.

The experimental and predicted interaction sets were gen-
erated by running the MMDBBIND and SMID-BLAST
algorithms, respectively, on the unique protein chain set.
SMID-BLAST was run using a version of the CDD com-
piled at the time of the last SMID update, before any of the
query crystal structures had been released. Interactions
involving small molecules not previously observed in
SMID, or deemed to be non-biological based on the
curated list used to filter MMDBBIND interactions, were
excluded from further analysis. The combined small mol-
ecule and domain interaction filtering resulted in a valida-
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An overview of how protein-small molecule interactions are identified from the PDB and utilized to generate SMID recordsFigure 8
An overview of how protein-small molecule interac-
tions are identified from the PDB and utilized to gen-
erate SMID records. The process of 'Interaction Tagging' 
involves the identification of protein-small molecule interac-
tions that involve i) single atom contacts ii) an unknown pro-
tein sequence iii) a biologically irrelevant small molecule iv) 
false contacts with biologically relevant ions using a Support 
Vector Machine. See text for details.
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tion dataset of 599 protein chains [see Additional file 4]
involved in 860 'true' non-redundant small molecule
interactions. SMID-BLAST made predictions for 581 out
of 599 (97%) of the new sequences, and these make up
the validation dataset (the 581 sequences comprised 793
observed interactions). Two measures were used to com-
pare the observed and predicted interaction sets. The first
measure determined the number of experimental ligands
that were correctly predicted. The accuracy of the scoring
method was estimated by the rank position of the exact
ligand from the list of possibilities, provided that it had at
least one binding site residue overlap. The second meas-
ure determined the number of correctly predicted binding
site residues out of the total possible binding site residues.

Availability and requirements
SMID is freely accessible via a PHP web interface at http:/
/smid.blueprint.org. The SMID data can be downloaded
as tab-delimited files from our ftp server ftp://smid.blue-
print.org/pub/SMID/data, along with a script to create
and populate the MySQL tables of the SMID schema. A
command line version of the SMID-BLAST tool is freely
available to academic users from our ftp server ftp://
smid.blueprint.org/pub/SMID/tool. Commercial users in
both cases will require a license and should contact the
authors.
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