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Abstract

Background: The mechanism of bilirubin neurotoxicity is poorly understood. We hypothesize 

that bilirubin inhibits the function of lipid rafts (LR), microdomains of the plasma membrane 

critical for signal transduction. To test this hypothesis, we measured the effect of free bilirubin 

(Bf) between 7.6 – 122.5 nM on LR dependent functions of L1 cell adhesion molecule (L1).

Methods: Cerebellar granule neurons (CGN) were plated on poly L-lysine overnight, and neurite 

length was determined after 1 h treatment with L1 alone or L1 and bilirubin. L1 activation of 

ERK1/2 was measured in CGN in the presence or absence of bilirubin. The effect of bilirubin on 

L1 distribution in LR was quantitated, and the localization of bilirubin to LR was determined.

Results: The addition of bilirubin to CGN treated with L1 significantly decreased neurite length 

compared to L1 alone. L1 activation of ERK1/2 was inhibited by bilirubin. Bilirubin redistributed 
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L1 into LR. Bilirubin was associated only with LR containing fractions of a sucrose density 

gradient.

Conclusion: Bf significantly inhibits LR-dependent functions of L1 and are found only 

associated with LR suggesting one mechanism by which bilirubin may exert neurotoxicity is 

through the dysfunction of protein-LR interactions.

INTRODUCTION

Bilirubin has long been associated with cerebellar dysfunction, which can result in dystonia 

in full term and premature newborns (1). Neurotoxicity has been seen to occur in premature 

infants at much lower levels of bilirubin compared to full term infants (2), indicating 

increased susceptibility. Premature neonates (<35 weeks gestation) may be at increased 

risk (3) because cerebellar development is particularly vulnerable in preterm neonates (4). 

Although phototherapy is the current standard for treatment of hyperbilirubinemia, reduction 

of total serum bilirubin (TSB) does not adequately correlate with a reduction in bilirubin 

neurotoxicity (5). Mounting evidence suggests that the unbound fraction of bilirubin (free 

bilirubin (Bf)) is important in predicting bilirubin neurotoxicity (6–9). A meta-analysis of in 
vitro studies shows that Bf induces apoptosis and reduces cellular proliferation in neurons 

(10) indicating a more direct effect on neural development than total bilirubin. Bf binds 

to neuronal membranes (11) and to phospholipids (12,13). However, currently there are no 

studies on Bf binding capabilities to different phospholipids.

There is growing recognition that lipid membrane composition plays a key role in cell 

physiology. While studies of protein ion channels commonly treat the plasma membrane as a 

simple inert supporting layer, studies reveal that lipids themselves play important biological 

roles as direct signaling elements (14,15) and protein ion channel regulators (16,17). 

Wide ranges of protein ion channels associate with specific lipid microdomains (18), with 

regulation of channel conductance resulting from protein interactions with the lipids as 

well as changes in the physical properties of the membrane (19). In particular, membrane 

microdomains containing specific phospholipids, termed lipid rafts (LR), float freely in 

the membrane, but with the proper stimulus, form ordered and tightly packed structures 

within the bilayer (14,20). The past decade reveals that LR play a number of important 

physiological functions and compartmentalize cellular processes by influencing membrane 

fluidity, recruiting and organizing the assembly of signaling molecules, affecting the 

trafficking of membrane proteins, and regulating neurotransmission and receptor transport 

(21–23).

Because bilirubin binds to phospholipids, we hypothesized that bilirubin binds to and 

causes LR dysfunction. L1 cell adhesion molecule (L1) is dependent on LR to mediate 

neurite outgrowth, whereas laminin mediates neurite outgrowth through a LR-independent 

mechanism (24,25). L1 only briefly traffics through LR in the growth cone during the 

endocytic recycling process necessary for neurite outgrowth (26). Non-lipid raft L1 is found 

in the plasma membrane and is used to promote nerve fasciculation. Ethanol has been 

shown to increase the fraction of L1 found in LR leading to impairment of LR mediated 

neurite outgrowth (25). L1 initiates a signaling pathway that leads to activation of p60src, 
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a constitutive LR protein, and ERK1/2 (27). Inhibition of p60src reduces L1 activation 

of ERK1/2 (28). Inhibition of ERK1/2 decreases neurite length of neurons grown in the 

presence of L1 (27). Thus, dysfunction of LR will reduce L1-, but not laminin-, mediated 

neurite outgrowth, as well as decrease L1 activation of ERK1/2. We test our hypothesis 

using cerebellar granule neurons (CGN) from postnatal day 5 rat pups (day of birth is 

postnatal day 0), a well-established and relevant model of human brain growth during the 

third trimester (29–31) and a well described model of bilirubin neurotoxicity (32).

