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Abstract

Recommender systems are designed to assist individual users to navigate through the rapidly growing amount of
information. One of the most successful recommendation techniques is the collaborative filtering, which has been
extensively investigated and has already found wide applications in e-commerce. One of challenges in this algorithm is how
to accurately quantify the similarities of user pairs and item pairs. In this paper, we employ the multidimensional scaling
(MDS) method to measure the similarities between nodes in user-item bipartite networks. The MDS method can extract the
essential similarity information from the networks by smoothing out noise, which provides a graphical display of the
structure of the networks. With the similarity measured from MDS, we find that the item-based collaborative filtering
algorithm can outperform the diffusion-based recommendation algorithms. Moreover, we show that this method tends to
recommend unpopular items and increase the global diversification of the networks in long term.
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Introduction

Nowadays, individuals are confronted with a large amount of

contents such that it is very time-consuming to find the needed

information, which is known as the information overload problem.

This problem becomes more serious as the rapid development of

the Internet. To solve this problem, many information filtering

techniques, such as search engines and recommender systems, are

widely investigated. Specifically, recommender systems are a

newly emergent technique which predicts what a user likes based

on his/her historical choices.

Up to now, many recommendation algorithms have been

proposed such as collaborative filtering (CF) [1–3], matrix

factorization [4,5], spectral analysis [6], and so on. Some physical

processes, including mass diffusion [7,8], heat conduction [9],

were also introduced by physicists to design recommendation

algorithms. A detailed summarization of recommender system

technologies can be found in [10]. The most significant finding

from these diffusion-based methods is that the hybridization of the

mass diffusion and heat conduction can achieve both accurate and

diverse recommendation [11]. This pioneer work was followed up

later with many extensions such as the semi-local diffusion [12],

the preferential diffusion [13], the biased heat conduction [14],

network manipulation [15] and the item-oriented method [16].

Recently, the long-term influence of these diffusion-based recom-

mendation methods on network evolution has also been studied

[17,18].

Among the aforementioned algorithms, CF has been success-

fully applied in e-commerce [19,20]. The CF actually have two

different versions: the user-based CF (UCF) and the item-based CF

(ICF) [21–24]. The user-based CF estimates each user’s prefer-

ences by referring to her similar users’ tastes, while the item-based

CF recommends items which are similar to the target user’s

selected items. Generally, the accuracy of the item-based CF is

higher than that of the user-based CF. For both algorithms, the

most important issue is how to qualify the similarities between

users or items. There are many methods to measure the similarities

of nodes based on network structure analysis including common

neighbors, cosine index, Katz index, just to name a few [25,26].

However, these simple structural-based similarity measures are

usually sensitive to the noisy information in networks, which results

in a low recommendation accuracy. Moreover, some of these

measures are strongly biased to large degree items, which makes

the unpopular but relevant items be overlooked in the recom-

mendation [3].

To solve the problems above, we make use of the multidimen-

sional scaling (MDS) technique to estimate similarity between

nodes. Online user-item bipartite networks are represented by a

M|N adjacency matrix where M and N are respectively the

number of users and items. Therefore, each item is described by a

M-dimensional vector from the adjacency matrix. Based on MDS,
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we design a method to map the M-dimensional item vectors into

H-dimensional item vectors (H%M ) and compute the similarities

of item pairs in the H-dimensional space. There are two

advantages: (1) The noise of data can be diminished by the

dimension reduction, so that the similarity based on the low-

dimensional space is more accurate than the high-dimensional

space [27,28]. We compare the MDS method with the commonly-

used cosine method in both artificial and real data, and find that

the MDS method significantly outperforms the cosine method in

estimating the item similarity. (2) MDS can remarkably speed up

the computation of item similarity since we only have to deal with

H-dimensional item vectors. Therefore, the MDS method can be

used in the large-scale dataset. In fact, some other dimension

reduction methods such as matrix factorization (MF) and singular

value decomposition (SVD) have also been used in recommender

systems [29,30]. In both methods, not only the item vectors but

also the user vectors are considered. In most online systems such as

user-movie rental systems, the number of users significantly

exceeds the number of items. Therefore, it requires much more

memory to store the user vectors than the item vectors. In other

words, the MDS requires much less memory than the MF and

SVD, making it more scalable.

We further apply the MDS to the item-based collaborative

filtering algorithm. We test this method on real datasets and the

results show that our method enjoys a considerably higher

recommendation accuracy and diversity than the diffusion-based

recommendation methods. Moreover, by investigating the net-

work evolution driven by the recommendation algorithms, we

found that our method could result in a more homogeneous item

degree distribution in the long term.

Methods

Collaborate Filtering
A recommender system can be naturally described by a user-

item bipartite network with the adjacency matrix AM|N in which

the element aia~1 if the user i has collected the item a, and aia~0
otherwise (To be consistent with previous papers, we use Greek

and Latin letters, respectively, for item- and user-related indices)

[2,31]. M and N are the number of users and items, respectively.

The performance of ICF and UCF depends a lot on the similarity

definition and the data sets [24,32]. We mainly focus on ICF in

this paper, but parallel techniques can be applied in a user-

oriented fashion.

The ICF provides each individual user with items which are

similar to her selected items. That is, for user i, the recommen-

dation score of item a is

pia~
XN

b~1

aibsab, ð1Þ

where sab is the similarity between item a and b. Items will be

sorted in descending order according to pia and the top-L items

will be recommended to i. The most common way to compute sab

is the cosine index [33,34], that is,

sab~
rarT

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rarT

a )(rbrT
b )

q ð2Þ

where ra and rb are the a and b column of adjacency matrix A,

respectively. This combination is referred as the ICF-cosine. There

are some drawbacks of the standard cosine index and the ICF

based on this index have some potential risks, which we will discuss

later in the section.

Multi-dimensional Scaling
In bipartite networks, each item is characterized by the

corresponding column of the adjacency matrix A, i.e. a M-

dimensional vector. The goal of the MDS is to map the

M-dimension vectors A~fraDra[RM ,a~1,2,:::,Ng into the H-
dimension vectors Y~fyaDya[RH ,a~1,2,:::,Ng, such that dissim-

ilarities from M-dimension space d(ra,rb) are well-approximated

by the distances in the lower H-dimensional space d(ya,yb). The

input of the MDS is an item 6 item dissimilarity (or similarity)

matrix DN|N~fd(ra,rb)g. One simple way to compute the

d(ra,rb) is the Euclidean distance: d(ra,rb)~Era{rbE. Given the

dissimilarity matrix D, the task of the MDS is to minimize the cost

function

E(Y )~
X
ab

½d(ya,yb){d(ra,rb)�2, ð3Þ

where the d(ya,yb)~Eya{ybE is the distance of item a and b from

the H-dimension space. A well-known approach to find the

solution is the Gradient Descent (GD) algorithm which repeatedly

processes the iteration:

ya/ya{E+Ea(Y ), ð4Þ

Where

+Ea(Y )~2
X
a=b

½d(ya,yb){d(ra,rb)�(ya{yb)
1

d(ya{yb)
, ð5Þ

and + is the gradient operator. The step size E should be small

enough (e.g. 0.005).

Another kind of MDS takes into account the rank-order of the

dissimilarities. That is, the Euclidean distances between points in Y
approximate a monotonic transformation of the corresponding

dissimilarities in D. Therefore, the cost function of this method is

E(Y )~
X
ab

½d̂d(ya,yb){d̂d(ra,rb)�2, ð6Þ

where d̂d(ra,rb) is the monotonic transformation of d(ra,rb) using a

least squares monotone regression algorithm called monotone

fitting (MFIT), which is described in ref [35]. The MDS based on

equation 3 is called Metric MDS (MMDS for short) and that based

on equation 6 is called Non-Metric MDS (NMDS for short).

When recommending items to users, we apply the MDS

(MMDS and NMDS) to measure the similarities of item pairs and

then compute the recommendation score between user i and item

a by equation 1. We refer this method as ICF-MDS. All i’s
uncollected items are sorted in descending order according to pia

and the top-L items will be recommended to user i.

Diffusion-based Methods
The diffusion-based recommendation algorithms are commonly

considered as the state-of-the-art approaches in both accuracy and

diversity. The most representative one is the hybrid method (short

for Hybrid) [11] which combines the mass diffusion (short for MD)

[7] and heat conduction (short for HC) [9] processes. The hybrid

method starts by assigning 1 unit resource to each selected item of

Similarity from Multi-Dimensional Scaling
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the target user, and 0 to the unselected items. Denoting the initial

resource vector as~ff , the resources will then diffuse in the user-item

bipartite network according to ~ff ’~W~ff where W is the diffusion

matrix with each element

wab~
1

k1{l
a kl

b

XM

i~1

aiaaib

ki

: ð7Þ

In above equation, l is a tunable parameter. If l~0, it

degenerates to the pure HC algorithm [9]. If l~1, it gives the MD

algorithm [7]. The final resource vector ~ff ’ will be sorted in the

descending order and those items with most resources will be

recommended.