METHODS

Antibodies and materials:

Mouse monoclonal anti-beta III tubulin were obtained from Sigma (St. Louis, MO) 

(catalog #T8660), and goat anti mouse IgG (heavy and light chain) conjugated to 

Alexa 488 was obtained from Invitrogen (Grand Island, NY) (catalog #A11001). Rabbit 

polyclonal antibody against dually phosphorylated activated ERK1/2 (catalog #9101) and 

rabbit polyclonal antibodies against total ERK (catalog #9102) were obtained from Cell 

Signaling (Beverly, MA, USA). Rabbit polyclonal antibody to mouse IgG (catalog #315–

005-003), and rabbit polyclonal antibody to mouse IgG (H+L) conjugated to hydrogen 

peroxidase (catalog #315–035-003) were obtained from Jackson Immuno-Research (West 

Grove, PA, USA). Mouse monoclonal antibody to rat L1 (ASCS4) was obtained from 

the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD 

and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242. 

Horseradish peroxidase (HRP)-conjugated cholera toxin B subunits (CTXB) were purchased 

from Sigma (catalog #C3741–1VL). Goat polyclonal anti-neural cell adhesion molecule L1 

polyclonal antibody to the cytoplasmic domain of L1 (anti-L1CD) was obtained from Santa 

Cruz Biotechnology (Santa Cruz, CA) (catalog #sc-374046). Rabbit polyclonal anti-bilirubin 

antibody was obtained from Biomatik (Wilmington, DE), capable of detecting total bilirubin 

(catalog #CAU21553). Methyl beta cyclodextrin (MBCD) was obtained from Sigma. The 

substrates used for these experiments were 0.1% poly L-lysine (PLL) (Sigma), laminin 

(Lam) (Invitrogen), and L1-Fc, a soluble chimeric protein consisting of the extracellular 

domain of L1 cell adhesion molecule and the Fc domain of IgG (purchased from R&D 

Systems as a 20 μg/ml solution, Minneapolis, MN). Bilirubin, horseradish peroxidase and 

human serum albumin (HSA) were obtained from Sigma.

Bilirubin Preparation:

Immediately before each experiment, bilirubin was dissolved in 0.1 M NaOH and stabilized 

with 100 μM HSA. This solution was then diluted in K5 media to yield final bilirubin 

concentrations of 5, 10, and 50 μM to be added to tissue culture wells. The solution 

was prepared in the dark to limit bilirubin photo-isomerization due to light. All cultures 

containing bilirubin were kept in the dark.

Measurement of Bf concentrations:

The peroxidase-diazo method revised from Ahlfors (33) was used to determine the 

concentration of Bf immediately after preparation of the 5, 10, and 50 μM bilirubin 

samples in K5 media alone, to characterize the initial conditions that neurons experience. 
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The competitive inhibition constant (Kp) for horseradish peroxidase (HRP) (Sigma) was 

calculated from the reaction rate of enzymatic oxidation of Bf with hydrogen peroxide 

(Sigma). Albumin-bound bilirubin was unable to participate in the oxidation reaction and 

was left unchanged in the solution. Oxidized Bf was unable to be diazotized. Bf in 

the samples was oxidized using HRP; the remaining unoxidized bilirubin in the samples 

was diazotized. This diazotization allowed the unoxidized, albumin-bound bilirubin to 

be measured spectrophotometrically, quantified, and compared to the total unconjugated 

bilirubin before oxidation. Bf concentrations in the samples were calculated from the 

difference of total starting bilirubin and the diazotized bilirubin that remained in the 

reactions with different HRP concentrations (34).

The concentrations of Bf in the HSA containing media were: 7.6, 37.6, and 122.5 nM in 5, 

10, and 50 μM total bilirubin solutions respectively. Both 7.6 and 37.6 are concentrations of 

Bf in the physiologic range.

Cell Cultures:

CGN from 5 day-old Sprague-Dawley rat pups were prepared as previously described 

(25,28,35). All pups in each litter were used, and cell cultures were a mix of male and 

female pups. To minimize pain and discomfort, the pups were rapidly decapitated as 

approved by the University of Maryland School of Medicine Institutional Animal Care 

and Use Committee. Cerebella were dissected and suspended in ice cold PBS buffer, then 

trypsinized to prepare a single cell suspension. Viability of CGN was assessed with trypan 

blue and was routinely >90%. The CGN suspension was diluted to a concentration of 2×104 

cells/mL and plated with Neurobasal media (Gibco, Rockville, MD) which contained the 

following additions: 2% B27 supplement (Gibco), 2 mM L-glutamine, 6 g/L glucose, 20 

mM HEPES, pH 7.2, and 1% penicillin/streptomycin (referred to as K5). All treatment 

conditions for experiments in this study contained 100 μM de-lipidated human serum 

albumin (HSA) to control for unbound albumin in the bilirubin solutions. All CGN were 

grown on surfaces treated with PLL. Some glass coverslips were treated with laminin 

beforehand, and some cells were plated with L1-Fc supplemented K5 media.

Preparation of growth substrate:

Coverslips obtained from Fisher Scientific (Hanover Park, IL) were cleaned and placed in 

the bottom of each of a 24 well Costar tissue culture flat bottom plate. Into each of the 24 

wells was placed one mL ice cold 0.1% poly L-lysine (PLL). They were then sealed and 

placed in the refrigerator at 4°C overnight. L1 containing wells were prepared as follows: 

Just prior to the addition of CGN, the PLL solution was removed from the wells and 

each well was washed in ice cold PBS three times. Into each well was added 0.5 mL of 

pre-warmed K5 media and 10 μl of a 20 μg/ml solution of L1-Fc to give a concentration 

of 0.4 μg/mL (25,30,31). Prepared CGN suspension was added to bring the total volume in 

each well to 1 mL. Laminin containing wells were prepared as follows: The PLL solution 

was removed from the wells, each well was washed in ice cold phosphate buffered saline 

(PBS) three times, then 1 mL of a 2 mg/mL laminin solution in PBS was added to each 

well. The plate was again sealed and placed in the refrigerator overnight at 4°C. Just prior to 

addition of CGN, the laminin solution was removed from the wells (30,35). Into each well 
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was added 0.5 mL of pre-warmed K5 media and prepared CGN suspension to bring the total 

volume in each well to 1 mL.

Neurite outgrowth:

For neurite outgrowth experiments, CGN cultures grown on PLL or laminin, or treated 

with L1-Fc were incubated for 2 h at 37°C in 10% CO2 to allow cell adhesion. Bilirubin-

containing media was added in the dark, 2 h after plating. Cells were grown for 22 h after 

bilirubin treatment in a humid atmosphere of 90% air, 10% CO2 at 37°C in the dark. At 22 h 

there was no change in cell density and cells did not appear pyknotic.

The media was removed and cells were washed X3 with ice cold PBS. The cells were 

then fixed in 4% paraformaldehyde for 30 min at room temperature, followed by X3 

washes with PBS. Blocking solution (3% BSA/0.2% Triton X-100/PBS) was added to each 

coverslip for 30 min at 37°C, or overnight at 4°C. Blocked cells were exposed to mouse 

monoclonal anti-tubulin beta III for 2 h at 37°C. Following primary antibody exposure, the 

coverslips were washed 3X with PBS and then exposed to the secondary antibody, Alexa 

488 anti-mouse IgG for 1 h at 37°C. Finally, the wells were washed X3 with PBS, and 

mounted on glass slides. Cells were viewed on a Zeiss Observer Z1 fluorescence inverted 

microscope at objective 20X (Carl Zeiss Microscopy, LLC). Images were captured using 