In fact, the hybrid method is the same type of method as the

cosine method. Given two items a and b, their cosine similarity is

sab~
PM

i~1 aiaaib=
ffiffiffiffiffiffiffiffiffiffi
kakb

p
. For the diffusion-based recommenda-

tion methods, the diffusion of resource on bipartite networks

actually aims to calculate the similarity between items. Take the

hybrid method as example, the resource that b receives from a

reads wab~
1

k1{l
a kl

b

PM
i~1

aiaaib

ki
, where ka and ki are the degree of

item a and user i, respectively. l is a tunable parameter. wab can

be considered as the ‘‘similarity" between b and a. The cosine

method is based on the calculation of the scalar product between

two vectors. So the hybrid method can be regarded as a weighted

scalar product between two vectors. Though there is an obvious

commonness between these two methods, there is one important

difference between them: the W matrix in the hybrid method is

asymmetric while the S in the cosine method is symmetric.

Different from the hybrid and cosine method, the MDS is based

on Euclidean distance between two vectors. In principle, the

distance between two vectors can be defined in other ways. We

thus tried other distance definition in MDS, such as Euclidean

Commute-Time Distance [36] and Hamming distance. We found

that the Euclidean distance works best among these three (See

table S3 in File S1).

Metric
The MovieLens data is used to test the algorithms’ accuracy and

diversity, which consists of 6040 users, 3900 movies and 1 million

links (See table S1 in File S1). The results on other datasets are

consistent with Movielens and presented in the supporting

information material (See Fig. S1, Fig. S2 and table S4 in File

S1). The data is randomly divided into two parts: the training set

(ET) and the probe set (EP). The training set contains 80% of the

original data and the recommendation algorithm runs on it. The

rest of the data forms the probe set, which will be used to examine

the recommendation performance. Measuring the accuracy and

the diversity of top-L items in individuals recommendation list is

actually more important from practical point of view since in real

recommender systems individuals are only presented with top-L
items. Accordingly, we employ four different metrics to measure

accuracy and diversity of the top-L recommendation. A brief

description of these four metrics is shown as follows:

Precision. For a target user i, the precision of recommenda-

tion, Pi(L) is defined as Pi(L)~di(L)=L, where the di(L) is the

number of hit links, namely user i’s associated links that are

contained by both the probe set and the top-L recommendations.

The precision of the whole system is the average of individual

precisions over all users, given as P(L)~ 1
M

PM
i~1 Pi(L).

Recall. The recall of recommendation to i, Ri(L), is defined

as Ri(L)~di(L)=Ei, where Ei denotes the number of u’is links in

the probe set. Similarly, the recall of the whole system is defined as

R(L)~ 1
M

PM
i~1 Ri(L). Higher precision and recall indicate higher

accuracy of recommendations.

Hamming distance. This metric considers the uniqueness of

different users’ recommendation list. Given two users i and j, the

difference between their recommendation lists can be

Hij(L)~1{Cij(L)=L, where Cij is the number of common items

in the top-L places of both lists. Clearly, if user i and j have the

same list, Hij(L)~0, while if their lists are completely different,

Hij(L)~1. Averaging Hij(L) over all user pairs we obtain the

mean distance H(L), for which greater or lesser values mean,

respectively, greater or lesser personalization of users’ recommen-

dation lists.

Novelty. This metric concerns the capacity of recommender

systems to generate novel and unexpected results. Given an item a,

its novelty is Ia~log(kaz1). From this we can calculate the mean

novelty Ii(L) of each user’s top-L items, and averaging over all

users we obtain the mean novelty of the system I(L).

Results

In this section, we will discuss the performance of MDS in

estimating item similarities in both the artificial data and real data.

For item a and b, one can get their similarity from the M-
dimension space by equation 2. Their similarity from the H-
dimension space can be obtained based on the Y computed by the

MDS. That is,

sab~
yayT

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(yayT

a )(ybyT
b )

q : ð8Þ

By comparing these two methods, one can identify which one

performs better in quantifying the similarities between items. We

normalized the similarities as follows:

ŝsab~
sab{min(s)

max(s){min(s)
, ð9Þ

where max(s) and min(s) are the maximum and minimum of all

the similarities, respectively.