Axiovision camera software (Carl Zeiss Oberkochen, Germany), and neurite outgrowth was 

measured using Image J software (National Institutes of Health, Bethesda, MD). Eligible 

neurites were identified by a masked investigator in an a priori design. Eligible neurons were 

photographed and neurite length measured. Neurite length was measured as the distance 

between the center of the cell soma and the tip of its longest neurite. Only neurons 

containing neurites that met the following criteria were measured: 1) The neurite was at 

least as long as the width of soma; 2) The neurite was not touching another neuron; 3) The 

neuron was single and not in a cluster (25,35). Slides were scanned for eligible neurons from 

left to right until at least 30 neurites from each coverslip were identified and photographed 

for measurement.

L1 activation of ERK1/2 in the presence or absence of MBCD:

The ability of L1 to activate ERK1/2 in the absence of LR was tested with MBCD, which 

chelates cholesterol and disperses LR. We have previously shown that the addition of 4 

mM MBCD to CGN for 1 h dissolves LR without affecting cell viability (25). ERK1/2 was 

activated by addition of a cross-linked anti-L1 monoclonal antibody, ASCS4, as previously 

described (27,36). ASCS4 was cross-linked by mixing with rabbit anti-mouse IgG (H+L) 

(1:2.5 g/g) to form multimeric complexes (clASCS4). The mixture was incubated for 1 h 

at 4°C prior to addition to cells. Mouse IgG was used as the positive control. Cells were 

plated on PLL in K5 media at 2 × 105 and grown overnight in 10% CO2 at 37°C. After 24 

h of incubation, media was replaced with fresh pre-warmed K5 media, and either bilirubin 

media (5, 10, or 50 μM prepared as for NOG experiment) or 4 mM MBCD with 0.02% 

DMSO added to the cultures. The prepared cross-linked ASCS4 or mouse IgG was added 1 

h after the addition of bilirubin or MBCD. Cells were washed with ice-cold Hank’s balanced 

salt solution (HBSS) 10 min after addition of cross-linked ASCS4 or mouse IgG. Cells 

were then scraped from dishes and incubated with lysis buffer for 30 min, followed by a 

Kitchen et al. Page 5

Pediatr Res. Author manuscript; available in PMC 2022 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



centrifugation of 10,000 g for 10 min at 4°C. Cell lysates were boiled for 5 min in Laemmli 

sample buffer, run on SDS-PAGE (12% gel) and western blotted as described below.

Determination of L1 distribution in LR:

CGN were plated on 100 mm dishes at a density of 6 × 106 in K5 media and incubated 

in 10% CO2 at 37°C overnight. The media was replaced with fresh prewarmed K5 media 

three h prior to harvest. Half of the K5 media was removed and replaced one h prior to 

harvest, with either bilirubin media (final concentration 5 μM, prepared the same as for 

NOG), ethanol (25 mM) as a positive control (25), or HSA media alone to serve as a 

negative control. Cultures were kept in a dark incubator. All equipment was cooled to 4°C. 

The media was removed and cells were washed with cold HBSS. CGN were scraped and 

lysed in low detergent buffer consisting of 20 mM Tris, pH 7.4, 150 mM NaCl, 0.5% Triton 

X-100, 10% glycerol, 10 mM Na-vanadate, 2 μM aprotinin, 0.1 mM phenylmethylsulfonyl 

fluoride, 1 μM leupeptin, 1 μg/mL pepstatin A, 10 μg/mL turkey trypsin inhibitor, 100 pM 

cypermethrin, phosphatase inhibitor cocktail I (Sigma), and phosphate inhibitor cocktail II 

(Sigma). The lysates were centrifuged for 30 min at 13,000 g at 4°C. After centrifugation, 

2 mL of the lysate supernatant was mixed with an equal volume of 80% sucrose solution 

and then overlaid by a sucrose density gradient with 32% and 5% layers. The gradient was 

centrifuged at 180,000 g, for 24 h at 4°C. Sequential 1 mL fractions were drawn off the 

top of the gradient. Fractions containing LR were identified by dot blots for cholera toxin 

subunit B reactivity as described below. Proteins from an equivolume of each LR and non-

LR pool (bilirubin, ethanol, and control) were precipitated using chloroform/methanol and 

resuspended in Laemmli sample buffer and run on SDS-PAGE, followed by immunoblotting 

as described below.

Dot Blots:

Two μL aliquot from each fraction (generated above) was blotted onto a nitrocellulose 

membrane. After drying, the dot blots were blocked with 5% BSA for 1 h and then 

incubated with the primary detector for 30 min, with either anti-bilirubin to detect bilirubin 

or CTXB conjugated to HRP to detect GM1 ganglioside. After washing with TBS, the blots 

made with the bilirubin antibody were incubated with rabbit polyclonal antibody to mouse 

IgG (H+L) conjugated to hydrogen peroxidase for 30 min and then washed with TBS again. 

Blots were incubated with ECL reagents for 1 min, and then dot blot images were captured 

using x-ray film.

Western blots:

The samples were separated by SDS–PAGE (12% gel) and transferred to a polyvinylidene 

difluoride membrane. The membrane was blocked in Tris-buffered saline containing 2% 

bovine serum albumin (BSA) and 0.1% Tween-20. The membrane was incubated with 

antibodies to dually phosphorylated ERK1/2 or the cytoplasmic domain of L1 (L1-CD) and 

HRP-conjugated CTXB. The membrane was then washed and probed with HRP-goat anti-

rabbit IgG, then reactive proteins were visualized by chemiluminescence. Blots for ERK1/2 

were stripped and re-probed with anti-total ERK antibodies to assess protein loading. The 

relative intensity of the bands was quantified using transmittance densitometry using Image J 

software (NIH). The phosphorylated ERK1/2 band densities were normalized for the amount 
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of total ERK protein for all quantitative analyses. The band densities for L1 in each sample 

were added, then the density in the LR pool was divided by the total X 100 to calculate the 

%L1 in LR.

Localization of bilirubin:

Cells were treated for 1 h with 100 μM HSA with or without 5 μM bilirubin (B), resulting 

in four groups: B− MBCD−, B+ MBCD−, B− MBCD+, and B+ MBCD+. LR were isolated 

from cells from each of the 4 treatment groups. Each fraction of the sucrose gradient was dot 

blotted for GM1 ganglioside as described above using CTXB and for bilirubin.

Statistical analysis:

Neurite length was determined for the first 30 cells on each coverslip that met the 

measurement criteria. The mean neurite length for all CGN in each condition per cell 

preparation was calculated. Descriptive statistics determined the mean +/− standard error of 

the mean (SEM) of the mean neurite lengths for each condition in each cell preparation. 

The data was analyzed by ANOVA followed by post hoc pairwise comparison (Tukey) to 

determine significant differences between treatment groups. P< 0.05 was set as significant. 

For ERK1/2 activation, the ratio of phosphoERK1/2 to total ERK1/2 was calculated 

for each lane then normalized to the control condition. The relative densitometric units 

were compared for significance using ANOVA followed by posthoc pairwise comparison, 

significance defined as p<0.05. %L1 in LR were compared for significance using ANOVA 

followed by posthoc pairwise comparison (Tukey). For Figure 6, bilirubin presence was 

dichotomized as yes or no in LR fractions and in non LR fractions and analyzed by Fisher 

Exact Test.

RESULTS

Bilirubin inhibits L1-mediated neurite outgrowth

CGN grown with L1-Fc showed a significant increase in mean neurite length compared to 

those grown without L1-Fc (Figure 1). There was a significant decrease in mean neurite 

length for neurons grown with added L1-Fc after exposure to bilirubin of 5, 10 and 50 μM 

(corresponding to Bf of 7.6, 37.6, and 122.5 nM) when compared to the mean neurite length 

of those neurons grown with L1-Fc and without bilirubin (Figure 1).

Bilirubin has no effect on laminin-mediated neurite outgrowth

CGN grown on laminin showed a significant increase in neurite length when compared to 

those grown without laminin (Figure 2). Neurons grown on laminin and exposed to bilirubin 

of 5, 10 and 50 μM (corresponding to Bf of 7.6, 137.6, and 122.5 nM) did not show a 

significant change in neurite length when compared to those grown with laminin alone 

(Figure 2).