Simulations in Real Data
We carried out the simulations in an artificial data which

consists of 500 users and 500 items. The results show that both

MMDS and NMDS are significantly more accurate than the

cosine method in estimating similarity between items (See Fig. S1

in File S1). We further compare the cosine and the MDS method

on a real online bipartite network called MovieLens. The original

data consists of 6040 users, 3900 movies and 1 million ratings. The

rating matrix is transformed to 0–1 matrix where ria~1 if riaw0.

We randomly select 500 movies and compute their similarities by

the cosine, MMDS and NMDS methods, respectively. All the

similarities are normalized by equation 9 and reported in Fig. 1.

The movies are sorted according to their degrees in the ascending

order. That’s to say, the movies’ degree increases from the left to

the right in Fig. 1. For each movie, we then sort its similarities with

other movies in the descending order, i.e., the value of similarity

decreases from the top to the bottom in Fig. 1. The color denotes

the value of similarity.

Similarity from Multi-Dimensional Scaling
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One can see from the Fig. 1 that most similarities from the

cosine method range from 0 to 0.2 and only a few of them are

larger than 0.5, which indicates that the similarities between items

are not well distinguished. The obtained item similarities based on

the MMDS and NMDS share the same properties: Firstly, for

each movie, its similarities with other movies vary significantly.

Secondly, for those unpopular movies, their similarities with other

movies tend to be very high and some of them are close to 1. But

for those popular movies, their similarities with other movies are

smaller. One possible reason is that the large degree movies have

been collected by many users with different preferences. As a

result, it is very difficult to identify which categories those movies

belong to. Accordingly, their similarities with other movies are

small.

Moreover, we present the relationship between average

similarity SST of an item to other items and its degree kitem in

the top three figures in Fig. 2. It can be seen that in the cosine

method SST increases with kitem. In the MMDS method, SST is

roughly independent of kitem. In NMDS, SST decreases with kitem.

The distribution of similarity scores is also presented in the bottom

three figures in Fig. 2. One can see that the similarity scores in the

three methods are all homogeneously distributed. The mean of the

distribution is around 0.5 in MMDS and NMDS, while the mean

of the distribution is much smaller (around 0.1) in the cosine

method.

Recommendation Accuracy and Diversity
We study the relationship between the accuracy and the

dimension of Y computed by the MDS (See Fig. S2 in File S1).

Our results show that the accuracy cannot be constantly increases

by increasing H (when H is large enough, further enlarging H
only includes noisy information). We also compared MDS to a

matrix factorization method called the singular value decompo-

sition (SVD) [37]. The SVD uses the k-largest singular values of A
to construct a matrix Ak to approximate A. Here k is also the

dimension of the obtained vectors from the decomposition.

Normally, the optimal parameter k is determined by the number

of largest singular values that are significantly larger than 0 [37].

After applying SVD to the movielens data, the results show that

the singular value is close to zero when the dimension k exceeds

50. However, the best dimension number of the MDS method is

around 100 (See Fig. S2 in File S1). The best dimension number

obtained from SVD is different from that from MDS. This may

due to the fact that the best dimension number in SVD and MDS

(with ICF) is determined by different mechanisms: k in SVD is

determined by the largest-singular values while H in MDS is

determined by the recommendation precision.

We further compare our methods with the diffusion-based

recommendation algorithms and the results are presented in the

table 1. The accuracy of HC method is the lowest among these

methods since it overwhelmingly focuses on the diversity of

recommendation. The ICF-cosine is better than the MD but it is

less effective than the Hybrid method. Among all the considered

recommendation methods, the ICF-MMDS achieves the highest

accuracy. More specifically, the ICF-MMDS method outperforms

the ICF-cosine method by 19.7% and 27.9% in precision(L = 10)
and recall(L = 10), respectively. These results confirm our

previous conclusion that the similarity based on the MDS is

better than the cosine index. We also carried out the simulation to

compare MDS and cosine similarities under the UCF framework.

Our experimental results show that UCF-MDS has higher

recommendation accuracy than UCF. However, UCF-MDS is

less effective than ICF-MDS (See table S2 in File S1).

In order to give more details about the ICF-MMDS and ICF-

NMDS method, we study in detail the recommendation accuracy

on users and items with different degrees. Since recall is defined

based on users, it can be naturally used to measure the

recommendation accuracy of the users with the same degree.