L1 activation of ERK1/2 is dependent on LR

The addition of clASCS4 alone showed a significant increase in phosphoERK1/2 compared 

to control (Figure 3). Treatment with MBCD did not show a significant difference from 
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the control in the baseline level of phosphoERK1/2 (Figure 3). The addition of 4 mM 

MBCD for 1 h prior to addition of clASCS4 prevented the clASCS44 induced increase in 

phosphoERK1/2 (Figure 3).

Bilirubin inhibits L1 activation of ERK1/2

The addition of 10 or 50 μM bilirubin 1 h prior to the addition of clASCS4 significantly 

inhibited L1 activation of ERK1/2 compared to treatment with clASCS4 alone (Figure 4). 

There were no significant differences between amount of bilirubin added and the amount of 

phospho-ERK1/2; however, there appeared to be an increasing trend in ERK inhibition in 

the presence of increasing bilirubin concentrations (Figure 4).

Addition of bilirubin to CGN redistributes L1 in LR.

We have previously shown that a 1 h ethanol treatment significantly increases L1 in LR (25). 

Therefore, ethanol serves as a positive control for this experiment and significantly increased 

the percent of L1 in LR. The percent of L1 significantly increased by 2.5 fold in LR with 

exposure to 5 μM bilirubin for 1 h (Figure 5).

Localization of bilirubin in LR fractions

When MBCD is absent, GM1 ganglioside was only seen in sucrose density fractions at the 

upper end of the gradient, fractions 2 – 7 (Figure 6A), indicating these fractions contain LR. 

Treatment with bilirubin alone did not change which fractions contained GM1 ganglioside, 

indicating that LR were not dissolved. In the presence of MBCD, the GM1 ganglioside 

signal was diminished overall and spread throughout the sucrose density gradient indicating 

LR were dissolved (Figure 6A). Figure 6B shows that only lysates from cells exposed to 

bilirubin (B+) were immunoreactive for bilirubin indicating specificity of the antibody to 

bilirubin. In the absence of MBCD, bilirubin was found to be present only in LR containing 

fractions 2 – 4 (Figure 6B). In the presence of MBCD, bilirubin immunoreactivity was 

diminished and spread through all fractions.

DISCUSSION

In summary, within the physiologic range, bilirubin, and presumptively Bf 1) inhibits L1-but 

not laminin-mediated neurite outgrowth, 2) inhibits L1 activation of ERK1/2, 3) causes 

a redistribution of L1 into LR, and 4) binds only to LR. These results suggest that one 

potential mechanism of the neurotoxicity of bilirubin is the dysfunction of LR.

The interaction of bilirubin with neuronal membranes is not a new finding. Initially 

described by Mustafa et al (37), attention was focused on mitochondrial membranes and 

the inhibition of oxidative phosphorylation. However, an early study showed no effect of 

bilirubin on oxidative phosphorylation coupling in animals with bilirubin encephalopathy 

(38). Bilirubin oxidizes membrane phospholipids, but this effect does not account for all 

the activity of bilirubin (39). Nakai and Kamiguchi demonstrated that GM1 ganglioside was 

integral in LR and only associated with lipid raft fractions (40). Interestingly, low levels of 

bilirubin have been shown to ameliorate the effects of oxidative stress on GM1 ganglioside 
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redistribution (41). In this study, we demonstrated the increased concentration of bilirubin 

did not alter the distribution of GM1 ganglioside.

Bilirubin has previously been shown to inhibit ERK1/2 activation by other proteins. 

Bilirubin inhibited NGF and BDNF activation of ERK1/2 in PC12 and primary rat CGN 

(42). In addition, others have demonstrated the necessity of ERK1/2 in the bilirubin-induced 

apoptosis pathway, which coincides with our findings (43). Bilirubin-mediated inhibition of 

neointimal thickening was also accompanied by significant decreases in ERK1/2 signaling, 

further supporting our findings of bilirubin-inhibited ERK1/2 activation (44). Bilirubin has 

been shown to activate ERK1/2, but only in HRT-18 (colon cancer) cells, which likely utilize 

ERK1/2 in separate pathways (45).

The Bf concentrations of 7.6 and 37.6 nM in this study are within the range measured 

clinically (46,47). Elevated Bf is associated with bilirubin-induced neurotoxicity, as it is able 

to cross the blood brain barrier (48). In addition, preterm neonates are more susceptible 

to bilirubin neurotoxicity, despite lower levels of total serum bilirubin (both bound and 

unbound) (49); therefore, the focus of this study is to examine the effects of unbound 

bilirubin at concentrations including ones in the physiologic range. The measurement of Bf 

is not routinely used in clinical management, nor is the assay routinely available in clinical 

laboratories (48). Several of the methods for measuring Bf are in dispute. A recent large 

clinical trial utilizes the total serum bilirubin/albumin (B/A) ratio as a proxy for Bf due 

to the lack of reliable assay methods (48). Our albumin concentration was 100 μM and 

our bilirubin to albumin molar ratio was varied from 1:2 to 1:100 in these studies. One 

possible limitation of this study is that the bilirubin used was not purified before use. We 

use measurements of Bf from less than the limit of detection (i.e., lower than 7.6 nM) to 

122 nM, spanning beyond the range of Bf in preterm infant blood, given that the physiologic 

range of Bf is at 70 nM (Ostrow, 2004).

Bilirubin may insert itself into the membrane disrupting the ability of proteins to traffic 

in and out of the LR. This dysfunction may occur without dissolving LR entirely. Subtle 

alterations in the membrane composition can alter the ability of membranes to be in an 

ordered (LR) or disordered state (non-LR), which would alter the ability of a protein to 

associate with LR. These interrupted protein-lipid interactions can have detrimental effects 

on cerebellar development and lead to profound neuronal damage. LR were first described 

in the early 1990’s, but their existence was debated for two decades (14). A body of 

literature now supports their existence as dynamic membrane domains, rapidly aggregating 

and disaggregating to bring molecules involved in signaling together, then apart. Neuronal 

proteins are either constitutive elements of the LR, excluded from the LR, or trafficked 

through the LR. The function of some proteins is altered whether they are within or out 

of the LR (19). L1 is an example of a protein that traffics through the LR (25). L1 cannot 

stay in the LR and be functional; it must traffic through LR while undergoing a series of 

phosphorylation/dephosphorylation events. Bf is causing either enhanced trafficking of L1 to 

LR or retarding the movement of L1 out of LR, both would result in an increase of L1 in the 

LR. We compared the effect of bilirubin on two neurite outgrowth pathways: one involving 

L1 (and therefore LR), and one involving laminin, which do not use LR (24). Our results 

show that bilirubin effects LR dependent neurite outgrowth (Figure 1), and does not affect 
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LR independent neurite outgrowth (Figure 2). These results suggest that LR are a target for 

bilirubin in the cerebellum. We are actively investigating the in vivo effects of bilirubin on 

the cerebellum using our Gunn Rat model of preterm hyperbilirubinemia.

The identification of LR function as a target for bilirubin may open the door to different 

interventions to prevent neurotoxicity. The integrity of LR is determined by the ratio of 

sphingomyelin to phosphatidylcholine, for which choline is a known precursor. Choline 

supplementation is being actively investigated to prevent and/or reverse the effects of ethanol 

in animal models of fetal alcohol spectrum disorder (50–54). It has been proposed that 

25% of pregnant women are choline deficient (55). Therefore, certain infants may have 

altered sphingomyelin to phosphatidylcholine ratios, making their LR more susceptible to 

damage and altered function. Supplementation with choline may restore resilience of the LR 

to lipophilic substances like ethanol and bilirubin. Supplementation with GM1 ganglioside, 

another constituent of LR, may be another interventional strategy. GM1 ganglioside has 

been tested for its ability to reduce the progression of Parkinson’s disease (56).