When applied to items, we define the item recall as:

Ra(L)~da(L)=Ea where Ea is the number of users who selected

item a in the probe set, and da(L) is the number of times that a
appears in these Ea users’ recommendation lists. The recall of the

items with the same degree is obtained by simply averaging Ra(L)
of these items. The left figure of Fig. 3 gives the relationship

between the accuracy and the movie degree. As one can seen, both

ICF-MMDS and ICF-NMDS significantly improve the accuracy

of small degree movies. Among all the methods, MD performs

worst in recommending small degree movies. The right figure of

Fig. 3 shows the relationship between the accuracy and the user

degree. It can be seen that the ICF-MMDS and ICF-NMDS

methods outperform others for both small and large degree users.

Our above results show that the ICF-MMDS and ICF-NMDS

can improve the accuracy of those unpopular movies, which

implies the recommendation from these two methods are diverse.

The novelty and diversity results of those methods on MovieLens

are presented in Fig. 4. The left figure gives the results of Novelty,

where it can be seen that the best method with respect to Novelty is

HC. On the contrary, the Novelty of the MD and ICF-cosine are

not satisfactory enough. The Novelty of ICF-MMDS and ICF-

NMDS increases with the dimension H, which indicates that they

provide more novel movies with a smaller H. The right figure

gives the recommendation diversity measured by the Hamming
Distance. Different from the Novelty, the best method is the ICF-

NMDS rather than the HC method. The diversity of both

Figure 1. The compare of cosine and MDS (MMDS and NMDS) method in real data, MovieLens. All the movies are sorted by their degrees
in a ascending order (horizontal ordinate). For a given movie a, other movies are sorted by their similarities with a in a ascending order (vertical
ordinate) and the color depth denotes the value of similarity.
doi:10.1371/journal.pone.0111005.g001
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ICF-MMDS and ICF-NMDS methods decreases with the

dimension H but still better than others when H is large.

Effect on Network Evolution
Moreover, we study impacts of recommendation algorithms on

the long-term diversification of user-item bipartite network. We

again randomly sample 500 movies from the MovieLens data. For

each user, we provide her with top-10 ranked movies by the

recommendation algorithm and assume that she will randomly

select one of them. As a result, each user’s degree will be increased

by 1. We repeat this scenario for 10 times and then investigate the

changes of each movie’s degree distribution as well as the

corresponding Gini coefficient. The left figure of Fig. 5 gives the

changes of movies’ degrees in the zipf plot. The Origin curve

denotes movies’ degrees in the original bipartite network. Other

curves denote the movies’ degrees after 10 times of the above

recommendation processes. We observe that the top-100 popular

movies’ degrees are greatly increased by the MD and ICF-cosine

algorithms while the degree increment of other movies is very

small. It means the unpopular movies are overlooked while

popular movies are mostly recommended by these two methods.

The HC algorithm mainly increases the degrees of those

unpopular movies, which is opposite to the algorithm of MD

and ICF-cosine. Different from the previous methods, the degrees

of both the popular and unpopular movies are increased by the

ICF-MMDS and ICF-NMDS. Between ICF-MMDS and ICF-

NMDS, one can see that the degree increment of unpopular

movies by the ICF-NMDS is more than that by the ICF-MMDS,

which indicates that the ICF-NMDS works better in recommend-

ing the fresh movies for users.

The changes of Gini coefficient of the system is presented in the

right figure of Fig. 5. Suppose k is the movie degree vector sorted

in the ascending order, the Gini coefficient of the system is

G~
1

n
(nz1{2

Pn
a~1 (nz1{a)kaPn

a~1 ka
), ð10Þ

where n is the size of k. The Step in the figure denotes the number

Figure 2. The relationship between average similarity of an item to other items and its degree, as well as the distributions of
similarity scores under different methods.
doi:10.1371/journal.pone.0111005.g002

Table 1. The accuracy compare results of different recommendation approaches on MovieLens.

Method Precision(L = 10) Precision(L = 20) Recall(L = 10) Recall(L = 20)

ICF-MMDS 0.3507 0.2844 0.1604 0.2412

ICF-NMDS 0.3338 0.2716 0.1506 0.2284

MD 0.2355 0.1900 0.1006 0.1528

HC 0.0024 0.0235 0.0014 0.0186

Hybrid 0.3256 0.2673 0.1492 0.2325

ICF-cosine 0.2929 0.2323 0.1254 0.1853

The recommendation length L is set to 10 and 20. The dimensions of both ICF-MMDS and ICF-NMDS are 100. The l of Hybrid method is 0.2.
doi:10.1371/journal.pone.0111005.t001

Similarity from Multi-Dimensional Scaling
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of iterations of the above recommendation process. If Step = 0, the

Gini coefficient is computed by the original movie degrees. For

MD and ICF-cosine, the Gini coefficient grows fast after each

recommendation process. This ‘‘rich gets richer’’ result in fact

contradicts to the concept of personalized recommendation which

is supposed to guide users’ attention to different items according to

their personal tastes. The HC algorithm decreases the Gini of the

system in the long-term since it mainly recommends those

unpopular movies to users. For both the ICF-MMDS and ICF-

NMDS, the Gini coefficient stays relatively stable in long term.

Complexity of Recommendation Algorithms
We finally discuss the computational complexity of our

methods. The complexity of computing the distance matrix is

O(M2N2) where M and N are the number of user and items,

respectively. There are N|N entries in the distance matrix,

therefore the complexity of computing the low-dimension matrix

Y by the gradient descent method is O(H2N2) where H is the

dimension of Y. We test the methods on an i5-2500 dual-core

processor 3.3 GHz PC. For the MovieLens data set, it spends

571.6 s in total to compute the Y by the MDS method and only

0.6041 s to calculate the similarities over all item pairs when

H = 100. However, it takes 340.9 s to compute item similarities by

the traditional cosine method. From the definition of mass

diffusion and hybrid method, they have the same computational

complexity with CF method as the resource diffusion process can

be considered as the computation of item similarities. To obtain

the transition matrix, it takes 319.8 s and 525.2 s for the mass

diffusion and hybrid method, respectively. Although the total

running time of the MDS-based method is more than the

traditional methods, the computation of Y can be done off-line.

When providing on-line recommendation service for users, we can

use the pre-stored Y to calculate the item similarities and

recommend items by CF method.

Additionally, we show in Fig. 6 the computation time of

different methods when the network size is increased. Starting

Figure 3. The relationship between accuracy and the user degree (kuser) and movie degree (kitem). For a given x, its corresponding recall is
obtained by averaging all the users whose degrees are in the range of ½a(x2{x),a(x2zx)�, where a is chosen as 1

2
log 5. The recommendation length

is 20 and the dimension of MMDS and NMDS is set to 30.
doi:10.1371/journal.pone.0111005.g003

Figure 4. The diversity results of different recommendation approaches on MovieLens. The recommendation length is set to 20.
doi:10.1371/journal.pone.0111005.g004
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from the real data, we add some ratio of artificial users with degree

equal to the mean degree of the existing users. The links of new

users randomly connect to the items. Fig. 6 shows the relation

between the computation time for the item similarity and the ratio

of new users. From the figure, one can see that the computation

time of traditional methods (cosine, diffuse and hybrid) increases

with the number of new users in the system. Although the running

time of MDS training process (computing Y matrix) is increased

with the user number, the running time of computing the item

similarity matrix is barely affected, as shown in the inset in

Figure 6. As we discussed above, the computation of Y matrix can

be done off-line and the computing the item similarity matrix is

done online. Therefore, the recommendation speed of the ICF-

MDS method is independent of user number in real application.

Discussion

The collaborative filtering method is considered as the most

popular and already widely applied to e-commerce. The

performance of CF strongly depends on the approach of

computing the users’ or items’ similarity. In the literature, there

are many handy similarity measures such as common neighbor

index and its variants. However, theses methods cannot smooth

out noise, which may result in a distorted estimation of the

similarity between nodes. To solve this problem, we apply the

multi-dimensional scaling method to measure similarity. The

method first maps the items from high dimension to low

dimension, then compute the item similarity from the low

dimension space. This mapping process can effectively eliminate

the noisy information from data and result in a more accurate

recommendation when applied to item-based collaboration

filtering method. Moreover, the computing complexity of similar-

ity from the low-dimension space is much lower than that from the

high-dimension space, which efficiently accelerates the speed of

recommendation. Finally, we study the long term diversification of

the resulted bipartite networks when different recommendation

methods are repeatedly used. We find the ICF based on MDS can

lead to a relatively stable degree distribution of the items, which

may help to form a healthy information ecology in practice.
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Figure 5. The changes of each movie’s degree and the Gini index of the system. The dimension of MMDS and NMDS is set to 30.
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Figure 6. The computation time of methods with the increasing
of network size. Inset gives the running time of computing the item
similarity matrix by Y when the dimension number is 100.
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