Bilirubin-induced neuronal dysfunction remains a significant clinical problem. Phototherapy 

significantly reduces total serum bilirubin concentration and reduces the number of 

exchange transfusions, but it does not improve outcomes (57) possibly because it does 

not reduce Bf levels to concentrations that have no neurotoxicity. Minocycline reduces 

bilirubin-induced neurological dysfunction in animal models (58), but its side effects make it 

unsuitable for use in neonates. Better interventions are needed.

In sum, our results suggest that bilirubin interferes with normal LR function, and suggests a 

new therapeutic target to prevent or reduce bilirubin neurotoxicity.
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Impact Statement:

• This article establishes lipid rafts as a target for the neurotoxic effects of 

bilirubin.

• This article provides clear evidence toward establishing one mechanism of 

bilirubin neurotoxicity, where little is understood.

• This article paves the way for future investigation into lipid raft dependent 

functions, and its role in neurodevelopmental outcome.
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Figure 1. 
Bilirubin inhibits L1 mediated neurite outgrowth at physiologic concentrations of Bf. A. 

Distribution curve of neurite lengths without L1, L1, or L1 plus 5, 10, or 50 μM of bilirubin 

from a representative experiment. B. Bar graph of mean +/− SEM neurite lengths of CGN 

grown without L1, L1, or L1 plus 5, 10, or 50 μM of bilirubin normalized to CGN grown 

on PLL alone. L1 significantly increases neurite length, and all concentrations of bilirubin 

tested significantly reduce the mean neurite length relative to the L1 alone group. N=3, 

ANOVA p<0.001, posthoc pairwise comparison (Tukey) * p<0.0001; ** p<0.001; † p<0.01
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Figure 2. 
Bilirubin does not inhibit laminin-mediated neurite outgrowth at physiologic concentrations 

of Bf. A. Distribution curve of neurite lengths with PLL alone, laminin (Lam), or Lam plus 

5, 10, or 50 μM of bilirubin from a representative experiment. B. Bar graph of mean +/− 

SEM neurite lengths of CGN grown without Lam, Lam, or Lam plus 5, 10, or 50 μM of 

bilirubin normalized to CGN grown on PLL alone. N=3, ANOVA p<0.01, posthoc pairwise 

comparison (Tukey), *p<0.01, NS = non significant.
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Figure 3. 
L1 activation of ERK1/2 is dependent on lipid rafts. A. A representative immunoblot of 

phosphoERK1/2 and total ERK with and without MBCD (M). The experimental groups 

are as follows: Mouse IgG (C); clASCS4; MBCD added 1 h prior Mouse IgG alone (M); 

MBCD added 2 h prior to clASCS4 (M+L1). B. Bar graph of mean +/− SEM of relative 

densitometric units of phosphoERK1/2 and total ERK, normalized to the control, N = 3, 

ANOVA p<0.0001, posthoc pairwise comparison (Tukey) *p<0.01
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Figure 4. 
Physiologic bilirubin concentrations inhibit L1 activation of ERK1/2. A. A representative 

immunoblot of phosphoERK1/2 with total ERK as a loading control. CGN treated without 

clASCS4, clASCS4, or clASCS4 plus 5, 10, or 50 μM bilirubin as indicated for 1 h prior 

to addition of clASCS4. B. Bar graph of mean +/− SEM of relative densitometric units of 

clASCS4 activation of ERK1/2 normalized to control. N = 3, ANOVA p<0.0001, posthoc 

pairwise comparison (Tukey) *p<0.01
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Figure 5. 
The fraction of total L1 in the lipid raft pool is increased by bilirubin. A. Representative 

immunoblot showing L1 distribution in lipid rafts (LR) and non-lipid rafts (N) in K5 media 

alone (control), the presence of 25 mM ethanol (EtOH) as a positive control, or 5 μM 

bilirubin. B. Bar graph of %L1 in lipid rafts (LR*100/(LR+N) (mean +/− SEM). N=3, 

ANOVA p<0.01, posthoc pairwise comparison (Tukey) *p<0.01, **p<0.05
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Figure 6. 
Bilirubin is found only in lipid raft containing fractions of a sucrose density gradient. 

A. Representative dot blot of sucrose gradients treated with bilirubin and/or MBCD and 

reactive to CTXB. B. Representative dot blot of the same fractions immunoreactive with 

bilirubin.
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